
HAL Id: hal-03548280
https://hal.science/hal-03548280

Submitted on 9 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feature-Driven Time Series Clustering
Donato Tiano, Angela Bonifati, Raymond Ng

To cite this version:
Donato Tiano, Angela Bonifati, Raymond Ng. Feature-Driven Time Series Clustering. 24th Inter-
national Conference on Extending Database Technology, EDBT 2021, May 2021, Nicosia, Cyprus.
�10.5441/002/edbt.2021.33�. �hal-03548280�

https://hal.science/hal-03548280
https://hal.archives-ouvertes.fr

Feature-driven Time Series Clustering
Donato Tiano

donato.tiano@univ-lyon1.fr

Lyon 1 University

Lyon, France

Angela Bonifati

angela.bonifati@univ-lyon1.fr

Lyon 1 University

Lyon, France

Raymond Ng

rng@cs.ubc.ca

University of British Columbia

Vancouver, Canada

ABSTRACT
The problem of clustering time series has several applications in

real-life contexts, especially in data science and data analytics

pipelines. Existing time series clustering algorithms are ineffec-

tive for feature-rich real-world time series since they only com-

pute the similarity of time series based on raw data or use a fixed

set of features. In this paper, we develop a feature-based semi-

supervised clustering framework addressing the above issues for

variable-length and heterogeneous time series. Specifically, we

rely on a graph encoding of the time series that is obtained by

considering a high number of significant extracted features. We

then employ community detection and leverage a co-occurrence

matrix in order to group together all the best clustering results.

Our extensive experimental assessment shows the scalability and

robustness of our approach along with its superiority against

state of the art clustering algorithms on both real-world health-

care data and UCR benchmark data.

1 INTRODUCTION
The goal of clustering is to organize unlabeled data objects into

homogeneous groups while minimizing intra-cluster dissimilar-

ity and maximizing inter-cluster dissimilarity [9]. In this paper,

we present FeatTS, a Semi-Supervised Clustering method that

leverages features extracted from the raw time series to create

clusters that reflect, as much as possible, the original time se-

ries. The FeatTS algorithm leverages the concepts of Constrained

Clustering, more specifically Clustering by Seeding. The most

prominent approach in this category is Seeded kMeans [3], which

relies on a small amount of labels of the original dataset in order

to create two kinds of links, i.e. Must Link and Cannot Link. Must

links are connections between two data points that represent a

“constraint of belonging”. This means that the data points (or time

series at large) should be clustered together. Cannot links do the

opposite thus leading to separate data points. Leveraging these

two kinds of links, Seeded kMeans allows to discover clusters

that respect them.

Our approach differs from existing methods in the literature

since it employs the features of the time series, whereas existing

methods focus on the similarity of the time series themselves

[20]. The novelty of FeatTS consists in automatically selecting

the most appropriate statistical features based on the dataset

provided as input, the latter characteristic being relevant for

data science and data analytics pipelines. In fact, not all the

features have the same quality and choosing a subset of high-

quality features for each dataset is beneficial for the clustering

step. Moreover, the features of time series are interpretable by

humans, thus leading to a more transparent and human-centric

clustering process. To the best of our knowledge, FeatTS is the

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the

24th International Conference on Extending Database Technology (EDBT), March

23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

first feature-based semi-supervised clustering framework with

these characteristics.

In designing our approach, we were inspired by the peculiari-

ties of real-life time series, in particular those found in the time

series of patients suffering from end-stage kidney diseases. These

time series describe the change over time of the Glomerular

Filtration Rate(GFR) signal, estimating how much blood passes

through the glomeruli each minute. How GFR changes is crucial

for the patient’s survival, since rapidly descending values of GFR

over time indicate a dangerous condition that might lead to kid-

ney failure and even death. A more stable evolution of GFR over

time is less worrisome for the concerned patient, thus guiding an

appropriate treatment. The key question to tackle is how to select

the subset of features that help medical doctors to discriminate

the patients based on the label while performing clustering.

Once the features are selected, FeatTS computes the global

relationships between the time series based on their statistical

features. We use graph networks to obtain such an encoding.

Indeed, FeatTS converts each time series into nodes and creates

weighted edges. Each edge represents the distance between the

connected nodes of the edge, i.e. the difference between the values

of two different time series using the selected feature. FeatTS
prunes the graphs based on a threshold and applies a Community

Detection algorithm in order to obtain the global relationship

among time series. As a final step, FeatTS will holistically merge

the results of the communities into a Co-Occurrence matrix, on

which clustering (K-Medoid) is applied. Figure 1 depicts at a high

level the various steps of our proposed algorithm, while a detailed

explanation is provided in the rest of the paper.

As already observed, in the supervised feature selection step,

FeatTS allows to select the most appropriate statistical features

based on the labels of the time series. The selected features are

then used to cluster the entire dataset, including the time series

that may have unknown labels. Using Figure 2(a) as a running

example on GFR data, our algorithm allows us to obtain the

resulted clusters for the four time series reported in Figure 2 (d)

even with missing labels for 𝑇𝑆2 and 𝑇𝑆4.

