Finite Difference formulation of any lattice Boltzmann scheme - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Finite Difference formulation of any lattice Boltzmann scheme

Résumé

Lattice Boltzmann schemes rely on the enlargement of the size of the target problem in order to solve PDEs in a highly parallelizable and efficient kinetic-like fashion, split into a collision and a stream phase. This structure, despite the well-known advantages from a computational standpoint, is not suitable to construct a rigorous notion of consistency with respect to the target equations and to provide a precise notion of stability. In order to alleviate these shortages and introduce a rigorous framework, we demonstrate that any lattice Boltzmann scheme can be rewritten as a corresponding multi-step Finite Difference scheme on the conserved variables. This is achieved by devising a suitable formalism based on operators, commutative algebra and polynomials. Therefore, the notion of consistency of the corresponding Finite Difference scheme allows to invoke the Lax-Richtmyer theorem in the case of linear lattice Boltzmann schemes. Moreover, we show that the frequently-used von Neumann-like stability analysis for lattice Boltzmann schemes entirely corresponds to the von Neumann stability analysis of their Finite Difference counterpart. More generally, the usual tools for the analysis of Finite Difference schemes are now readily available to study lattice Boltzmann schemes. Their relevance is verified by means of numerical illustrations.
Fichier principal
Vignette du fichier
2021_LBM_and_FD_SINUM.pdf (785.45 Ko) Télécharger le fichier
2021_LBM_and_FD_SINUM.bbl (7.97 Ko) Télécharger le fichier
2021_LBM_and_FD_SINUM.log (41.46 Ko) Télécharger le fichier
2021_LBM_and_FD_SINUM_shared.tex (8.53 Ko) Télécharger le fichier
2021_LBM_and_FD_SINUM_supplement.pdf (317.25 Ko) Télécharger le fichier
biblio.bib (12.95 Ko) Télécharger le fichier
cone_of_influence_new_new.pdf (4.13 Ko) Télécharger le fichier
cone_of_influence_new_new.pdf_tex (5.04 Ko) Télécharger le fichier
convergence_II_order.pdf (304.17 Ko) Télécharger le fichier
convergence_I_order.pdf (304.31 Ko) Télécharger le fichier
siamart190516.cls (70.02 Ko) Télécharger le fichier
siamplain.bst (19.87 Ko) Télécharger le fichier
stability_1.pdf (118.09 Ko) Télécharger le fichier
stability_2.pdf (107.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03436896 , version 1 (23-11-2021)
hal-03436896 , version 2 (01-12-2021)
hal-03436896 , version 3 (06-05-2022)

Identifiants

  • HAL Id : hal-03436896 , version 1

Citer

Thomas Bellotti, Benjamin Graille, Marc Massot. Finite Difference formulation of any lattice Boltzmann scheme. 2021. ⟨hal-03436896v1⟩
374 Consultations
498 Téléchargements

Partager

More