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FINITE DIFFERENCE FORMULATION OF ANY LATTICE
BOLTZMANN SCHEME

THOMAS BELLOTTI∗, BENJAMIN GRAILLE† , AND MARC MASSOT∗

Abstract. Lattice Boltzmann schemes rely on the enlargement of the size of the target problem
in order to solve PDEs in a highly parallelizable and efficient kinetic-like fashion, split into a colli-
sion and a stream phase. This structure, despite the well-known advantages from a computational
standpoint, is not suitable to construct a rigorous notion of consistency with respect to the target
equations and to provide a precise notion of stability. In order to alleviate these shortages and in-
troduce a rigorous framework, we demonstrate that any lattice Boltzmann scheme can be rewritten
as a corresponding multi-step Finite Difference scheme on the conserved variables. This is achieved
by devising a suitable formalism based on operators, commutative algebra and polynomials. There-
fore, the notion of consistency of the corresponding Finite Difference scheme allows to invoke the
Lax-Richtmyer theorem in the case of linear lattice Boltzmann schemes. Moreover, we show that
the frequently-used von Neumann-like stability analysis for lattice Boltzmann schemes entirely corre-
sponds to the von Neumann stability analysis of their Finite Difference counterpart. More generally,
the usual tools for the analysis of Finite Difference schemes are now readily available to study lattice
Boltzmann schemes. Their relevance is verified by means of numerical illustrations.

Key words. Lattice Boltzmann methods, Finite Difference multi-step methods, consistency,
von Neumann stability analysis, Cayley-Hamilton theorem on the ring of Finite Difference operators
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1. Introduction. Lattice Boltzmann schemes are a class of computational meth-
ods used to simulate systems of conservation laws under the form of Partial Differen-
tial Equations (PDEs). Their basic way of working is the following: instead of taking
N ∈ N? PDEs and directly discretize them, a lattice Boltzmann scheme enlarges the
size of the problem from N to q > N and treats it in a kinetic-like fashion. This means
that the new q variables undergo, at each time step, a local collision phase where dif-
ferent particle distribution functions interact, followed by a lattice-constrained stream
phase where no interaction is possible. The advantage of such idiosyncratic approach
compared to more traditional numerical methods (e.g. Finite Difference, Finite Vol-
ume, Finite Elements, etc.) is that the local nature of the collision phase allows for
massive parallelization of the method and the lattice-constrained stream can be com-
putationally implemented as a pointer shift. Although this way of proceeding is highly
beneficial from a computational perspective, it yields a deficient structure to construct
a clear and rigorous notion of consistency with respect to the N target equations, as
well as a rigorous theory of stability. Indeed, only formal procedures, either based on
the Chapman-Enskog expansion [7] or on the equivalent equations by Dubois [14, 15]
are currently available to study the consistency of lattice Boltzmann schemes. As far
as stability is concerned, most of the studies rely on the linear stability analysis of
the eigenvalues of the system, see [3, 35].

In order to bridge the gap between the lattice Boltzmann methods and the tra-
ditional approaches known to numerical analysts, the aim of the present contribution
is to show that any lattice Boltzmann scheme can be rewritten as a corresponding
multi-step Finite Difference scheme on the conserved variables, regardless of the lin-
earity of the equilibria. This is made possible by developing an appropriate formalism
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based on commutative algebra and therefore yields a proper notion of consistency
with respect to the target equations, which is that of Finite Difference schemes (see
any standard textbook such as [36]). Furthermore, we confirm that the customary
von Neumann analysis used for lattice Boltzmann schemes is equivalent to performing
the same analysis on the corresponding Finite Difference scheme and is consequently
particularly relevant. The price to pay for passing from an explicit scheme with q
variables and utilizing information only at the previous time-step to a method with
N < q variables is to increase the number of previous time-steps the new solution
depends on, yielding a multi-step Finite Difference scheme.