An observant reader may question how this clustering task

is different from classification, in which features are selected

to build classifiers separating the time series based on the class

labels. The key advantage of the clustering task we perform here

is that the number of clusters to be formed can be arbitrarily

different from the number of classes. For instance, in our kidney

failure example, medical researchers may want more clusters to

be formed than the two classes of kidney failures or not. Notice

that the same separation cannot be achieved with classification

[2] as a classifier cannot "sub-divide" the "kidney failure" label.

We summarize our main contributions as follows:

(1) We introduce a novel semi-supervised clustering method

leveraging themost discriminating features extracted from

the time series. We treat the time series similar to each

other as communities and we encode the different com-

munities into a co-occurrence matrix, allowing to obtain

a unified similarity value for the time series.

Short Paper

Series ISSN: 2367-2005 349 10.5441/002/edbt.2021.33

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.33

[𝑇𝑆1,...,𝑇𝑆𝑚]

1) Extraction and

Selection

of 𝑛 Features

2) PFA Feature

Selection

3) Creation of Graphs

and Application of

Community Detection

4) Create the
Co Occurrence Matrix

5) Compute Clustering

on Matrix

Quality Evaluation

and Comparison

Figure 1: The algorithmic pipeline of FeatTS.

(2) Contrarily to previous work, our method allows to treat

at par all the features of a given dataset instead of pre-

selecting a fixed number of them for all datasets or just

leveraging the similarity of raw data.

(3) Our method achieves more high-quality results compared

with the latest baselines (among which Seeded kMeans [3]

and k-Shape [17]) on the literature datasets. In addition, it

obtains excellent results in terms of scalability.

The paper is organized as follows. Section 2 discusses the re-

lated work. In Sections 3, we describe in detail the steps of our

clustering framework. In Section 4, we describe our experimental

setup on real-life and on benchmarking data. Section 5 presents

the various results of our experimental assessment. Finally, Sec-

tion 6 concludes our work and discusses future directions.

2 RELATEDWORK
Semi-supervised learning is a combination of supervised and un-

supervised learning. It uses a small amount of labeled data and a

large amount of unlabeled data in order to train a model. As such,

it avoids the problem of finding a large amount of labeled data. A

subcategory of semi-supervised clustering is Constrained Clus-

tering, that enables the creation of Must Link and Cannot Link,

as already explained in Section 1. There exist various methods

to create these constraints; among which active learning [19] by

relying on the user to provide such constraints. Another method

would exploit the labelled data provided on input, as done by

Seeded KMeans[3]. The latter uses the labels provided as input to

find the constraints among the data and the centroids and then

applies the kMeans algorithm to find the clusters.

In the literature, approaches similar to ours exist that perform

time series clustering. However, other feature-based approaches

[15, 21] only consider a predefined set of features that are limited

with real-life time series exhibiting a richer number of features.

Among the unsupervised clustering algorithms [1], kShape[17]

can be considered as the state of the art algorithm. It computes

the most representative time series in a given cluster and inserts

each new time series into one of these clusters based on distance.

The problem with this approach is that it can often lead to assign-

ing spurious time series to clusters. As shown in the literature

[7], the usage of raw time series can spur high noise levels.

3 A FULL-FLEDGED PIPELINE
The pipeline of FeatTS as illustrated in Figure 1 is a combination

of steps that contribute to the quality of the clustering results.

We describe these steps in detail in the following.

3.1 Feature Extraction and Selection
The first step of the pipeline is the feature extraction step from

the time series corresponding to step 1) in Figure 1. We consider

feature extraction methods available in the literature and in read-

ily predefined libraries [5]. Formally, given a vector of features

[𝑓1, 𝑓2, . . . , 𝑓𝑛] extracted, we construct a table containing the

value of each feature, thus having as columns the features and

having the time series [𝑇𝑆1, 𝑇𝑆2, . . . ,𝑇𝑆𝑚] as rows. As a simple

example, in Figure 2(a), we show an instance of the table for 4

time series and 6 features. Moreover, each time series is displayed

with its corresponding label.

The features shown in Figure 2(a) represent only a tiny subset

of the set of features that can be extrapolated from the time series.

Indeed, the tsfresh[5] library allows us to extract a significantly

higher number of features. Therefore, feature selection becomes

pivotal in our setting, since not all the features have the same

relevance for the subsequent clustering steps. In particular, we

compute the relevance of the extracted features by solely using

the feature values corresponding to the class label of the time

series (e.g. in Figure 2(a) the class ‘Kidney Failure’ or ‘ No Kidney

Failure’).

The Benjamini-Yekutieli is a supervised procedure [4] that

allows us to identify the relevance of the features, based on the

label associated with the time series. It computes the p-value

of each feature provided as input based on their relevance. The

p-value is an important metric that allows us to quantify the

significance of each feature. The output of Benjamini-Yekutieli

procedure is a list of features ranked by their p-values. Among

these features, usually only a subset of them have an acceptable

relevance. From our empirical study, it has been evinced that

the top-20 features in order of relevance are sufficient to obtain

high-quality clustering.

