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GEOMETRIC CHARACTERIZATIONS OF THE STRICT

HADAMARD DIFFERENTIABILITY OF SETS

ABDERRAHIM JOURANI AND MOUSTAPHA SENE

Abstract. Let S be a closed subset of a Banach space X. Assuming
that S is epi-Lipschitzian at x̄ in the boundary bdryS of S, we show that
S is strictly Hadamard differentiable at x̄ IFF the Clarke tangent cone
T (S, x̄) to S at x̄ contains a closed hyperplane IFF the Clarke tangent
cone T (bdryS, x̄) to bdryS at x̄ is a closed hyperplane. Moreover when
X is of finite dimension, Y is a Banach space and g : X 7→ Y is a lo-
cally Lipschitz mapping around x̄, we show that g is strictly Hadamard
differentiable at x̄ IFF T (graph g, (x̄, g(x̄))) is isomorphic to X IFF the
set-valued mapping x ⇒ K(graph g, (x, g(x))) is continuous at x̄ and
K(graph g, (x̄, g(x̄))) is isomorphic to X, where K(A, a) denotes the con-
tingent cone to a set A at a ∈ A.

1. Introduction

Let X be a real normed vector space and S be a closed subset with x̄ ∈ S.
A vector v ∈ X is said to be a Clarke tangent vector to S at x̄ if for any
neighborhood V of v there exist a neighborhood U of x̄ and some λ > 0
such that for all (t, x) ∈]0, λ[×(U ∩ C) we have

(x+ tV ) ∩ S 6= ∅.

The characterization in terms of sequences can be stated as follows : v ∈ X
is a Clarke tangent vector to S at x̄ if and only if for any sequence (xn)n∈N of
S converging to x̄ and any sequence of positive reals (tn)n∈N converging to 0,
there exists a sequence (vn)n∈N in X converging to v such that xn+tnvn ∈ S
for all n ∈ N sufficiently large. The collection T (S, x̄) of all such vectors is
a closed convex cone which is called the Clarke tangent cone to S at x̄ (see
[7]). When x̄ /∈ S one puts, T (S, x̄) = ∅.
The Clarke tangent cone is involved in many geometrical representation of
sets such as locally compact and definable sets in Rn. For instance in [2]
the authors proved that a nonempty locally compact subset S ⊂ Rn is a C1-
manifold if and only if the Clarke tangent cone and the upper paratangent
cone to S coincide at every point. More historical characterizations of C1-
manifolds in Euclidean spaces by tangent cones are reviewed in [1]. More
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2 A. JOURANI AND M. SENE

recently, the authors in [20] have established a geometrical characterization
of definable sets in terms of tangent cones.
It is our purpose in this paper to provide geometrical characterizations of
the strict Hadamard differentiability of epi-Lipschitz and non epi-Lipschitz
sets by tangent cones. Indeed we show that an epi-Lipschitz set S at x̄ is
strictly Hadamard differentiable at x̄ if and only if the Clarke tangent cone
to S at x̄ contains a closed hyperplane if and only if the Clarke tangent cone
T (bdryS, x̄) to the boundary of S at x̄ is a closed hyperplane. Moreover
in finite dimension, we establish that a mapping g : X → Y is strictly
Hadamard differentiable at x̄ if and only if T (graph g, (x̄, g(x̄))) is isomorphic
to X. Further corollaries are provided throughout the paper.
The paper is organized as follows. Section 2 is devoted to some nonsmooth
analysis tools. In section 3, we present epi-Lipschitz sets and define the
concepts of strictly Hadamard differentiability of sets. Then, we study the
inverse image of an epi-Lipschitz set by a strictly Hadamard differentiable
mapping. Section 4 and 5 are respectively devoted to the strict Hadamard
differentiability of epi-Lipschitz and non epi-Lipschitz sets.

2. Tools of nonsmooth analysis

Let S be a subset of a vector normed space X. The Clarke normal cone
to S at x̄ ∈ S is the negative polar of T (S, x̄), that is

N(S, x̄) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0, ∀h ∈ T (S, x̄)}
where X∗ denotes the topological dual space of X and 〈·, ·〉 is the pairing
between X and X∗. Having defined this object, we may now introduce the
Clarke subdifferential. Let f : X 7→ R ∪ {+∞} be a lower semicontinuous
function and x̄ ∈ X, with f(x̄) <∞. The Clarke subdifferential of f at x̄ is
given ([8]) by

∂f(x̄) = {x∗ ∈ X∗ : (x∗,−1) ∈ N(epif, (x̄, f(x̄)))}
where epif denotes the epigraph of f , that is,

epif = {(x, r) ∈ X × R : f(x) ≤ r}.
It is natural to put ∂f(x̄) = ∅ whenever f(x̄) = ∞. When f is locally
Lipschitz around x̄, the Clarke subdifferential has the following equivalent
definition

∂f(x̄) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ lim sup
t→0+

x→x̄

f(x+ th)− f(x)

t
∀h ∈ X}.

