A covariant, discrete time-frequency representation tailored for zero-based signal detection - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Signal Processing Année : 2022

A covariant, discrete time-frequency representation tailored for zero-based signal detection

Résumé

Recent work in time-frequency analysis proposed to switch the focus from the maxima of the spectrogram toward its zeros. The zeros of signals in white Gaussian noise indeed form a random point pattern with a very stable structure. Using modern spatial statistics tools on the pattern of zeros of a spectrogram has led to component disentanglement and signal detection procedures. The major bottlenecks of this approach are the discretization of the Short-Time Fourier Transform and the necessarily bounded observation window in the time-frequency plane. Both impact the estimation of summary statistics of the zeros, which are then used in standard statistical tests. To circumvent these limitations, we propose a generalized timefrequency representation, which we call the Kravchuk transform. It naturally applies to finite signals, i.e., finite-dimensional vectors. The corresponding phase space, instead of the whole timefrequency plane, is compact, and particularly amenable to spatial statistics. On top of this, the Kravchuk transform has several natural properties for signal processing, among which covariance under the group action of SO(3), invertibility and symmetry with respect to complex conjugation. We further show that the point process of the zeros of the Kravchuk transform of discrete white Gaussian noise coincides in law with the zeros of the spherical Gaussian Analytic Function. This implies that the law of the zeros is invariant under isometries of the sphere. Elaborating on this theorem, we develop a procedure for signal detection based on the spatial statistics of the zeros of the Kravchuk spectrogram. The statistical power of this procedure is assessed by intensive numerical simulation, and compares favorably with respect to state-of-the-art zeros-based detection procedures. Furthermore it appears to be particularly robust to both low signal-to-noise ratio and small number of samples.
Fichier principal
Vignette du fichier
kravchuk_hal.pdf (3.3 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03553433 , version 1 (02-02-2022)
hal-03553433 , version 2 (08-02-2022)
hal-03553433 , version 3 (06-02-2023)

Identifiants

Citer

Barbara Pascal, Rémi Bardenet. A covariant, discrete time-frequency representation tailored for zero-based signal detection. IEEE Transactions on Signal Processing, 2022, 70, pp.2950-2961. ⟨10.1109/TSP.2022.3181342⟩. ⟨hal-03553433v3⟩
189 Consultations
180 Téléchargements

Altmetric

Partager

More