In the past, few authors have noticed that for some particular lattice Boltz-
mann schemes, one has a corresponding (sometimes called “equivalent”) Finite Differ-
ence formulation on the conserved variables. Despite this, no general theory has been
formulated. For instance: Suga [37] derives by direct computations a three-stages
Finite Difference scheme from a uni-dimensional three-velocities D1Q3 scheme,1 lim-
iting the computations to a linear framework with one relaxation parameter (SRT).
Dellacherie [10] derives a two-stages Finite Difference scheme for the D1Q2 lattice
Boltzmann scheme. Again, this is limited to one spatial dimension and to a linear
framework. A higher level of generality has been reached by the works of Ginzburg
and collaborators, see [20] for a recap. They succeeded, using a link formalism, in
writing a class of Lattice Boltzmann schemes as Finite Difference schemes [12]. With
their highly constrained link structure to be enforced, the resulting Finite Differ-
ence scheme with three stages is valid regardless of the spatial dimension and the
choice of discrete velocities. The limitations are that the choice of moments is heavily
constrained and only the case of one conserved moment is handled. Moreover, the
evolution equation of the moving particles can depend on the distribution of the still
particles only via the conserved moment the equilibria depend upon and the schemes
must be two-relaxation time (TRT) models with “magic parameter” equal to one-
fourth for any link. The difficulty in establishing a general result comes from the
coupling between spatial operators and time shifts. We must mention that during
the drafting of the present contribution, an interesting work by Fuc̆ik and Straka
[19] has been published covering the very same subject and essentially coming to the
same conclusion as our paper. Their focus is different than ours since they adopt a
purely algorithmic approach rather than a precise algebraic characterization of lattice
Boltzmann schemes. We actually provide more insight into the bound on the num-
ber of time steps of the corresponding Finite Difference scheme and our formalism,
based on polynomials, aims at providing a direct link with the classical tools for the
stability analysis and allows to establish a link with the Taylor expansions from [15],
as introduced in [1]. In [19], the authors rely on a decomposition of the scheme us-
ing an hollow matrix2 yielding an equivalent form of the scheme with the diagonal
non-equilibrium part, after a finite number of steps of their algorithm. However, to
the best of our understanding, the origin of such algorithm is not fully clear. In their
work, the spatial shifts of data introduced by the stream phase are taken into account
using a rather cumbersome system of indices, whereas we rely on an straightforward
algebraic characterization of the stream phase.

Our paper is structured as follows: in Section 2, we introduce – in guise of friendly
introduction – the link of our problem with Ordinary Differential Equations (ODEs).
The right formalism to make lattice Boltzmann schemes looking very close to a sys-

1It is customary to call DdQq a scheme in a d-dimensional space using q discrete velocities.
2Matrix with zero entries on the diagonal.
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tem of ODEs is provided in Section 3 and allows to prove the main results of the
work showcased in Section 4. We devote Section 5 to discuss examples, possible sim-
plifications of the problem and particular cases deserving particular attention. In
Section 6, we prove the equivalence of the von Neumann analysis for lattice Boltz-
mann and Finite Difference schemes. In Section 7, we show how the well-known
tools for Finite Difference schemes can be used to prove convergence theorems for
lattice Boltzmann schemes. We corroborate our claim via numerical simulations. We
eventually conclude in Section 8.

2. The example of Ordinary Differential Equations. Since our way of
reducing any lattice Boltzmann scheme to a multi-step Finite Difference scheme has
been originally inspired by an analogy with systems of ODEs, let us introduce this
way of reasoning with the following example. Consider the system of ODEs of size
q ∈ N? with matrix A ∈Mq(R) given by

(2.1)

{
y′(t) = Ay(t), t ≥ 0,

y(0) = ŷ ∈ Rq.