It is known ([8]), that whenever f is locally Lipschitz around x̄, the following
equivalence holds true

∂f(x̄) is a singleton IFF f is strictly Hadamard differentiable at x̄.

We recall that a mapping g : X 7→ Y , with Y a vector normed space,
is strictly Hadamard differentiable at x̄ if there exists a linear continuous
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mapping Dg(x̄) : X → Y such that

lim
t→0+
x→x̄
u→h

g(x+ tu)− g(x)

t
= Dg(x̄)(h)

The mapping Dg(x̄) is called the strict Hadamard derivative of g at x̄.
In order to apply Graves Theorem, we need an other concept of differ-

entiability. We recall ([22]) that a mapping g : X 7→ Y , with Y a vector
normed space, is strictly Fréchet differentiable at x̄ if

lim
x→x̄
x′→x̄

g(x)− g(x′)−Dg(x̄)(x− x′)
‖x− x′‖

= 0

where Dg(x̄) denotes the strict Fréchet derivative of g at x̄.
It is not difficult to see that each strictly Fréchet differentiable mapping is
strictly Hadamard differentiable and both concepts coincide in finite dimen-
sional spaces for locally Lipschitz mappings. This equivalence is no longer
true in the infinite dimensional situation. Borwein [5] have established an
equivalence of both concepts for locally Lipschitz functions with an addi-
tional condition.

3. Epi-Lipschitz sets

Let S be a subset of a normed space X. Following Rockafellar (see.
[22, 23]), S is said to be epi-Lipschitzian at x̄ ∈ S in a direction v̄ 6= 0 if
there exists γ > 0 such that the following inclusion holds

S ∩B(x̄, γ) + tB(v̄, γ) ⊂ S ∀ t ∈]0, γ[.

If S is epi-Lipschitzian at any of its points then it is called epi-Lipschitzian.
Assume that S is epi-Lipschitzian at x̄ in a direction v̄ 6= 0. In the case of
finite dimensional real normed spaces, Rockafellar (cf. [24, § 4]) proved the
existence of a closed hyperplane E such that X = E⊕Rv̄, a neighbourhood
Ω of x̄ in X and a function f : E → R locally Lipschitzian near πE(x̄) (where
x̄ = πE(x̄) + πv̄(x̄) with πE(x̄) ∈ E and πv̄(x̄) ∈ Rv̄ uniquely defined) such
that

Ω ∩ S = Ω ∩ {u+ rv̄ : u ∈ E, r ∈ R, f(u) ≤ r}.
Further he observed in [25, § 5] that if S is closed then the arguments in [24]
are also true in the case of infinite dimensional real normed space. Having
this, one can write

(3.1) Ω ∩ S = Ω ∩ ϕ(epi f) where ϕ(u, r) := u+ rv̄

This means that S can locally be represented as the epigraph of locally
Lipschitz function f .

We call f a local representation of S near x̄.(3.2)

In [24], Rockafellar showed that

a closed set S ⊂ X is epi-Lipschitzian at x̄ IFF intT (S, x̄) 6= ∅
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provided that X is of finite dimension. Borwein and Strojwas [3] estab-
lished that this characterization remains valid in infinite dimensional Banach
spaces provided that S is compactly epi-Lipschitzian at x̄. Following Bor-
wein and Strojwas [3], a set S ⊂ X is said to be compactly epi-Lipschitzian
(CEL) at x̄ if there exist γ > 0 and a norm-compact set H such that

S ∩B(x̄, γ) + tB(0, 1) ⊂ S + tH, ∀ t ∈ [0, γ].(3.3)

It is clear that this class of sets encompasses that of epi-Lipschitz sets. Note
that in finite dimensions, every nonempty set is CEL.
Further representations of closed epi-Lipschitz sets in terms of sub-level of
Lipschitz functions are established in Czarnecki and Thibault [10]. We recall
some of them in the following.
Let X be a real normed space and S ⊂ X. The signed distance function to
S is defined by

∆S(x) := dS(x)− dSc(x) for all x ∈ X,
where Sc = X \ S and

dS(x) := inf
u∈S
‖u− x‖

is the distance function to the set S. It is easily seen that

clS = {x ∈ X : ∆S(x) ≤ 0} and bdryS = {x ∈ X : ∆S(x) = 0}.
Moreover it is known (see e.g.,[13]) that ∆S is 1-Lipschitzian on X. Czar-
necki and Thibault [10] established the following local sublevel representa-
tion.

Theorem 3.1. [10] Let S be a subset of a real normed space X and x̄ ∈
S∩bdryS. Assume with S := clS that intS∩U ⊂ S for some neighbourhood
U of x̄. Then, the set S is epi-Lipschitzian at x̄ if and only if 0 /∈ ∂∆S(x̄).

This allows to state the following known result.

