Probabilistic End-to-End Graph-based Semi-Supervised Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Probabilistic End-to-End Graph-based Semi-Supervised Learning

Résumé

In this paper we address the problem of graph-based semi-supervised learning in tasks where a graph describing the relationships between data points is not available. We propose a method to jointly learn the graph and the parameters of a semi-supervised model using a probabilistic framework. We empirically show our proposal achieves competitive results in a variety of datasets.
Fichier principal
Vignette du fichier
distributional_end2end_semi-supervised_learning.pdf (163.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03501846 , version 1 (23-12-2021)

Identifiants

  • HAL Id : hal-03501846 , version 1

Citer

Mariana Vargas Vieyra, Aurélien Bellet, Pascal Denis. Probabilistic End-to-End Graph-based Semi-Supervised Learning. Graph Representation Learning workshop, NeurIPS, 2019, Vancouver, Canada. ⟨hal-03501846⟩
64 Consultations
101 Téléchargements

Partager

More