Transforming a single equation of higher order into a system of first order equations
like (2.1) by considering the companion matrix is a current practice, which unsurpris-
ingly makes the problem more handy from the computational standpoint. Though
being the analogous of what we aim at doing of lattice Boltzmann schemes, the other
way around, passing from a system of first order to a single equation of higher order,
seems to be seldom considered. We proceed like in [9]. By iterating, we have that

y(k) = Aky for k ∈ J0, qK.3 Let (γk)k=q
k=0 ⊂ R be q + 1 real coefficients, then write∑k=q

k=0 γky
(k) = (

∑k=q
k=0 γkA

k)y. Taking (γk)k=q
k=0 as the coefficients of the characteris-

tic polynomial4 χA =
∑k=q
k=0 γkX

k of A, by virtue of the Cayley-Hamilton theorem,
we deduce the corresponding equation on the first variable y1 (playing the role of the
conserved moment), given by

(2.2)



∑k=q
k=0 γky

(k)
1 (t) = 0, t ≥ 0,

y1(0) = (Aŷ)1,
...

y
(q−1)
1 (0) = (Aq−1ŷ)1.

This provides a systematic way of performing the transformation without having to
rely on hand computations and substitutions. To give an example, consider

AI =

1 1 1
1 2 1
1 2 0

 , with χAI
= X3 − 3X2 − 2X + 1.

Hence, the corresponding ODE on the first variable is given by y′′′1 −3y′′1−2y′1+y1 = 0.

3. Algebraic form of lattice Boltzmann schemes. Now that the reader is
familiar – through a simple example – with the main idea and the final aim of the pres-
ent contribution, we introduce the general framework of lattice Boltzmann schemes
and the right formalism to treat them almost as systems of ODEs.

3We shall consistently use the notation Ja, bK := {a, a + 1, . . . , b} for a, b ∈ Z and a < b.
4In the whole work, the indeterminate of any polynomial shall be denoted by X.
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3.1. Spatial and temporal discretization. We set the problem in any spatial
dimension d = 1, 2, 3 considering the whole space Rd, because we are not interested
in studying boundary conditions. The space is discretized by a d-dimensional lattice
L := ∆xZd of constant step ∆x > 0 in all direction. The time is uniformly discretized
with step ∆t > 0. The discrete instants of time shall be indexed by the integer indices
n ∈ N so that the corresponding time is tn = n∆t. We finally introduce the so-called
lattice velocity λ > 0 defined by λ := ∆x/∆t. Observe that the developing theory is
totally discrete and thus fully independent from the scaling between ∆x and ∆t.

3.2. Discrete velocities and shift operators. The first choice to be made
when devising a lattice Boltzmann scheme concerns the discrete velocities (ej)

j=q
j=1 ⊂

Rd with q ∈ N?, which are multiples of the lattice velocity, namely ej = λcj for any

j ∈ J1, qK with (cj)
j=q
j=1 ⊂ Zd. Therefore, particles are stuck to move – at each time

step – on the lattice L. We denote the distribution density of the particles moving
with velocity ej by fj for every j ∈ J1, qK. The shift operators associated with the
discrete velocities are an important element of the following analysis.

Definition 3.1 (Shift operator). Let z ∈ Zd, then the associated shift operator
on the lattice L, denoted T z∆x, is defined in the following way. Take f : L → R be any
function defined on the lattice,5 then the action of T z∆x is

(T z∆xf)(x) = f(x− z∆x), ∀x ∈ L.
We also introduce T d∆x := {T z∆x with z ∈ Zd} ∼= Zd.

The shift yields information sought in the upwind direction with respect to the con-
sidered velocity. Let us introduce the natural binary operation between shifts.

Definition 3.2 (Product). Let the “product” ◦ : T d∆x×T d∆x → T d∆x be the binary
operation defined as T z∆x ◦ Tw∆x = T z+w

∆x , for any z,w ∈ Zd.

Henceforth, the product ◦ is understood whenever no ambiguity is possible. This
operation provides an algebraic structure to the shifts, directly inherited from that of
Zd.

Proposition 3.3. (T d∆x, ◦) forms an Abelian group.

