Geometric characterizations of the strict Hadamard differentiability of sets - Archive ouverte HAL
Article Dans Une Revue Pure and Applied Functional Analysis Année : 2021

Geometric characterizations of the strict Hadamard differentiability of sets

Résumé

Let S be a closed subset of a Banach space X. Assuming that S is epi-Lipschitzian atx in the boundary bdry S of S, we show that S is strictly Hadamard differentiable atx IFF the Clarke tangent cone T (S,x) to S atx contains a closed hyperplane IFF the Clarke tangent cone T (bdry S,x) to bdry S atx is a closed hyperplane. Moreover when X is of finite dimension, Y is a Banach space and g : X → Y is a locally Lipschitz mapping aroundx, we show that g is strictly Hadamard differentiable atx IFF T (graph g, (x, g(x))) is isomorphic to X IFF the set-valued mapping x ⇒ K(graph g, (x, g(x))) is continuous atx and K(graph g, (x, g(x))) is isomorphic to X, where K(A, a) denotes the contingent cone to a set A at a ∈ A.
Fichier principal
Vignette du fichier
strict diff_boundary_Nov2020 - revised.pdf (328.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03452691 , version 1 (27-11-2021)

Identifiants

Citer

Abderrahim Jourani, Moustapha Sene. Geometric characterizations of the strict Hadamard differentiability of sets. Pure and Applied Functional Analysis, 2021, 6 (6), pp.1333-1346. ⟨10.48550/arXiv.2111.13870⟩. ⟨hal-03452691⟩
29 Consultations
29 Téléchargements

Altmetric

Partager

More