Contraction Bidimensionality of Geometric Intersection Graphs - Archive ouverte HAL
Article Dans Une Revue Algorithmica Année : 2022

Contraction Bidimensionality of Geometric Intersection Graphs

Résumé

Given a graph G, we define bcg(G) as the minimum k for which G can be contracted to the uniformly triangulated grid Γk. A graph class G has the SQGC property if every graph G ∈ G has treewidth O(bcg(G)c) for some 1 ≤ c < 2. The SQGC property is important for algo- rithm design as it defines the applicability horizon of a series of meta-algorithmic results, in the framework of bidimensionality theory, related to fast parameterized algorithms, kernelization, and approximation schemes. These results apply to a wide family of problems, namely problems that are contraction-bidimensional. Our main combinatorial result reveals a general family of graph classes that satisfy the SQGC property and includes bounded-degree string graphs. This considerably extends the applicability of bidimensionality theory for several intersection graph classes of 2-dimensional geometrical objects.
Fichier principal
Vignette du fichier
bidicon.pdf (1.27 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03541133 , version 1 (16-07-2022)

Licence

Identifiants

Citer

Julien Baste, Dimitrios M. Thilikos. Contraction Bidimensionality of Geometric Intersection Graphs. Algorithmica, 2022, 84 (2), pp.510-531. ⟨10.1007/s00453-021-00912-w⟩. ⟨hal-03541133⟩
77 Consultations
67 Téléchargements

Altmetric

Partager

More