Pré-Publication, Document De Travail Année : 2022

FREE PRE-LIE ALGEBRAS OF FINITE POSETS

Résumé

In this paper, we first recall the construction of a twisted pre-Lie algebra structure on the species of finite connected topological spaces. Then we construct the corresponding nonassociative permutative coproduct, and we prove that the vector space generated by isomorphism classes of finite posets is a free pre-Lie algebra and is a co-free non-associative permutative coalgebra. In the end, we give an explicit duality between the non-associative permutative product and the proposed non-associative permutative coproduct. Finally, we prove that the results in this paper remain true for the finite connected topological spaces.

Fichier principal
Vignette du fichier
Free pre-Lie algebras of finite posets.pdf (187.68 Ko) Télécharger le fichier
TEX-Free pre-Lie algebras of finite posets.pdf (178.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-03515797 , version 1 (06-01-2022)
hal-03515797 , version 2 (07-06-2022)

Licence

Identifiants

Citer

Mohamed Ayadi. FREE PRE-LIE ALGEBRAS OF FINITE POSETS. 2022. ⟨hal-03515797v2⟩
188 Consultations
246 Téléchargements

Altmetric

Partager

  • More