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Verification that corresponding Finite Difference schemes from Propo-
sition 4.4 does not depend on the choice of s1. In the case where we do not
consider that the relaxation parameter of the conserved moment m1 is equal to zero,
one might ask if the result from Proposition 4.4 depends on the choice of s1. It
must be observed that in this case, it is of the foremost importance to enforce that
meq

1 = m1.
To this end, let us decompose the equilibrium matrix B under the form B =

b1 ⊗ e1 + B|s1=0 where is the first column of B (thus depending on s1). Observe
that B|s1=0 is independent of s1. Inserting into the resulting Finite Difference scheme
from Proposition 4.4 yields
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The aim is to show that the left-hand side of this expression does not depend on s1.
A priori, the coefficients of the characteristic polynomial of A depend on s1. Like in
the proof of Proposition 6.3, we introduce Ψ =

∑k=q
k=0 γ̃kX

k where

γ̃k =

{
1, if k = q,

γk −
∑`=q−1−k
`=0 γk+1+`A

`b1 ⊗ e1|11, if k ∈ J0, q − 1K.

Following exactly the same proof than Proposition 6.3 using the Lemma 8.1, we have
that χA+b1⊗e1 ≡ Ψ. Observing that A + b1 ⊗ e1 = A|s1=0, this means that Ψ does
not depend on s1, and thus the left-hand side of (SM0.1) does not depend on the
choice of s1. We are left to deal with the right-hand side of (SM0.1), where γk are
A depend on s1. However, the right-hand side is a continuous function of s1, which
equates a left-hand side which is constant in s1, therefore we conclude that the right-
hand side cannot depend on s1. This shows that the choice of taking s1 = 0 can be
done without loss of generality.

Verification that equivalent Finite Difference schemes from Proposi-
tion 4.8 do not depend on the choice of s1, . . . , sN . For any i ∈ J1, NK, the
independence of the result from si is a direct consequence of what we have proved in
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the previous section for N = 1. For the other moments, we observe that(
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then this quantity is independent on st for t ∈ J1, NKr {i} because of the compensa-
tions between A�i and B. This concludes the proof.

Formalism with shift operators in time. In the main body of the paper, we
have taken time shifts into account without introducing a specific time-shift operator,
since most of work had to be done on the space variable. However, it can be interesting
to also introduce a shift operator τ which acts on any function f by

τfn = fn+1,

where the spatial variable is untouched, thus not listed. For the sake of presentation,
we take N = 1. The lattice Boltzmann scheme under the form (3.4) can be restated
as

(SM0.2) (τI −A)mn = Bmeq|n.

Observe that now, what we call Aτ := τI −A ∈ Mq(R[τ ] × Dd∆x). We can proceed
in two equivalent ways:

• We multiply (SM0.2) by the adjugate of τI −A. Using the basic properties
of the adjugate, see Chapter 0 in [SM8]

adj(τI −A)(τI −A)mn = (τI −A)adj(τI −A)mn,

= det(τI −A)mn = adj(τI −A)Bmeq|n,

= χA(τ)mn,(SM0.3)

which is, as we shall see, exactly the Finite Difference scheme given by Propo-
sition 4.4, upon selecting the first line.

• Another way of coming to the same result consists in applying the scheme
(SM0.2) as many times as needed. We obtain

mn = mn,(SM0.4)

Aτm
n = Bmeq|n,

A2
τm

n = AτBm
eq|n,

...

Ak
τm

n = Ak−1
τ Bmeq|n,
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for any k ∈ N?. It is important to list the first equation (SM0.4), because it
represents what happens at k = 0 and cannot be forgotten to yield the desired
result. Therefore, consider the characteristic polynomial ofAτ under the form
χAτ =

∑k=q
k=0 γ

τ
kX

k. By using the Cayley-Hamilton theorem for matrices with
values on the commutative ring of space/time Finite Difference operators,1

we end up with
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The zero-order term of the characteristic polynomial of a matrix is given
by the determinant of such matrix (up to a sign), see [SM2], thus γτ0 =

(−1)qdet(Aτ ) = (−1)qdet(τI−A) = (−1)qχA(τ) = (−1)q
∑k=q
k=0 γkτ

k, which
corresponds to the characteristic polynomial of the matrix A, containing only
spatial Finite Difference operators, evaluated on the time-shift operator τ . On
the other hand, using the Cayley-Hamilton theorem once more

(τI −A)
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By using the basic property of adjugate matrices, namely that for any square
matrix C, whe have that Cadj(C) = det(C)I, we deduce from the previous
equality that (
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τ

)
= −(−1)qadj(τI −A).