Usually, one of themain problemswhen computing the p-value

is that the redundancy of the obtained features. It is desirable

to find a duplicate-free combination of the features that is still

quality preserving and small in number. Therefore, once we select

the 20 features from the list produced by Benjamini-Yekutieli, we

need an algorithm that allows us to find a minimum number of

features that is representative of the other features not included

in the analysis.

To do so, we apply a technique called Principal Feature Analy-

sis (PFA) [12]. PFA is a variation of Principal Component Analysis

(PCA). The key difference is that PFA preserves the original val-

ues of the features and thus the distance between them. Thus,

we can leverage the concept of explained variance, represent-

ing the ratio between the variance of one single feature and the

sum of variances of all individual features. We fix a value 𝑡 of

the explained variance, which is in our experiments equal to 0.9.

That is, out of the 20 features selected in the Benjamini-Yekutieli

procedure, we choose the minimum number of features for which

the sum of their variance covers the 90% of the information pro-

duced by the rest of the features. This value is the best result

produced empirically with various values of the threshold 𝑡 . In

our example, among all the features presented in Figure 2(a), we

have selected only 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒, 𝑡𝑟𝑒𝑛𝑑_𝑠𝑡𝑑𝑒𝑟𝑟 and 𝑡𝑟𝑒𝑛𝑑_𝑟𝑣𝑎𝑙𝑢𝑒 , as

shown in Figure 2(b).

3.2 Graph Rendering and Community
Detection

We convert the time series and their relationships into edge-

weighted graphs. The encoding of time series into edge-weighted

graphs allows us to represent our clustering problem in another

dimension space without loss of information. This operation is

crucial in order to be able to capture the global relationships

among the raw time series samples.

Suppose we have a feature 𝐹𝑖 (as selected by PFA in the pre-

vious step) and a set of 𝑛 time series {𝑇𝑆1, ..,𝑇𝑆𝑛}. Let 𝑇𝑆𝑖 be a
node 𝑣𝑖 in the set of vertices 𝑉 of a graph𝐺 . Let 𝐸 be the set of

350

Time Series 𝑚𝑒𝑎𝑛 𝑡𝑟𝑒𝑛𝑑_𝑠𝑡𝑑𝑒𝑟𝑟 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑝𝑒𝑎𝑘𝑠 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 𝑡𝑟𝑒𝑛𝑑_𝑟𝑣𝑎𝑙𝑢𝑒 Length Label

𝑇𝑆1 51.3 3.51 788.56 8 57 -0.94 89 No Kidney Failure

𝑇𝑆2 40.6 4 128.9 5 43 -0.55 206

hhhhhhhNo Kidney Failure

𝑇𝑆3 74.3 17 296.8 10 106 0.01 159 Kidney Failure

𝑇𝑆4 95.8 9.4 783.3 10 85 0.43 139
hhhhhhKidney Failure

𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒

𝑡𝑟𝑒𝑛𝑑_𝑠𝑡𝑑𝑒𝑟𝑟

𝑡𝑟𝑒𝑛𝑑_𝑟𝑣𝑎𝑙𝑢𝑒

Dataset 𝑇𝑆1 𝑇𝑆2 𝑇𝑆3 𝑇𝑆4

𝑇𝑆1 1
1 + 0.5

0.66 + 1 + 0.5
0.5

0.66 + 1 + 0.5
0.5

0.66 + 1 + 0.5

𝑇𝑆2
1 + 0.5

0.66 + 1 + 0.5 1
0.5

0.66 + 1 + 0.5
0.5

0.66 + 1 + 0.5

𝑇𝑆3
0.5

0.66 + 1 + 0.5
0.5

0.66 + 1 + 0.5 1
0.66 + 1 + 0.5
0.66 + 1 + 0.5

𝑇𝑆4
0.5

0.66 + 1 + 0.5
0.5

0.66 + 1 + 0.5
0.66 + 1 + 0.5
0.66 + 1 + 0.5 1

Dataset 𝑇𝑆1 𝑇𝑆2 𝑇𝑆3 𝑇𝑆4

𝑇𝑆1 1 0.69 0.23 0.23

𝑇𝑆2 0.69 1 0.23 0.23

𝑇𝑆3 0.23 0.23 1 1

𝑇𝑆4 0.23 0.23 1 1

𝑎

𝑏 𝑐 𝑑

Figure 2: A running example on real-world healthcare data.

𝑇𝑆1

𝑇𝑆2 𝑇𝑆3

𝑇𝑆4
𝑉1

𝑉2 𝑉3

𝑉4

14

63

21

28

4
9

4
2

(a) Edge-weighted graph with distances as weights.