Corollary 3.2. Let S be a subset of a normed space X which is epi-
Lipschitzian at x̄ ∈ S ∩ bdryS. Then, the Clarke normal cone of S at
x̄ can be described as

N(S, x̄) = R+∂∆S(x̄),

where R+ := [0,+∞[.

Theorem 3.3. [10] Let g : X → R be a Lipschitz continuous function near
x̄ of the real normed space X and let S := {x ∈ X : g(x) ≤ 0}. Assume that
x̄ ∈ bdryS and 0 /∈ ∂g(x̄). Then S is epi-Lipschitzian at x̄.

Lemma 3.4. [10] Let S be a subset of a normed space X which is epi-
Lipschitzian at x̄ ∈ S ∩ bdryS. Then, the following equality holds

T (bdryS, x̄) = T (S, x̄) ∩ −T (S, x̄),

which yields in particular that T (bdryS, x̄) is a closed vector subspace of X.

Using the Ioffe-approximate subdifferential ∂A (see [14] and [15]), the
author [18] established the following result.
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Proposition 3.5 (Corollary 4.1 [18]). Let X be a Banach space and g : X →
R∪{+∞} be a lower semicontinuous function around x̄, with g(x̄) = 0. Let
S := {x ∈ Rn : g(x) ≤ 0}. Assume that x̄ ∈ bdryS and 0 /∈ ∂Ag(x̄). Then
S is CEL at x̄ provided that epig is CEL at (x̄, 0).

It is well known that if x̄ is an interior point of S then T (S, x̄) = X.
Unfortunately the reverse implication is not true in general. To see this,
take X a separable Hilbert space with orthonormal basis (bn)n and consider
(see. [4]) the set S = clco{ bn2n ,−

bn
2n } with x̄ = 0. Then intS = ∅ and

T (S, x̄) = X. It is shown in [16] that the reverse implication holds for the
class of compactly epi-Lipschitz (CEL) sets. The main argument used in
[16] is based on the following result established in [17].

Proposition 3.6 (Corollary 2.7 in [17]). Let S ⊂ X be a closed CEL set at
x̄ in the boundary of S. Then there exists x∗ ∈ X∗, with x∗ 6= 0, such that
x∗ ∈ N(S, x̄).

Let us prove the following theorem about epi-Lipschitz property of image
and inverse image of epi-Lipschitz sets in Banach spaces

Proposition 3.7 (Image and inverse image of epi-Lipschitz sets). Let X
and Y be Banach spaces, S ⊂ Y be a closed set and ϕ : X → Y be a strictly
Fréchet differentiable mapping at x̄ with a surjective derivative Dϕ(x̄). Then
the set C := ϕ−1(S) is epi-Lipschitzian at x̄ ∈ ϕ−1(S) IFF S is epi-Lipschitz
at ϕ(x̄).

Proof. Suppose that C is epi-Lipschitzian at x̄. Since ϕ is strictly Fréchet
differentiable at x̄ with a surjective derivative Dϕ(x̄), Theorem 1.3 in [11]
ensures the existence of α > 0 and r > 0 such that

B(ϕ(x), t) ⊂ ϕ(B(x, αt))∀x ∈ B(x̄, r), ∀ t ∈ [0, r].(3.4)

On the other hand since the set C := ϕ−1(S) is epi-Lipschitzian at x̄ there
exist v̄ ∈ X, v̄ 6= 0, and s > 0 such that

C ∩B(x̄, s) + tB(v̄, s) ⊂ C ∀ t ∈ [0, s](3.5)

Moreover ϕ strictly Fréchet differentiable at x̄ implies that for all ε > 0
there exists δ > 0 such that

‖ϕ(x)− ϕ(y)−Dϕ(x̄)(x− y)‖ ≤ ε‖x− y‖ ∀x, y ∈ B(x̄, 2δ).(3.6)

We may assume that α ≥ 1, r = s and α(ε‖v̄‖ + 2δ) ≤ r
2 . Pick δ1 > 0,

with αδ1 ≤ δ
2 , and let y ∈ B(ϕ(x̄), δ1) ∩ S and b ∈ B(0, δ) ⊂ Y . Relation

(3.4) ensures the existence of x ∈ B(x̄, αδ1) such that y = ϕ(x), so x ∈
C ∩B(x̄, αδ1).
Now using (3.6), we obtain

∀ t ∈]0,
δ

‖v̄‖
], ‖ϕ(x+ tv̄)− ϕ(x)− tDϕ(x̄)v̄‖ ≤ εt‖v̄‖

and hence

ϕ(x) + t(Dϕ(x̄)v̄ + b) ∈ B(ϕ(x+ tv̄), t(ε‖v̄‖) + δ).
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By (3.4), there exists b′ ∈ B(0, α(ε‖v̄‖) + δ)) ⊂ X such that

ϕ(x) + t(Dϕ(x̄)v̄ + b) = ϕ(x+ t(v̄ + b′)).