Moreover, there is only “one movement” for each Cartesian direction which “gener-
ates” the shifts. More precisely

for d = 1, let x := T 1
∆x, then T d∆x = 〈{x}〉,

(3.1)

for d = 2, let x := T
(1,0)
∆x , y := T

(0,1)
∆x , then T d∆x = 〈{x, y}〉,

for d = 3, let x := T
(1,0,0)
∆x , y := T

(0,1,0)
∆x , z := T

(0,0,1)
∆x , then T d∆x = 〈{x, y, z}〉,

where 〈·〉 is the customary notation for the generating set of a group. We can add
one more binary operation, which is non-internal to T d∆x. This yields the cornerstone
of this work, namely the set of Finite Difference operators, finite combinations of
weighted shifts operators via a sum. It is defined as follows, see Chapter 3 of [28].

Definition 3.4 (Finite Difference operators). The set of Finite Difference op-
erators on the lattice L is defined as

Dd∆x := RT d∆x =

{∑
T∈T d∆x

αTT, where αT ∈ R and αT = 0 almost everywhere

}
,

5The function could take values in any ring, see [28].
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the group ring (or group algebra) of T d∆x over R. The sum + : Dd∆x × Dd∆x → Dd∆x
the product6 ◦ : Dd∆x ×Dd∆x → Dd∆x of two elements are defined by ∑

T∈T d∆x

αTT

+

 ∑
T∈T d∆x

βTT

 =
∑

T∈T d∆x

(αT + βT)T,

 ∑
T∈T d∆x

αTT

 ◦
 ∑

H∈T d∆x

βHH

 =
∑

T,H∈T d∆x

αTβHT ◦ H.

Furthermore, the product of σ ∈ R with elements of Dd∆x is given by

σ

 ∑
T∈T d∆x

αTT

 =
∑

T∈T d∆x

(σαT)T.

With the two binary operations, Dd∆x behaves closely to Z, R or C as stated by the
following result, see [28].

Proposition 3.5 (Ring of Finite Difference operators). (Dd∆x,+, ◦) is a com-
mutative ring.7

Observe that (Dd∆x,+, ◦) is not a field: not every element of Dd∆x has multiplicative
inverse, take for example the centered approximation of the derivative along x: (T−1

∆x−
T 1

∆x)/(2∆x) and see for instance the concept of indefinite sum in the calculus of Finite
Differences [31, 30]. The elements having inverse are called “units” and divide all the
other elements. It can be easily seen that the units are the product of a non-zero real
number and a shift in T d∆x. Indeed (αT z∆x)−1 = (1/α)T−z∆x for any α ∈ R r {0} and
z ∈ Zd. The inverse of a unit shall also be denoted by a bar.

Remark 3.6. One can see Dd∆x as the ring of Laurent polynomials of d variables
over the field R, where the indeterminates are x, y and z. For example, for d = 1, the
identification Dd∆x = R[x, x−1] = R[x, x] holds. This automatically implies that Dd∆x
is more than a commutative ring, namely a unique factorization domain.

Remark 3.7. The reals R can be identified with the subring R ∼= {αT 0
∆x : α ∈ R}.

3.3. Lattice Boltzmann algorithm: collide and stream. Any lattice Boltz-
mann scheme consists in an algorithm made up of two phases: a local collision phase
performed on each site of the lattice and a stream phase, where particles are exchanged
between different sites of the lattice. Let us introduce each of them.

3.3.1. Collision phase. We adopt the point of view of the multiple-relaxation-
times (MRT) schemes, where it is customary to consider the collision written as a
diagonal relaxation in the moments basis, see [11]. For this reason, we introduce a
change of basis called moment matrix M ∈ GLq(R). The entries of M can depend on
∆x and/or on ∆t but cannot be a function of the space and time variables. Gathering
the distributions into f = (f1, . . . , fq)

ᵀ, the moments are recovered by m = Mf . We
also introduce

• the matrix I ∈ GLq(R) which is the identity matrix of size q;

6Which interestingly corresponds to the discrete convolution product.
7It also an (Hopf) algebra over R and can also be viewed as a free module where the scalars

belong to R and the basis are the elements of the group T d
∆x.
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• the matrix S ∈ Mq(R) is the relaxation matrix which is a singular with
rank(S) = q−N , where N ∈ J1, q− 1K is the number of conserved moments:

S = diag(0, . . . , 0, sN+1, . . . , sq),

where the first N entries are zero8 and correspond to the conserved moments,
the following q −N are such that si ∈]0, 2] for i ∈ JN + 1, qK, see [14].