𝑉1

𝑉2 𝑉3

𝑉4

14

28

21

𝑉1 𝑉2 14
𝑉3 𝑉4 21
𝑉1 𝑉4 28
— — —

𝑉2 𝑉3 42

𝑉1 𝑉3 49

𝑉2 𝑉4 63

(b) The graph for a single feature after application of the threshold
Figure 3: Encoding from time series to graph.

edges of graph 𝐺 , where each edge 𝑒𝑖 connects two nodes in 𝐺

representing two distinct time series. Let𝑤 : 𝐸 → R be an edge-

based weight function. Each edge 𝑒𝑖 is thus assigned a weight

𝑤 (𝑒𝑖) representing the distance between the connected nodes of

the edge, i.e. the difference between the values of two different

time series using the feature 𝐹𝑖 . In order to capture similarity,

we only retain in 𝐺 the edges whose weight is less than a given

threshold distance 𝑡ℎ.

Example 3.1. As an example, let us consider the four time series
as in Figure 2(a), each of which has the values of 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 ; we will
compute all the distances between these values. Figure 3a shows the
graph encoding of these time series where the weights on the edges
represent the distance between the time series, based on 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 .

One immediate question is the choice of the threshold 𝑡ℎ.

Given 𝑛 nodes in 𝐺 corresponding to the 𝑛 time series, there are

𝑁 ∗(𝑁−1)
2

distances between all pairs of nodes. To capture simi-

larity, we use a simple heuristic of a percentage 𝑥 that represents

the proportion of the smallest distances to be kept. The threshold

𝑡ℎ is thus selected based on this 𝑥 percentage.

Example 3.2. For instance, for the graph in Figure 3a, the array
in Figure 3b contains the distances between the vertices in ascending

𝑉1

𝑉2 𝑉3

𝑉4

14

28

21

𝑓 𝑒𝑎𝑡1

𝑉1

𝑉2 𝑉3

𝑉4

30 70 80

𝑓 𝑒𝑎𝑡20

. . .

Figure 4: Application of Community Detection algorithm
for each feature.

order. Suppose that the user specifies as percentage 50% of the vector.
This implies that the distance boundary will be 28 and the distances
higher than 28 will be discarded (i.e. the corresponding edges in the
graph will be ignored). Once we have chosen the boundary distance,
we can create the corresponding graph as depicted in Figure 3b.

Notice that a higher threshold would consider lower signifi-

cance edges and thus weaker similarities between the times series.

On the other hand a lower threshold may cut important edges.

In our empirical evaluation, we used a threshold determined by

a user-specified percentage of 80%, which works well in practical

scenarios as we will see in the remainder of the paper. The chosen

threshold will be used for all features selected by PFA and thus

for all graphs created.

Note that each graph is created based on one selected feature

from PFA in the previous step. Thus, if PFA selects 𝑘 features,

there will be 𝑘 graphs, each corresponding to one notion of simi-

larity between a pair of time series. The intention is to combine

these different notions of similarity in time series clustering, by

leveraging the structures of connectivity in the various graphs.

To this purpose, we apply a community detection (CD) algo-

rithm in order to search for groups of densely connected vertices

forming communities. Among the different tested algorithms,

we have opted for the Greedy Modularity Algorithm [16] in the

NetworkX library [8]. This algorithm turns out to strike a bal-

ance between speed and robustness and does not require any

additional input parameter other than the graphs.

In Figure 4, we show an example of clustering obtained by

applying this algorithm to a family of graphs. We can notice that

the clustering varies from one graph to another graph. A natural

question is how we can unify the different clusters in order to

obtain understandable results.

3.3 Creation of the Co-Occurrence Matrix
The underlying intuition is that if two time series are similar, they

will be similar for the majority of their discriminating features.

351

We employ a co-occurrence matrix [14] to put this in practice. The

matrix consists of recording for each pair of time series howmany

times they are grouped within the same community. Intuitively,

the more times they are placed within the same community, the

more similar the time series are.

Co-OccurrenceMatriceswithoutweights.Assumingwe have

𝑀 time series and 𝐿 features, we know that, once applied the CD

algorithm on the 𝐿 graphs, we will obtain the following result:

𝐹𝑒𝑎𝑡𝑢𝑟𝑒1 = {(𝑇𝑆1,𝑇𝑆3, ...,𝑇𝑆𝑠), ..., (𝑇𝑆2,𝑇𝑆4, ...,𝑇𝑆𝑝)}
𝐹𝑒𝑎𝑡𝑢𝑟𝑒2 = {(𝑇𝑆2,𝑇𝑆3, ...,𝑇𝑆𝑡), ..., (𝑇𝑆1,𝑇𝑆4, ...,𝑇𝑆𝑖)}

...

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑛 = {(𝑇𝑆2,𝑇𝑆1, ...,𝑇𝑆𝑚), ..., (𝑇𝑆3,𝑇𝑆4, ...,𝑇𝑆𝑞)}

where for each feature 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑖 selected by the PFA, we obtain

different communities (𝑇𝑆1, ...,𝑇𝑆𝑖) composed by the time series.

We can now create a matrix in which the rows and columns

contain all the time series of the dataset. Each cell 𝑥𝑖 𝑗 in the

matrix corresponds to the similarity between time series 𝑇𝑆𝑖 (in

row 𝑖 of the matrix) and 𝑇𝑆 𝑗 (in column 𝑗 of the matrix).