Invoking relation (3.5), we get x+t(v̄+b′) ∈ C, equivalently, ϕ(x+t(v̄+b′)) ∈
S and hence

ϕ(x) + t(Dϕ(x̄)v̄ + b) ∈ S.
In summary, we have

∀ t ∈]0,
δ

‖v̄‖
], B(ϕ(x̄), δ1) ∩ S + tB(Dϕ(x̄)v̄, δ) ⊂ S.

By taking γ = min{ δ
‖v̄‖ , δ1} we deduce that S is epi-Lipschitzian at ϕ(x̄).

Conversely, suppose that S is epi-Lipschitzian at ϕ(x̄). As ϕ is strictly
Fréchet differentiable at x̄ with surjective derivative Dϕ(x̄), there exists
α > 0 such that for all ε > 0 there exists δ > 0 satisfying

ϕ(B(x̄, δ)) ⊂ B(ϕ(x̄), ε),(3.7)

‖ϕ(x)− ϕ(x′)−Dϕ(x̄)(x− x′)‖ ≤ ε‖x− x′‖ ∀x, x′ ∈ B(x̄, δ),(3.8)

and

B(0, 1) ⊂ Dϕ(x̄)(B(0, α)).(3.9)

By assumption, there exists γ > 0 and w ∈ Y such that

∀ t ∈]0, γ], B(ϕ(x̄), γ) ∩ S + tB(w, γ) ⊂ S.(3.10)

Using the surjectivity of Dϕ(x̄) there exists v ∈ X such that w = Dϕ(x̄)(v).
So, let x ∈ B(x̄, δ) ∩ C, t ∈]0, δ[ and u ∈ B(v, δ). Relations (3.8), (3.7) and
(3.9) ensure the following inclusions

ϕ(x+ tu) ∈ ϕ(x) + tDϕ(x̄)(u) +B(0, εt‖u‖) (by (3.8))

⊂ B(ϕ(x̄), ε) ∩ S + tDϕ(x̄)(u) +B(0, εt‖u‖) (by (3.7))

⊂ B(ϕ(x̄), ε) ∩ S + tDϕ(x̄)(B(u, αε‖u‖)) (by (3.9))

⊂ B(ϕ(x̄), ε) ∩ S + t(B(Dϕ(x̄)(u), αε‖u‖ · ‖Dϕ(x̄)‖)
⊂ S (because ε is arbitrary and (3.10)).

This shows that C is epi-Lipschitzian at x̄. The proof is completed. �

Remark 3.8. This proposition tells us that we may replace the function ϕ
in (3.1) by any strictly Fréchet differentiable mapping ϕ : E × R → X at
ȳ := (ū, f(ū)) ∈ ϕ−1(x̄) with a surjective derivative Dϕ(ȳ). Where S is as
in the first part of (3.1).

Remark 3.9. Note that this proposition is not true even if ϕ is a linear non
surjective operator. Indeed, let ([5]) X = Y = l2 be the Hilbert space of
square summable sequences, with (ek) its canonical orthonormal base and
let the operator ϕ : l2 → l2 be defined by

ϕ(
∑

xiei) =
∑

21−ixiei.
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It is easily seen that for all i, ei ∈ Imϕ and for all k ≥ 1,
k∑
i=1

21−iei ∈ Imϕ

but
∑

21−iei /∈ Imϕ (this shows that Im(ϕ) is not closed). Then ϕ is not

surjective. Further Im(ϕ) is a proper dense subspace of l2. So that the space
X is epi-Lipschitzian at 0, but not ϕ(X).

4. Strict Hadamard differentiablity of epi-Lipschitz sets

This section is devoted to the local representation of epi-Lipschitz set as
the epigraph of strictly Hadamard differentiable function. As a motivation
of the following result we start with the following observation. Let S = epi f
be the epigraph of the function f defined by

f(x) =

{
x2 sin 1

x if x 6= 0
0 if x = 0

and let x̄ = (0, 0). Then f is Lipschitz near 0 and T (S, x̄) = epi| · |. This
shows that T (S, x̄) does not contain any hyperplane.

In the sequel, we will establish that if f is Lipschitz near x̄ then T (epi f, (x̄, f(x̄)))
contains a closed hyperplane if and only if f is strictly Hadamard differen-
tiable at x̄.

Definition 4.1. We say that an epi-Lipschitz set S at x̄ ∈ S is strictly
Hadamard differentiable at x̄ if its local representation f is strictly Hadamard
differentiable at x̄.

Theorem 4.2. Let X be a real Banach space and S ⊂ X be a closed set con-
taining x̄. Suppose that S is epi-Lipschitz at x̄. Then S is strictly Hadamard
differentiable at x̄ if and only if T (S, x̄) contains a closed hyperplane.

