Probabilistic End-to-End Graph-based Semi-Supervised Learning
Résumé
In this paper we address the problem of graph-based semi-supervised learning in tasks where a graph describing the relationships between data points is not available. We propose a method to jointly learn the graph and the parameters of a semi-supervised model using a probabilistic framework. We empirically show our proposal achieves competitive results in a variety of datasets.
Domaines
Intelligence artificielle [cs.AI]
Fichier principal
distributional_end2end_semi-supervised_learning.pdf (163.11 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|