This gives the same Finite Difference scheme than (SM0.3).
We want to make the link with the result from Proposition 4.4. Utilizing (8.1) to
deduce an explicit expression for the previous adjugate, we gain(
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where we have performed the usual change of indices. At the very end, the Finite
Difference scheme coming from these computations is
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This is the final scheme we want to find from Proposition 4.4 plus a shift. Thus, we
multiply it by τ1−q and take advantage of the monicity of the characteristic polynomial

τmn = −
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1Which are the polynomials with real coefficients in the variables τ and those to account for the
space, namely x, y and z.
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This can be rewritten without the shift operators in time by

mn+1 = −
q−1∑
k=0

γkm
n+1−q+k +
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(
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γq+`−kA
`
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where another change of indices in the last sums has been made.
To recap, the Finite Difference schemes can be written as

det(τI −A)mn − adj(τI −A)Bmeq|n︸ ︷︷ ︸
(FD)

= 0.

Multiplying by (τI −A) (the inverse of the resolvent) provides

det(τI −A)︸ ︷︷ ︸
χA(τ)

((τI −A)mn −Bmeq|n)︸ ︷︷ ︸
lattice Boltzmann scheme

(LBM)

= 0.

Formally this means that

(τI −A)(FD) = det(τI −A)(LBM) = 0.

We see that in the Finite Difference formulation, the simplest part of the scheme to
deal with concerns the linear part on the moments, since it is diagonal, whereas for
the original lattice Boltzmann scheme, it was the hardest one due to the presence of
the non-conserved moments multiplied by τI−A. On the other hand, the equilibrium
part was easy to deal with in the original lattice Boltzmann scheme, since involving
only B, whereas in the corresponding Finite Difference schemes, it is more involved
due to the presence of the adjugate matrix adj(τI −A).

Finally, observe that the same procedure works for the ODEs introduced at the
very beginning of the paper, where the place of the time shift operator τ would be
taken by the derivative d

dt .

Proof of Proposition 5.7.

Proof. By the choice of polynomial, we have thatdeg(νA)∑
k=0

ψkA
k


1·

=

ψ0 +

deg(νA)∑
k=1

ψk(Ak)11, 0, . . . , 0

 .
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Restarting from the proof of Proposition 4.4, we have
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ñ+deg(νA)
1 = −

deg(νA)−1∑
k=1

ψkm
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Performing the usual change of variable yields the result.

Proof on Lemma 5.10.

Proof. The proof goes like the standard one of Lemma 5.3. Consider µA =
Xdeg(µA) + ωdeg(µA)−1X

deg(µA)−1 + · · ·+ ω1X + ω0. Consider the Euclidian division

between µA and ν̃A: there exist Q,R ∈ Dd∆x[X] such that

µA = ν̃AQ+R,

with either 0 < deg(R) < deg(ν̃A) or deg(R) = 0 (constant reminder polynomial).
Let us indeed write