Proof. Since S is epi-Lipschitz at x̄, there exist

• a closed hyperplane E and v̄ ∈ X \ {0} such that X = E ⊕ Rv̄,
• a Lipschitz continuous mapping f : E → R near ū = πE x̄ and
• a strictly Fréchet differentiable mapping ϕ : E × R → X at ȳ =

(ū, f(ū)) with a surjective derivative Dϕ(ȳ)

such that

(4.1) S ∩ Ω = Ω ∩ ϕ(epi f)

Since f is Lipschitz continuous around ū, it is Clarke subdifferentiable at ū.
Moreover, by (4.1) and the fact that Dϕ(ū, f(ū)) is surjective, we have (see
for example Theorem 1.17 in [21])

N(epi f, (ū, f(ū))) = [Dϕ(ȳ)]∗N(S, x̄)(4.2)

where [Dϕ(ȳ)]∗ denotes the adjoint linear mapping of Dϕ(ȳ).
This implies that

(4.3) ∂f(ū)× {−1} ⊂ [Dϕ(ȳ)]∗N(S, x̄).
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Now suppose that T (S, x̄) contains a closed hyperplane. Let us show that f
is strictly Hadamard differentiable at ū.
Taking the polar of T (S, x̄) and using (4.3) we have

∂f(ū)× {−1} ⊂ R+[Dϕ(ȳ)]∗(a∗)

for some a∗ 6= 0. Let [Dϕ(ȳ)]∗(a∗) = (a∗1, a
∗
2) with a∗1 ∈ E∗ and a∗2 ∈ R, we

have
∂f(ū)× {−1} ⊂ R+(a∗1, a

∗
2).

Now for u∗ ∈ ∂f(ū), there exists λ > 0 such that (u∗,−1) = λ(a∗1, a
∗
2).

This implies that a∗2 = − 1
λ . Moreover u∗ is constant with u∗ = −a∗1

a∗2
. That

is

∂f(ū) =

{
−a
∗
1

a∗2

}
.

Since f is Lipschitz continuous in an open neighbourhood of ū and ∂f(ū) is
a singleton then f is strictly Hadamard differentiable at ū.
Conversely suppose that f is strictly Hadamard differentiable at ū. Let us
show that T (S, x̄) contains a closed hyperplane.

Relation (4.2) ensures that N(S, x̄) = R+[Dϕ(ȳ)]∗−1(∇f(ū),−1). Since

Dϕ(ȳ) is surjective, the set [Dϕ(ȳ)]∗−1(∇f(ū),−1) is a singleton. Put a∗ =

[Dϕ(ȳ)]∗−1(∇f(ū),−1). Then a∗ 6= 0 and

T (S, x̄) = {h ∈ X : 〈a∗, h〉 ≤ 0}
which clearly contains a hyperplane. �

In what follows, we shall prove that the strict Hadamard differentiability
of S at x̄ is equivalent to saying that T (bdryS, x̄) is a closed hyperplane.
We begin with the next lemma.

Lemma 4.3. Let S be a closed subset of a real Banach (resp. real normed
vector) space X. Assume that S is CEL (resp. epi-Lipschitzian) at x̄ ∈
bdryS. If T (S, x̄) contains a closed hyperplane H, then T (S, x̄)∩(−T (S, x̄)) =
H (resp. T (bdryS, x̄) = H).

Proof. Let X be a real Banach space. Suppose that S is CEL at x̄ and
that T (S, x̄) contains a closed hyperplane H. Assume that there exists
h ∈ T (S, x̄) ∩ (−T (S, x̄)) such that h /∈ H. By the Banach strict separation
there exist x∗ 6= 0 and α 6= 0 such that

〈x∗, h〉 > α > 〈x∗, v〉, ∀ v ∈ H.
This implies that 〈x∗, v〉 = 0 for all v ∈ H and α > 0. Consequently we have
x∗ ∈ H⊥. Since H ⊂ T (S, x̄) we have N(S, x̄) ⊂ H⊥. This implies that

N(S, x̄) ⊂ Rx∗.
Moreover since x̄ ∈ bdryS and S is CEL at x̄, Proposition 3.6 ensures that
N(S, x̄) 6= {0}. Therefore

x∗ ∈ N(S, x̄) or − x∗ ∈ N(S, x̄).
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Because h ∈ T (S, x̄) ∩ (−T (S, x̄)), any one of the two last conditions imply
that 〈x∗, h〉 = 0 which contradicts the fact that α > 0. Therefore

T (S, x̄) ∩ (−T (S, x̄)) = H.

Now let X be a real normed space. Suppose that S is epi-Lipschitzian
and that T (S, x̄) contains a closed hyperplane H. Assume that there exists
h ∈ T (S, x̄) ∩ (−T (S, x̄)) such that h /∈ H. Following the above arguments
with the Banach strict separation theorem there exists some x∗ 6= 0 such
that

N(S, x̄) ⊂ Rx∗.
Moreover Theorem 3.1 and Corollary 3.2 imply that N(S, x̄) 6= {0}.
Similar arguments as above give that T (S, x̄) ∩ (−T (S, x̄)) = H. Therefore
Lemma 3.4 imply that T (bdryS, x̄) = H. �

So, we have the following result which follows immediately from the above
lemma and Theorem 4.2.

