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Abstract

In this paper we address the problem of graph-based semi-supervised learning
in tasks where a graph describing the relationships between data points is not
available. We propose a method to jointly learn the graph and the parameters of a
semi-supervised model using a probabilistic framework. We empirically show our
proposal achieves competitive results in a variety of datasets.

1 Introduction

Graph-based semi-supervised models are good at leveraging unannotated data when small amounts
of labels are available: they take as input a graph whose nodes are data points (both labeled and
unlabeled) and edges describe how points are related to each other. There exists a variety of such
models which propagate labels based on a smoothness criterion [1, 2, 3, 4, 5]. A more recent approach
uses Graph Convolutional Networks (GCN) to learn node representations based on all the input data
while backpropagating the error on the labeled data [6]. Unfortunately, in many applications the
graph structure is not readily available.

A standard solution is to compute graphs using classical heuristics such as k-nn or ε-graphs [7], but
those choices poorly adapt to the underlying data manifold and disregard label information, thus
yielding suboptimal results. Dhillon et al. [8] propose a metric learning based framework in which a
graph is constructed via a metric that maximizes the confidence of label assignments. Following a
different route, Alexandrescu et al. [9] use a supervised model on the labeled subset to transform
the data into a new space consisting in soft label predictions where the graph is constructed. These
two approaches still rely on the classic heuristics for graph construction, and are not able to learn
complex data representations. The recent work of Franceschi et al. [10] represents edges as Bernoulli
random variables and uses a bilevel programming framework to fit the parameters of the graph and a
GCN for semi-supervised classification.

In this paper, we present a probabilistic model to learn the parameters of a semi-supervised classifica-
tion model and the graph jointly. We model edges as latent variables, and we learn by minimizing a
reconstruction error over the predicted labels. Our choice of a probabilistic framework allow us to
explicitly define a prior over the graph. This enables the model to account for prior knowledge and
provides a principled mechanism to impose specific structures (such as sparsity) upon the graph.

2 Model

Let us assume a training set of the form D = DL ∪ DU where DL = {(xi, yi)}li=1 is the set of
labeled data points with labels in some discrete set Y , and DU = {xi}l+ui=l+1 the set of unlabeled
points. Let X = [x1; . . . ;xl+u]

T be the design matrix and yL = [y1, . . . , yl] the label vector, Wij a
random variable representing an edge between xi and xj . Our goal is to find labels {yl+1, . . . , yl+u}.
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We start by assuming labels y are generated by a random process that depends on the data X and
unknown parameters W that encode how data points are connected. That is, Wij represents an edge
between xi and xj . We can describe this process through the conditional probability pθ(y|X,W )
parameterized by θ that gives the likelihood of labels y provided the dataset X and the graph W . In a
variational Bayesian context parameters W are latent variables with prior distribution pθ(W ) and
approximate posterior qφ(Wij |X, y) parameterized by φ, on which we can make inference.

We therefore aim to find the parameters [θ, φ] so as to maximize the likelihood of the labels while
keeping the distribution qφ close to the prior. To do this, we maximize the evidence lower bound
(ELBO) given by:

L(θ, φ) = Eqφ(W |X,y)[log pθ(y|W,X)]− KL[qφ(W |X, y)||pθ(W )] (1)

This model is similar to a variational autoencoder [11] where qφ is the encoder and pθ the decoder.
Maximizing this bound is equivalent to minimizing the reconstruction error of the estimations the
decoder produces while the encoder remains as close to the prior as possible.

To instantiate our model, we choose pθ(y|W,X) to be a categorical distribution over the labels Y
parametrized by a GCN [6], and qφ(W |X, y) to model edges as a collection of Bernoulli distributions
parameterized by a Graph Neural Network (GNN) [12]. Each Bernoulli distribution represents the
probability of an edge connecting two nodes i and j, hence Wij is a binary variable.

We took inspiration from [13] to use a message passing Graph Neural Network (GNN) [14] that
computes node and edge embeddings as follows:

h
(1)
i = MLP(1)

node(xi), (2)

h
(1)
ij = MLP(1)

edge([h
(1)
i , h

(1)
j ]), (3)

h
(2)
i = MLP(2)

node

([
h
(1)
i ,

∑
j∈N (i)

h
(1)
ij

])
, (4)

h
(2)
ij = MLP(2)

edge([h
(2)
i , h

(2)
j ]), (5)

and finally gφ(X) = Softmax(h(2)ij ). N (i) denotes the neighbors of point i in the GNN (in practice
we simply take them to be the closest points to xi, or even all other points). Finally, we define
gφ(X) = Softmax(h(2)ij ). Here [xi, xj ] denotes concatenation and MLP is short for multilayer
perceptron.