Q = qdeg(µA)−deg(ν̃A)X
deg(µA)−deg(ν̃A) + · · ·+ q1X + q0,

R = rdeg(R)X
deg(R) + · · ·+ r1X + r0,

Suppose that R 6≡ 0, then we have for every j ∈ J1, qK

=0︷ ︸︸ ︷
(Adeg(µA))1j + ωdeg(µA)−1(Adeg(µA)−1)1j + · · ·+ ω1(A)1j + ω0δ1j

= rdeg(R)(A
deg(R)1j + · · ·+ r1(A)1j + r0δ1j+(

(Adeg(ν̃A))1j + ψdeg(ν̃A)−1(Adeg(ν̃A)−1)1j + · · ·+ ψ1(A)1j + ψ0δ1j

)
︸ ︷︷ ︸

=0

×
(
qdeg(µA)−deg(νA)(A

deg(µA)−deg(νA))1j + · · ·+ q1(A)1j + q0δ1j

)
,



SM6 T. BELLOTTI, B. GRAILLE, AND M. MASSOT

thus

rdeg(R)(A
deg(R)1j + · · ·+ r1(A)1j + r0δ1j = 0, j ∈ J1, qK,

with 0 < deg(R) < deg(ν̃A), which contradicts the minimality of ν̃A. Thus necessarily
deg(R) = 0 so the polynomial is constant, but to have the previous property, the
constant must be zero, thus R ≡ 0.

Proof of Lemma 6.1.

Proof. Let f : L → R with f ∈ `2(L) ∩ `1(L). We have, for every wave number
ξ ∈ [−π/∆x, π/∆x]d

ˆT z∆xf(ξ) =
1

(2π)d/2

∑
x∈L

e−ıx·ξf(x− z∆x),

=
1

(2π)d/2

∑
y∈L

e−ı(y+z∆x)·ξf(y) = e−ı∆xz·ξf̂(ξ).

Proof of Lemma 8.1.

Proof. The proof is basically given in [SM4]. First assume that D ∈ Mr(R) is
invertible, therefore we have det(D+u⊗v) = det(D)det(I +D−1u⊗v). Construct(

I 0
vᵀ 1

)(
I +D−1uvᵀ D−1u

0 1

)(
I 0
−vᵀ 1

)
=

(
I D−1u
0 1 + vᵀD−1u

)
.

The determinant of the first and third matrices on the left hand side is one. The
determinant of the second one is exactly the quantity we want to compute. Thus

det(D + u⊗ v) = det(D)
(
1 + vᵀD−1u

)
= det(D) + vᵀ(det(D)D−1)u.

Take D = C − xI for any x ∈ R. Its inverse is a rational function in x, thus exists.
We have

det(C − xI + u⊗ v) = det(C − xI) + vᵀ(det(C − xI)(C − xI)−1)u,

= det(C − xI) + vᵀadj(C − xI)u,

by the basic properties of the adjugate matrix. Taking x = 0 yields the thesis.

Additional examples. In this section, we gather more examples concerning the
application of our theory to lattice Boltzmann schemes which can be found in the
literature.

D1Q2 with one conservation law. Consider the scheme by [SM3, SM7] taking
d = 1 and q = 2 with c1 = 1 and c2 = −1 and

(SM0.6) M =

(
1 1
λ −λ

)
, S = diag(0, s), with s 6= 1.

The scheme can be used to simulate a non-linear scalar conservation law (advection,
Burgers, etc.) using an acoustic scaling and a non-linear diffusion equation with a
parabolic scaling. However, the scheme is not rich enough to simulate more complex
equations. As already pointed out in the introduction , the Finite Difference equivalent
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of this scheme has already been studied by [SM3] in the case where the equilibria are
linear functions.

It can be easily seen, even by hand since dealing with a 2× 2 matrix, that

χA = X2 − 1

2
(2− s)(x + x)X + (1− s).

The minimal polynomial coincides with the characteristic polynomial. This can be
seen, as usual, by trying to consider α0 and α1 such that

α0I + α1A =

(
α0 + (x+x)

2 α1
(1−s)(x−x)

2λ α1
λ(x−x)

2 α1 α0 + (1−s)(x+x)
2 α1

)
=

(
0 0
0 0

)
.

The only way of annihilating the first entry is to take α0 = 0, which is trivial. Thus
the minimal polynomial is of degree 2 and then coincides with the characteristic
polynomial. The equivalent Finite Difference scheme is

mn+1
1 =

1

2
(2− s)(x + x)mn

1 − (1− s)mn−1
1 +

s(x− x)

2λ
meq

2 |n.

The scheme is a θ-scheme between a Lax-Friedrichs scheme (for s = 1) and a leap-frog
scheme (for s = 2).