Next we convert the counts in the Co-Occurrence matrix into

a similarity metric for the eventual clustering. We consider the

number of times that a pair of time series is present in all possible

communities where at least one of the two time series belongs.

That is, given the time series 𝑇𝑆𝑖 ,𝑇𝑆 𝑗 , the communities 𝐶 and

the set of all the time series 𝑀 , the similarity between 𝑇𝑆𝑖 and

𝑇𝑆 𝑗 will be as follows.

∀𝑇𝑆𝑖 ,𝑇𝑆 𝑗 ∈ 𝑀, ∀𝑐 ∈ 𝐶 𝑥𝑖 𝑗 =
��{ 𝑐 ∈ 𝐶 | 𝑇𝑆𝑖 ∈ 𝑐 & 𝑇𝑆 𝑗 ∈ 𝑐

}
|

|{𝑐 ∈ 𝐶 | 𝑇𝑆𝑖 ∈ 𝑐}|
(1)

That is, the number of times that the two time series 𝑇𝑆𝑖 and

𝑇𝑆 𝑗 fall within the same community divided by the number of

times that 𝑇𝑆𝑖 is found within any community.

Notice that (1) is completely symmetrical. Indeed, the commu-

nities found for each feature are considered as hard clustered,

i.e. a time series 𝑇𝑆𝑖 cannot be part of two communities of the

same feature and must necessarily belong to one community.

Thus, if𝑇𝑆𝑖 and𝑇𝑆 𝑗 are within the same community of a specific

feature, neither of them can be part of other communities of the

same feature. Therefore, the value 𝑥𝑖 𝑗 , given by the number of

times 𝑇𝑆𝑖 and 𝑇𝑆 𝑗 are in the same community, will be equal to

𝑥 𝑗𝑖 , because 𝑇𝑆 𝑗 and 𝑇𝑆𝑖 must also be in the same community.

Co-Occurrence Matrices with Weights. The application of

the CD algorithm and its processing with co-occurrence matrices

without weights might incur the problem of community frag-

mentation. More precisely, the CD algorithm might lead to the

formation of a high number of communities each of which con-

tains a few time series. This is due to the fact that some features

are often not discriminatory enough for that dataset.

To overcome this problem, we assign an approximate weight

to each feature, based on the number of communities that the CD

algorithm derives from the graph. Again, to correctly determine

the weights, we require the input of the user on the expected

number of clusters.

Let𝑤𝑖 be a weighting function defined on each feature 𝐹𝑖 as

follows:


𝑤𝑖 =

𝐶
𝑂𝑖
, 𝑖 𝑓 𝑂𝑖 > 𝐶

𝑤𝑖 =
𝑂𝑖

𝐶
, 𝑖 𝑓 𝐶 > 𝑂𝑖

𝑤𝑖 = 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

Dataset 𝑇𝑆1 𝑇𝑆2 𝑇𝑆3 𝑇𝑆4
𝑇𝑆1 0 0.64 1.36 1.36

𝑇𝑆2 0.64 0 1.36 1.36

𝑇𝑆3 1.36 1.36 0 0

𝑇𝑆4 1.36 1.36 0 0

Table 1: Co-Occurrence Matrix with weights.

where 𝐶 is the number of clusters expected by the user and

𝑂𝑖 is the number of communities extracted by means of the CD

algorithm. Hence, the weights will be higher if the number of

obtained communities 𝑂 is equal or sufficiently close to 𝐶 and

lower otherwise.

The weights will be propagated to the similarity matrix, which

will now reflect the importance of each feature from a user view-

point. Not surprisingly, instead of simply counting the number

of times that the time series 𝑇𝑆𝑖 and 𝑇𝑆 𝑗 co-occur in the same

community, we now sum their weights and divide by the sum of

the weights of all time series, as also shown in the following.

Example 3.3. As shown in Figure 2(b), the PFA feature selec-
tion has chosen three features, namely [𝑡𝑟𝑒𝑛𝑑_𝑠𝑡𝑑𝑒𝑟𝑟 , 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 ,
𝑡𝑟𝑒𝑛𝑑_𝑟𝑣𝑎𝑙𝑢𝑒] . After applying the CD algorithm, we obtained the
following communities (per feature) among the 4 Time Series in
Figure 2(a):

𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 = {(𝑇𝑆1,𝑇𝑆2), (𝑇𝑆3,𝑇𝑆4)}
𝑡𝑟𝑒𝑛𝑑_𝑠𝑡𝑑𝑒𝑟𝑟 = {(𝑇𝑆1), (𝑇𝑆2), (𝑇𝑆3,𝑇𝑆4)}
𝑡𝑟𝑒𝑛𝑑_𝑟𝑣𝑎𝑙𝑢𝑒 = {(𝑇𝑆1,𝑇𝑆2,𝑇𝑆3,𝑇𝑆4)}

Assume now that the user specified an expected number of
clusters equal to 2. 𝑇𝑟𝑒𝑛𝑑_𝑠𝑡𝑑𝑒𝑟𝑟 and 𝑡𝑟𝑒𝑛𝑑_𝑟𝑣𝑎𝑙𝑢𝑒 do not satisfy
the number of clusters expected by the user. Therefore, 𝑡𝑟𝑒𝑛𝑑_𝑠𝑡𝑑𝑒𝑟𝑟
will have a weight of 2

3
(0.66), while 𝑡𝑟𝑒𝑛𝑑_𝑟𝑣𝑎𝑙𝑢𝑒 will have a

weight of 1

2
(0.5), and 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 we will have 1 as weight. We report

the intermediate computation of the co-occurrence matrix with
weights for this example in the Table in Figure 2(c) and the final
result in the Table in Figure 2(d).