Theorem 4.4. Let S be a closed subset of the real Banach space X which is
epi-Lipschitzian at x̄ ∈ bdryS. Then S is strictly Hadamard differentiable
at x̄ if and only if T (bdryS, x̄) is a closed hyperplane.

We complete this section by the two following corollaries of Theorem 4.2.

Corollary 4.5. Let S be a closed subset in a real Banach space X. Assume
that S is epi-Lipschitzian at x̄ ∈ bdryS. Then S is strictly Hadamard
differentiable at x̄ if and only if ∂∆S(x̄) is contained in a segment ]0, a∗] for
some a∗ ∈ X∗.

Proof. Suppose that S is strictly Hadamard differentiable at x̄. Then by
Theorem 4.2, there exists a closed hyperplane H such that H ⊂ T (S, x̄).
This implies that

N(S, x̄) ⊂ Rx∗ for some x∗ ∈ X∗ \ {0}.

This and Corollary 3.2 imply that

R+∂∆S(x̄) ⊂ Rx∗.

Moreover by Theorem 3.1, we have 0 /∈ ∂∆S(x̄). This and the fact ∂∆S(x̄)
is bounded implies that

∂∆S(x̄) ⊂]0, a∗] for some a∗ 6= 0.

Conversely assume that ∂∆S(x̄) ⊂]0, a∗] for some a∗ 6= 0. Then we have

R+∂∆S(x̄) ⊂ Ra∗.

This implies that

〈a∗〉⊥ ⊂ T (S, x̄).

That is T (S, x̄) contains a closed hyperplane. Therefore by Theorem 4.2, S
is strictly Hadamard differentiable at x̄. �
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Corollary 4.6. Let g : X → R be a Lipschitz continuous function near x̄
in the real Banach space X and let S := {x ∈ X : g(x) ≤ 0}. Assume that
x̄ ∈ bdryS and 0 /∈ ∂g(x̄). Then S is strictly Hadamard differentiable at x̄
if and only if there exists some a∗ 6= 0 such that

∂g(x̄) ⊂]0, a∗].

Proof. Suppose that S is strictly Hadamard differentiable. By Theorem 3.3,
we have S is epi-Lipschitzian at x̄. Therefore by Theorem 4.2, there exists
a closed hyperplane H such that H ⊂ T (S, x̄). This implies that

N(S, x̄) ⊂ Rx∗ for some x∗ ∈ X∗ \ {0}.
That is

R+∂g(x̄) ⊂ Rx∗.
Since ∂g(x̄) is bounded and not containing 0 we have

∂g(x̄) ⊂]0, a∗] for some a∗ ∈ X∗ \ {0}.
Conversely if ∂g(x̄) ⊂]0, a∗] for some a∗ 6= 0. Since 0 /∈ ∂g(x̄), Theorem
3.3 implies that S is epi-Lipschitzian at x̄. Moreover

N(S, x̄) ⊂ Ra∗.
This implies that T (S, x̄) contains a closed hyperplane. Therefore Theorem
4.2 implies that S is strictly Hadamard differentiable at x̄. �

5. Strict Hadamard differentiability of non epi-Lipschitz sets

This section is concerned with the strict Hadamard differentiability of non
epi-Lipschitz sets in finite dimensions. We start with the next theorem.

Theorem 5.1. Let X be a finite dimensional real vector space and S ⊂ X
be a closed subset. Assume that S is non epi-Lipschitzian at x̄ ∈ S and that
T (S, x̄) contains a closed hyperplane H. Then T (S, x̄) coincides with H.

Proof. Assume that IntT (S, x̄) = ∅ and that there exists a closed hyperplane
H such that H ⊂ T (S, x̄). Let h ∈ T (S, x̄) such that h /∈ H. By the Banach
separation theorem there exists x∗ ∈ X and α ∈ R such that

(5.1) 〈x∗, h〉 > α ≥ 〈x∗, u〉, ∀ u ∈ H.
This implies that

(5.2) 〈x∗, u〉 = 0, ∀ u ∈ H and α ≥ 0.

From (5.1) and (5.2) we have respectively:

x∗ /∈ N(S, x̄) and x∗ ∈ H⊥.
Let a∗ 6= 0 be a vector in X such that H⊥ = Ra∗. Assume without loss
of generality that x∗ ∈ R+a

∗. Since N(S, x̄) ⊂ H⊥ and x∗ /∈ N(S, x̄), we
deduce that N(S, x̄) = R−a∗. Consequently

T (S, x̄) = {h ∈ X : 〈a∗, h〉 ≥ 0} .
This is a contradiction because IntT (S, x̄) = ∅. Therefore T (S, x̄) = H. �
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The following theorem gives a geometric characterization of the strict
Hadamard differentiability of mappings.