D1Q3 SRT for one conservation law. Consider the D1Q3 SRT scheme by
[SM6], also corresponding to that of [SM9] which reads with our notations d = 1,
q = 3 and c1 = 0, c2 = 1 and c3 = −1 and

M =

1 1 1
0 λ −λ
0 λ2 λ2

 , S = diag(0, ω, ω), with ω 6= 1,

The characteristic polynomial, corresponding to the minimal polynomial is

χA = X3 + (ω(x + x)− (x + 1 + x))X2 + (1− ω)((x + x) + (1− ω))X − (1− ω)2.

Hence the equivalent Finite Difference scheme is

mn+1
1 = (1− ω)(x + x)mn

1 +mn
1 − (1− ω)(x + x)mn−1

1 − (1− ω)2mn−1
1

+ (1− ω)2mn−2
1 +

ω(x− x)

2λ
meq

2 |n −
ω(1− ω)(x− x)

2λ
meq

2 |n−1

+
ω(x− 2 + x)

2λ2
meq

3 |n +
ω(1− ω)(x− 2 + x)

2λ2
meq

3 |n−1,

coinciding with the one found by [SM6].

D1Q3 MRT for one conservation law. Consider the D1Q3 MRT scheme by
[SM6], which is constructed in the same way than the previous one except for S =
diag(0, ω2, ω3) with ω2, ω3 6= 1. The characteristic and minimal polynomial coincide
and are given by

χA = X3 + (−1 + (x + x)(ω2/2 + ω3/2− 1))X2

+ (1 + ω2ω3 − ω2 − ω3 + (1− ω2/2− ω3/2)(x + x))X

− (1− ω2)(1− ω3).
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Then the equivalent Finite Difference scheme is

mn+1
1 = (1− ω2/2− ω3/2)(x + x)mn

1 +mn
1 − (1− ω2/2− ω3/2)(x + x)mn−1

1

− (1− ω2 − ω3 + ω2ω3)mn−1
1 + (1− ω2)(1− ω3)mn−2

1

+
ω2(x− x)

2λ
meq

2 |n −
ω2(1− ω3)(x− x)

2λ
meq

2 |n−1

+
ω3(x− 2 + x)

2λ2
meq

3 |n +
ω3(1− ω2)(x− 2 + x)

2λ2
meq

3 |n−1,

corresponding to the one found by [SM6].

D2Q4 for one conservation law. Consider d = 2 and q = 4 with c1 = (1, 0)ᵀ,
c2 = (0, 1)ᵀ, c3 = (−1, 0)ᵀ and c4 = (0,−1)ᵀ and

(SM0.7) M =


1 1 1 1
λ 0 −λ 0
0 λ 0 −λ
λ2 −λ2 λ2 −λ2

 , S = diag(0, s, s, 1), with s 6= 1.

Therefore N = 1 and Q = 2. This can be used, for example, coupled with other
schemes of the same nature (building what we call a “vectorial scheme” [SM5]) to
easily simulate systems of non-linear conservation laws for d = 2, see [SM1]. After
some computation, the characteristic polynomial of A reads

χA =X3 + (2s− 3)
(x + x + y + y)

4
X2 + (1− s)

(
(2− s) (xy + xy + xy + xy)

4
+ 1

)
X

− (1− s)2 (x + x + y + y)

4
.

One can check as usual that it coincides with the minimal polynomial. The equivalent
Finite Difference scheme taking meq

4 ≡ 0 for simplicity is

mn+1
1 =− (2s− 3)Aam

n
1 − (1− s)mn−1

1 − (1− s)(2− s)Adm
n−1
1 + (1− s)2Aam

n−2
1

+
s

2λ
(x− x)meq

2 |n +
s

2λ
(y − y)meq

3 |n

− s(1− s)
λ

1

2

(
y

(x− x)

2
+ y

(x− x)

2

)
meq

2 |n−1

− s(1− s)
λ

1

2

(
x

(y − y)

2
+ x

(y − y)

2

)
meq

3 |n−1,

where we have introduced the short-hands Aa := (x + x + y + y)/4 ∈ Dd∆x and Ad :=
(xy+xy+xy+xy)/4 ∈ Dd∆x, yielding respectively the average between neighbors along
the axis and along the diagonals.
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