Feature-Driven Time Series Clustering - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Feature-Driven Time Series Clustering

Angela Bonifati
Raymond Ng
  • Fonction : Auteur

Résumé

The problem of clustering time series has several applications in real-life contexts, especially in data science and data analytics pipelines. Existing time series clustering algorithms are ineffective for feature-rich real-world time series since they only compute the similarity of time series based on raw data or use a fixed set of features. In this paper, we develop a feature-based semisupervised clustering framework addressing the above issues for variable-length and heterogeneous time series. Specifically, we rely on a graph encoding of the time series that is obtained by considering a high number of significant extracted features. We then employ community detection and leverage a co-occurrence matrix in order to group together all the best clustering results. Our extensive experimental assessment shows the scalability and robustness of our approach along with its superiority against state of the art clustering algorithms on both real-world healthcare data and UCR benchmark data.
Fichier principal
Vignette du fichier
p270.pdf (695.27 Ko) Télécharger le fichier
Feature-driven Time Series Clustering.pdf (582.45 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03548280 , version 1 (09-02-2022)

Identifiants

Citer

Donato Tiano, Angela Bonifati, Raymond Ng. Feature-Driven Time Series Clustering. 24th International Conference on Extending Database Technology, EDBT 2021, May 2021, Nicosia, Cyprus. ⟨10.5441/002/edbt.2021.33⟩. ⟨hal-03548280⟩
153 Consultations
437 Téléchargements

Altmetric

Partager

More