3.4 Clustering the Co-Occurrence Matrix
The co-occurrence matrix obtained in the previous step allows us

to quantify the similarity between two time series. In order to be

prepared for the creation of the time series clusters, we need one

more intermediate step, i.e. to compute the distances between

the rows of the Co-Occurrence Matrix. We employ a standard

Euclidean distance to perform the row comparison.

As an example, applying the Euclidean distance between the

rows of the table in Figure 2(d), we obtain Table 1. For instance,

the value of the cell𝐶3,4 of the Table 1 is 0 because the row 3 and

4 of the Table in Figure2(d) are equal. As a consequence, the time

series 3 and 4 are always together in each cluster discovered by

the CD algorithm.

Finally, we apply the standard K-Medoid algorithm [10] on

the distances computed above. K-Medoid allows us to extract the

time series that have the smallest distance among them.

To complete our running example, applying the K-Medoid

algorithm to Table 1 requiring 2 clusters as the input parameter,

we obtain two clusters𝐶𝑙1 = {𝑇𝑆1,𝑇𝑆2} and𝐶𝑙2 = {𝑇𝑆3,𝑇𝑆4}, as
shown in the Table in Figure 2(d).

The time complexity of the FeatTS is summarized in Lemma

3.4. The proof of the Lemma is available in the online repository
1
.

Lemma 3.4. Let 𝐷 a dataset composed by𝑚 time series and let
𝐿 the number of features chosen by PFA among the 𝑁 features

1
https://github.com/DonaTProject/FeatTS

352

extracted and 𝑘 the number of requested clusters. A dataset 𝐷 is
evaluated by FeatTS in time 𝑂 (𝐿(𝑚2) +𝑚2 + 𝑘 (𝑚 − 𝑘)2 + 𝑛 · 𝑡𝑓)
and in space 𝑂 (𝑛 + 𝐿(𝑚 + 𝐸) +𝑚2).

4 EXPERIMENTAL SETUP AND A CLINICAL
CASE STUDY

We use real-life time series courtesy of the Personalized Medicine

Department at the European Hospital George Pompidou in Paris.

These time series contain signals from patients suffering from

kidney diseases. As a background, the human kidney has a lot

of functions including maintenance of acid-base balance. Proper

function of the kidney requires that it receives and adequately

filters blood. This is performed at the microscopic level by many

hundreds of thousands of filtration units called renal corpuscles,

each of which is composed of a glomerulus. A global assessment

of renal function is often ascertained by estimating the rate of

filtration, called the glomerular filtration rate (GFR). GFR esti-

mates howmuch blood passes through the glomeruli eachminute.

Kidney failure occurs when GFR is under 90𝑚𝐿/𝑚𝑖𝑛/1.73𝑚2
,

whereas when it drops to 15𝑚𝐿/𝑚𝑖𝑛/1.73𝑚2
, it means that the

patient needs dialysis or a transplant. Thus, it is very important

to understand when a patient needs medical treatment before the

GFR reaches its lowest possible value. Moreover, since dialysis

is an invasive operation, it is important to understand if a sud-

den drop in the GFR occurs. In this case, medical doctors might

recommend urgent surgery or to resort to dialysis depending on

the GFR values over time.

We ran experiments on two variants of this dataset. The first

variant named 𝐾𝑖𝑑𝑛𝑒𝑦3𝑌𝑟 contains 222 patients (one time series

per patient) and spans 1 to 3 years with a variable length between

90 and 230 data points in the time series. The second variant

called 𝐾𝑖𝑑𝑛𝑒𝑦5𝑌𝑟 is composed of 278 patients spanning 5 years

with time series having roughly 100 data points. In both cases,

we ran our experiments using only the 20% of the labeled time

series in order to compute the set of features necessary to run

the clustering algorithm and to emulate the real-world scenario

where not all the labels of the data points are available. The

features thus being ordered based on their relevance have been

employed to cluster the entire unlabeled dataset into those with

GFR signals concerning high-risk patients and those containing

GFR for patients with lower risk.

UCR datasets.We also used 64 benchmark datasets belonging

to the UCR collection[6], including both real-life and synthetic

datasets. The entire list of datasets used for benchmark is avail-

able online
2
. For consistency, we also used only 20% of the labeled

time series during feature extraction during the clustering step

in all experiments.

Implementation and reproducibility. Our code base is avail-
able online

2
with more details about the reproducibility.