Theorem 5.2. Let X be a finite dimensional real vector space and Y a real
Banach space. Let g : X 7→ Y be a mapping which is locally Lipschitzian
around x̄ and ϕ : X ×Y → Z be a strictly Hadamard differentiable mapping
at (x̄, ȳ) with a bijective derivative Dϕ(x̄, ȳ) where Z is a Banach space and
ȳ = g(x̄). Let S ⊂ Z be a closed set such that S ∩ Ω = ϕ(graph g) ∩ Ω with
Ω ⊂ Z an open set containing z̄ := ϕ(x̄, ȳ). Then the following assertions
are equivalent

1) g is strictly Hadamard differentiable at x̄,
2) T (S, z̄) is isomorphic to X.

Proof. 1) ⇒ 2) : Suppose that g is strictly Hadamard differentiable at x̄.
Then the following equality holds

T (graph (g), (x̄, g(x̄))) = graphDg(x̄).(5.3)

Indeed, let (h, k) ∈ T (graph (g), (x̄, g(x̄))). Then for all tn → 0+ there exists
hn → h and kn → k such that

g(x̄+ tnhn) = g(x̄) + tnkn, for n sufficiently large.

Using the differentiability and the local Lipschitzness of g at x̄, we get

Dg(x̄)h = lim
n→+∞

g(x̄+ tnh)− g(x̄)

tn
= k.

Conversely, let h ∈ X, (xn) ⊂ X, with lim
n→+∞

xn = x̄ and tn → 0+. Then,

by the strict Hadamard differentiability of g

k := Dg(x̄)h = lim
n→+∞

g(xn + tnh)− g(xn)

tn
.

Put kn = g(xn+tnh)−g(xn)
tn

. Then (xn, g(xn)) + tn(h, kn) ∈ graph g for all n.

Thus, (h, k) ∈ T (graph g, (x̄, g(x̄))).
Since Dϕ(x̄, ȳ) is bijective, we have

T (S, ϕ(x̄, ȳ)) = Dϕ(x̄, ȳ)(T (graph (g), (x̄, g(x̄)))).(5.4)

Now we define the mapping ψ : X 7→ T (S, ϕ(x̄, ȳ)) by

ψ(h) = Dϕ(x̄, ȳ)(h,Dg(x̄)h).

Using relation (5.3), it is easy to see that ψ is an isomorphism from X into
T (S, ϕ(x̄, ȳ)).

2) ⇒ 1): Let ξ : X 7→ T (S, ϕ(x̄, ȳ)) be an isomorphism. Using rela-
tion (5.4), the mapping ψ := Dϕ(x̄, ȳ)−1 ◦ ξ is an isomorphism from X
to T (graph (g), (x̄, g(x̄))). Let ψ1 : X 7→ X and ψ2 : X 7→ Y be two lin-
ear mappings such that ψ(x) = (ψ1(x), ψ2(x)) for all x ∈ X. We have for
all h ∈ X, (ψ1(h), ψ2(h)) ∈ T (graph (g), (x̄, g(x̄))). Let h ∈ X, xn → x̄
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and tn → 0+. Then there exist hn → ψ1(h) and kn → ψ2(h) such that
(xn, g(xn)) + tn(hn, kn) ∈ graph g, for all integer n sufficiently large. So

lim
n→+∞

g(xn + tnψ1(h))− g(xn)

tn
= ψ2(h).(5.5)

We claim that the kernel, kerψ1, of ψ1 is reduced to the singleton {0}.
Because ψ is an isomorphism, it is easy to see that kerψ1 ∩ kerψ2 = {0}.
Let h ∈ kerψ1. Then relation (5.5) ensures that ψ2(h) = 0 and hence h = 0.
This means that ψ1 is an isomorphism. Put γ = ψ2 ◦ ψ−1

1 . We claim that γ
is the strict Hadamard derivative of g at x̄, that is,

lim
x→x̄
x′→x̄

g(x)− g(x′)− γ(x− x′)
‖x− x′‖

= 0.

So suppose the contrary, that is, there exists ε > 0 such that

lim sup
x→x̄
x′→x̄

‖g(x)− g(x′)− γ(x− x′)
‖x− x′‖

‖ ≥ ε.

Let un → x̄ and u′n → x̄ be such that

lim
n→+∞

‖g(un)− g(u′n)− γ(un − u′n)

‖un − u′n‖
‖ ≥ ε.

Take tn := ‖un − u′n‖ and wn = un−u′n
‖un−u′n‖

. Since X is of finite dimension,

extracting subsequence if necessary, we may assume that wn → w, with
‖w‖ = 1. So

lim
n→+∞

‖g(u′n + tnwn)− g(u′n)− tnγ(wn)

tn
‖ ≥ ε

or equivalently (because g is locally Lipschitzian around x̄)

lim
n→+∞

‖g(u′n + tnw)− g(u′n)− tnγ(wn)

tn
‖ ≥ ε.