We also pick the prior distribution pθ(W ) to be a collection of Bernoulli distributions.

Training details. We train our model by backpropagation. We first run the encoder qφ, which is
a distribution taking discrete values. This prevent us from being able to directly backpropagate
the error through its reparametrized samples. We then use the concrete distribution [15] to get a
continuous approximation of qφ and apply the reparametrization trick to compute the gradients. More
specifically, we draw samples W as follows: we draw a vector ξ from a Gumbel(0, 1) distribution
and then we compute Wij = Softmax((h(2)ij + ξ)/τ), where τ is a parameter controlling how smooth
the resulting distribution is (the bigger τ is, the more it will resemble a uniform distribution). To
control the variability we take several samples this way, W (1), . . . ,W (r) and feed the decoder to
get ŷ(1), . . . , ŷ(r) where ŷi = GCN(X,W (i)). We then backpropagate the error with respect to yL
through the mean ŷ = 1

r (ŷ
(1) + · · ·+ ŷ(r)).

The reconstruction error that corresponds to the first term of Equation 1 is the average cross-entropy
over the labeled examples:

Lreconstruction =
1

l
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∣∣
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)
. (6)

The KL-divergence of qφ that corresponds to the second term of Equation 1, given a Bernoulli prior
ρ, is given by:

LKL-divergence =
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Wij log
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+ (1−Wij) log
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. (7)
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Table 1: Statistics of datasets.
Dataset Size Dimension Nb. of classes Train/Val/Test

Wine 178 13 3 10/20/158
20news3 2756 229 3 20/40/2696
Cora 2708 1433 7 140/300/1000

Table 2: Mean and standard deviation of test accuracy over five random splits.
Wine 20news3 Cora

LogReg .95± .02 .77± .01 .53± .00
SVM .94± .03 .76± .00 .50± .00
FFNN .93± .01 .77± .01 .55± .01
GCN+knn .95± .03 .77± .02 .61± .01
GCN+Sknn .93± .03 .66± .05 .31± .00
GCN+RBF .94± .03 .76± .01 .51± .01
PSSL .95± .01 .83± .01 .65± .04

3 Experiments and Results

We carried out experiments to compare our probabilistic approach (denoted by PSSL) with supervised
algorithms such as logistic regression (LogReg), support vector machines with a radial kernel (SVM)
and feed-forward neural networks (FFNN),1 and with the state-of-the-art semi-supervised method
based on GCNs, which we fed with different types of heuristically computed graphs. We use three
strategies for building a graph: k nearest neighbors (knn), radial kernel (RBF), and a random variant
of the k-NN graph constructed as follows: denoting byK the regular k-nn graph, an edge eij between
xi and xj is sampled according to a Bernoulli distribution with some high probability α if Kij = 1,
or with probability 1− α otherwise (Sknn). The prior distribution for our model PSSL is constructed
in the same way as Sknn. We also specified different sparsity patterns over the prior.

We evaluate the baselines and our method on three datasets: Cora [16], a subset of 20 Newsgroups
with three classes and a TFIDF feature space, and Wine, a benchmark dataset available in scikit-learn
[17].

We used Adam to optimize our objective function. For all methods we tune the main hyperparameters
over five random splits with train, test, and validation sizes as described in Table 1.

Results are shown in Table 2. We can observe that we achieve competitive results in Wine, and
outperform the baselines by a considerable margin in 20news3 and Cora.

4 Conclusion and Discussion

We presented preliminary work on a framework based on autoencoding variational bayes that
learns the parameters of a semi-supervised model and the underlying graph structure of the data
simultaneously. We empirically showed that our model can achieve considerable gains over different
baselines in different semi-supervised datasets.

We plan to run experiments on other semi-supervised datasets, and to compare this method empirically
with that of Franceschi et al. [10]. We believe our proposal exhibits two advantages. First, we can
explicitly specify a prior over the graph, which allow us to bias towards specific structures and sparsity
patterns. Second, [10] requires two separate validation sets while we require only one: we therefore
have access to more training data.

An interesting future research line is to extend this work to an inductive setting in order to be able to
elegantly handle unseen test examples.

1This model is equivalent to a GCN with no graph.
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