5 EXPERIMENTAL RESULTS
For each dataset, we consider 20 as the upper bound of the number

of features we consider in the analysis. A higher number of

features are supported by our method but not indispensable to

obtain better accuracy. Moreover, a higher number of features

deteriorates the performance. Furthermore, we chose 80% as the

threshold value of the percentage of features selected by the

user. We used the AMI [18] metric, which is a well-established

2
https://github.com/DonaTProject/FeatTS

Dataset FeatTS kShape SeededKMeans

Adiac 0,31 0,39 0,52
MoteStrain 0,48 0,01 0,02

TwoLeadECG 0,88 0,10 0,07

ECG200 0,34 0,11 0,06

Computers 0,09 0,06 0,01

Coffee 1 0,35 0,88

GunPoint 0,52 0 0

Arrowhead 0,29 0,26 0,27

ItalyPowerDemand 0,54 0,39 0

Meat 0,4 0,64 0,75
OliveOil 0,27 0,52 0,53
Trace 0,74 0,52 0,69

Wine 0,12 0 0,01

Worms 0,16 0,06 0,12

ShapesAll 0,08 0,62 0,45

Table 2: Results showing the values of AMI for UCR
datasets
measurement of the quality of clustering. We adopt the same

metric for our comparisons as well.

We consider twomain baselines, the first being the state-of-the-

art algorithm for time series clustering, i.e. KShape[17], and the

second being the state-of-the-art algorithm for Semi Supervised

time series clustering i.e. Seeded kMeans [3], sharing the same

category of our approach (as detailed in Section 2). KShape[17]

could not be used on the real-world GFR time series as it cannot

process variable-length time series. Hence, we limit the compari-

son with KShape to the UCR datasets.

Other baselines of semi-supervised clustering algorithms such

as SSSL[20] (Self Labeling Algorithm) and SUCCESS[13] (Cluster

then Label Algorithm) could not be used in our study due to the

lack of available source code.

All experiments have been executed on a Server running Linux

with 64GB of RAM, Intel Xeon CPU Skylake,IBRS @ 2.6GHz.

5.1 UCR Dataset
The results in Table 2 are an excerpt of the entire results obtained

by our algorithm and its baselines for various UCR datasets. It

can be observed that FeatTS obtains the best results among all.

Indeed, out of 64 datasets used for the comparison, FeatTS per-
formed better on 37 datasets. In addition, kShape performed well

only on 15 datasets (out of 64) and Seeded kMeans outperformed

the others in only 12 datasets (out of 64).

5.2 Kidney Case Study
As shown in Table 3, the results obtained by FeatTS are signif-

icantly more accurate than Seeded kMeans on the clinical case

study. For the patients under medical supervision for 5 years, as

shown in Table 3, we have obtained results following a similar

trend.

Dataset FeatTS SeededKMeans

Kidney3Yr 0.56 0.44

Kidney5Yr 0.58 0.48

Table 3: Results on Kidney 3Yr and 5Yr Datasets
5.3 Scalability
We have assessed the scalability of our method by increasing

both the number and length of time series in a dataset. In this

experiment, we have used synthetic time series generated with

GRATIS [11]. This tool allows a controlled generation of time

series by using diverse characteristics as spectral entropy, trend,

seasonality, stability, etc.

In our case, in the synthetic generation we have opted for

spectral entropy and trend as the underlying characteristics since

they reflect the real-life time series we have used in the rest of

our experimental assessment. The spectral entropy allows to

353

(a) Time vs. dataset size (b) Time vs. TS length

(c) % Time of each compo-
nent vs. dataset size.

(d) % Time of each component vs
TS length.

Figure 5: Scalability Results.

measure the “forecastability” of a time series. It has a range of

values between 0 to 1 and a low value of entropy indicates a

high signal-to-noise ratio, while large values occur when a time

series is difficult to forecast. For this characteristic, we have fixed

a value of spectral entropy equal to 0.6. Conversely, the trend

allows to represent the occurrence of low-frequency variations

in the time series and as such it is opposite to seasonality. It has

a range of values between 0 to 1 and we have chosen a value of

0.9 for this experiment.

In the first experiment, we increase the number of time series

for each tested dataset while the the length of the time series is

fixed and equal to 60. Figure 5a shows the results obtained on

datasets consisting of 100, 200, 500, 1000, 2000, 4000 time series,

respectively. The results show the scalability of the method in

terms of time performance, while an important increase can be

observed when shifting to more than 2000 time series. The times

in Figure 5a are in logarithmic scale for clarity of exposition.

In order to better understand the results, we have studied

the percentage of time due to each component of our pipeline

as shown in Figure 5c. Upon increasing the size of the dataset,

the component that is computationally more demanding is the

creation of the co-occurrence matrix. Obviously, since the Co-

Occurrence Matrix depends on the number of time series, the

time required for its creation increases as the size increases.

In the second experiment, we have increased the length of

the time series while fixing to 500 the number of time series

belonging to each dataset. Figure 5b shows the results obtained

increasing the length of the time series between 120 and 4000.

The figure shows the scalability of the approach for time series

under 2000 and a sudden increase of the time beyond this value.