Since ψ1 is an isomorphism, there exists a unique h ∈ X such that w =
ψ1(h). Using relation (5.5), we obtain a contradiction with the last inequal-
ity. The proof is then completed. �

Let us stress in the following remark an equivalence result of the strict
Hadamard differentiability for sets in finite dimensional spaces regardless of
wether the set is epi-Lipschitzian or not.

Remark 5.3. Let X be a finite dimensional space and g : X 7→ R be a
locally Lipschitz function around x̄. Then g is strictly Hadamard differen-
tiable at x̄ IFF T (graph g, (x̄, g(x̄))) is isomorphic to X and here X ×{0} is
considered as an hyperplane of X × R.
Therefore, let S ⊂ X be closed subset having g as its local representation.
Then S is strictly Hadamard differentiable at x̄ if and only if T (S, x̄) is
isomorphic to X.
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Now, we may establish a geometrical characterization in the spirit of [2]
involving the contingent or Bouligand cone. We recall that the contingent
cone to a closed set S at x̄ ∈ S is defined as the following limit superior of
the set-differential quotient

K(S, x̄) := lim sup
t→0+

S − x̄
t

.

When X is a finite dimensional space the contingent cone and the Clarke
tangentcone are connected in the following way(see [9] and [23])

T (S, x̄) = lim inf
S

x→x̄
K(S, x).(5.6)

We say that a set-valued mapping F : X ⇒ Y is continuous at x̄ if

lim
x→x̄

F (x) = F (x̄)

where
lim
x→x̄

F (x) := lim sup
x→x̄

F (x) = lim inf
x→x̄

F (x).

Here
lim sup
x→x̄

F (x) := {h ∈ X : lim inf
x→x̄

dF (x)(h) = 0}

and
lim inf
x→x̄

F (x) := {h ∈ X : lim
x→x̄

dF (x)(h) = 0}.

Corollary 5.4. Let X, Y and Z be finite dimensional spaces, g : X 7→ Y be
a mapping which is locally Lipschitzian around x̄ and ϕ : X × Y → Z be a
strictly Hadamard differentiable mapping at (x̄, ȳ) with a bijective derivative
Dϕ(x̄, ȳ) and put ȳ = g(x̄). Let S ⊂ Z be a closed set such that S ∩ Ω =
ϕ(graph g) ∩ Ω, where Ω ⊂ Z is an open set containing z̄ := ϕ(x̄, ȳ). Then
the following assertions are equivalent

1) g is strictly Hadamard differentiable at x̄,
2′) The set-valued mapping z ⇒ K(S, z) is continuous at z̄ with respect

to S and K(S, z̄) is isomorphic to X.

Proof. Using relation (5.6), it is easy to see that 2′) implies the assertion 2)
of Theorem 5.2. So it is enough to prove the implication 1) =⇒ 2′). Without
loss of generality, we may assume that ϕ = idX×Y and Z = X × Y , where
idX×Y is the identity mapping of X × Y . It is easy to see that

K(graph g, (x̄, g(x̄))) = graphDg(x̄).(5.7)

We will establish the following inclusions

lim sup
x→x̄

K(graph g, (x, g(x))) ⊂ K(graph g, (x̄, g(x̄))) ⊂ lim inf
x→x̄

K(graph g, (x, g(x))).

So let (u, v) ∈ lim sup
x→x̄

K(graph g, (x, g(x))). Then there are sequences xn →

x̄ and (un, vn)→ (u, v) such that for n large enough (un, vn) ∈ K(graph g, (xn, g(xn))).
Thus for each integer n there exist sequences tnk → 0+ and (unk , v

n
k ) →

(un, vn) such that (xn, g(xn)) + tnk(unk , v
n
k ) ∈ graph g for all k sufficiently



14 A. JOURANI AND M. SENE

large. Extracting a diagonal subsequence, we may assume that for some sub-
sequence of integers (kn)n, we have lim

n→+∞
tnkn = 0, lim

n→+∞
(unkn , v

n
kn) = (u, v)

and (xn, g(xn)) + tnkn(unkn , v
n
kn

) ∈ graph g for all n sufficiently large. Thus,
since g is strictly Hadamard differentiable at x̄,

Dg(x̄)u = lim
n→+∞

g(xn + tnknu
n
kn

)− g(xn)

tnkn
= v.

This last equality ensures that (u, v) ∈ K(graph g, (x̄, g(x̄))).
To prove the second inclusion

K(graph g, (x̄, g(x̄))) ⊂ lim inf
x→x̄

K(graph g, (x, g(x))),

it suffices to use relations (5.7), (5.6) and (5.3). �
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