Also in this case, the times in Figure 5b are in logarithmic scale

for better clarity. The time breakdown in Figure 5d shows that

the more expensive step of the pipeline for this experiment is the

feature extraction step.

6 CONCLUSION AND FUTUREWORK
Our work on clustering of time series shows that there is no

one-size-fits-all solution regarding the set of features to use. In

fact, we leveraged the features drawn from the data itself rather

than taking a predefined set of features for all the datasets. Our

flexible graph encoding allows us to process the most significant

features in parallel and the further steps of our method allow us

to combine the results.

This work could be improved by rendering the entire pipeline

unsupervised instead of the current semi-supervised approach.

This requires non-trivial extensions in order to be able to cluster

the time series without loss of performance. Another improve-

ment would be to dynamically choose the threshold for graph

creation based on the processed features. Finally, the weights

of the community detection algorithm could be combined with

relevance degrees of the features.

7 ACKNOWLEDGEMENTS
Research funded by ANR (grant nr. 18-CE23-0002 QualiHealth).

We thank B. Rance and A. Rogier for kindly providing us with

the GFR data.

REFERENCES
[1] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. 2015. Time-

series clustering–a decade review. Information Systems 53 (2015), 16–38.
[2] Anthony J. Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn J.

Keogh. 2017. The great time series classification bake off: a review and

experimental evaluation of recent algorithmic advances. Data Mining and
Knowledge Discovery (2017).

[3] Sugato Basu, Arindam Banerjee, and RaymondMooney. 2002. Semi-supervised

clustering by seeding. In In Proceedings of ICML. Citeseer.
[4] Yoav Benjamini and Daniel Yekutieli. 2001. The control of the false discovery

rate in multiple testing under dependency. Annals of Statistics (2001).
[5] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W. Kempa-Liehr.

2018. Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests

(tsfresh – A Python package). Neurocomputing 307 (2018).

[6] Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh,

Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn

Keogh. 2018. The UCR Time Series Archive. arXiv:cs.LG/1810.07758

[7] Levent Ertöz, Michael Steinbach, and Vipin Kumar. 2003. Finding clusters

of different sizes, shapes, and densities in noisy, high dimensional data. In

Proceedings of the 2003 SIAM international conference on data mining.
[8] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring Network

Structure, Dynamics, and Function using NetworkX. In Proceedings of the 7th
Python in Science Conference, Gaël Varoquaux, Travis Vaught, and Jarrod

Millman (Eds.). Pasadena, CA USA, 11 – 15.

[9] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. 2009. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition.
Springer. https://doi.org/10.1007/978-0-387-84858-7

[10] Anil K. Jain and Richard C. Dubes. 1988. Algorithms for Clustering Data.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[11] Yanfei Kang, Rob J. Hyndman, and Feng Li. 2020. GRATIS: GeneRAting TIme

Series with diverse and controllable characteristics. Statistical Analysis and
Data Mining: The ASA Data Science Journal (2020).

[12] Yijuan Lu, Ira Cohen, Xiang Sean Zhou, and Qi Tian. 2007. Feature selection

using principal feature analysis. In Proceedings of the 15th ACM international
conference on Multimedia. 301–304.

[13] Kristóf Marussy and Krisztian Buza. 2013. Success: a new approach for semi-

supervised classification of time-series. In International Conference on Artificial
Intelligence and Soft Computing.

[14] Loris Nanni, Sheryl Brahnam, Stefano Ghidoni, Emanuele Menegatti, and

Tonya Barrier. 2013. Different approaches for extracting information from the

co-occurrence matrix. PloS one 8, 12 (2013), e83554.
[15] Alex Nanopoulos, Rob Alcock, and Yannis Manolopoulos. 2001. Feature-based

classification of time-series data. International Journal of Computer Research
(2001).

[16] Mark Newman. 2010. Networks: An Introduction. Oxford University Press,

Oxford. 784 pages.

[17] John Paparrizos and Luis Gravano. 2016. K-Shape: Efficient and Accurate

Clustering of Time Series. SIGMOD Record. (2016).
[18] Simone Romano, Nguyen Xuan Vinh, James Bailey, and Karin Verspoor. 2016.

Adjusting for chance clustering comparison measures. The Journal of Machine
Learning Research 17, 1 (2016), 4635–4666.

[19] Toon Van Craenendonck, Wannes Meert, Sebastijan Dumančić, and Hendrik

Blockeel. 2018. Cobras ts: A new approach to semi-supervised clustering of

time series. In International Conference on Discovery Science. Springer, 179–193.
[20] Haishuai Wang, Qin Zhang, Jia Wu, Shirui Pan, and Yixin Chen. 2019. Time

series feature learning with labeled and unlabeled data. Pattern Recognition
(2019).

[21] Xiaozhe Wang, Kate Smith, and Rob Hyndman. 2006. Characteristic-based

clustering for time series data. Data mining and knowledge Discovery 13, 3

(2006), 335–364.

354

	Feature-driven Time Series ClusteringDonato Tiano, Angela Bonifati, Raymond Ng