• We employ the notation meq|n(x) = meq(mn
1 (x), . . . ,mn

N (x)) for x ∈ L,
where meq : RN → Rq are possibly non-linear functions of the conserved
moments. Since these equilibria are then multiplied by S, the first N com-
ponents do not need to be defined.

The collision phase reads, denoting by ? any post-collision state

(3.2) mn,?(x) = (I − S)mn(x) + Smeq|n(x), ∀x ∈ L.

In the collision phase (3.2), the entries of S can depend on ∆x or ∆t, but not on space
and time. The equilibria are allowed to follow the same dependencies plus those on
space and time and can also depend on some “external variable” like in the case of
vectorial schemes [21].

3.3.2. Stream phase. The stream phase is diagonal in the space of the distri-
butions. It can be written as

(3.3) fn+1(x) =
(
diag(T c1

∆x, . . . , T
cq
∆x)fn,?

)
(x), ∀x ∈ L,

where for the first time, the matrices have entries in a commutative ring, see [17] and
[5], instead than in the field R. The set Mq(Dd∆x) of square matrices of size q with
entries belonging to Dd∆x forms a ring under the usual operations between matrices.
Even if Dd∆x is commutative from Proposition 3.5, Mq(Dd∆x) is not commutative for
q ≥ 2, as for real matrices and matrices of first-order differential operators [15].

3.3.3. Monolithic scheme. The stream phase (3.3) can be rewritten in a non-
diagonal form in the space of moments as done by [15, 18] by introducing the matrix
T := Mdiag(T c1

∆x, . . . , T
cq
∆x)M−1 ∈ Mq(Dd∆x) and merged with the collision phase

(3.2) to obtain the scheme9

(3.4) mn+1(x) = Amn(x) +Bmeq|n(x), ∀x ∈ L,

where A := T (I−S) ∈Mq(Dd∆x) and B := TS ∈Mq(Dd∆x). In the sequel, we shall
not indicate the spatial variable x ∈ L for the sake of readability.

We observe that the operators (T
cj
∆x)j=qj=1 ⊂ T d∆x ⊂ Dd∆x are the eigenvalues of

the matrix T . However, they are not the eigenvalues of the matrix A. Indeed, it is
general false that the eigenvalues of A belong to the space Dd∆x. It is interesting to
interpret the lattice Boltzmann scheme under the form (3.4) as discrete-time linear
control system with matrices on a commutative ring [5]. The moments are the state
of the system evolving via the matrix A, whereas the equilibria are the control via B
being a feedback observing only a part of the state, namely the conserved moments.

We introduce our example of choice, which shall be used through the whole paper.

8This is not always the case in literature but shall be used consistently in this paper. We put
them at the beginning for the sake of presentation.

9Time shift operators are not introduced and needed in the manuscript. However, the interested
reader can consult the Supplementary Material for a discussion on this topic.
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Example 3.8 (D1Q3 scheme with one conserved moment). Consider the D1Q3

scheme with one conserved moment [16] by taking d = 1, q = 3 and N = 1. We have
c1 = 0, c2 = 1 and c3 = −1 with S = diag(0, s, p) and

M =

 1 1 1
0 λ −λ
−2λ2 λ2 λ2

 , T =

 1
3 (x + 1 + x) 1

2λ (x− x) 1
6λ2 (x− 2 + x)

λ
3 (x− x) 1

2 (x + x) 1
6λ (x− x)

λ2

3 (x− 2 + x) λ
2 (x− x) 1

6 (x + 2 + x)

 ,

taking s, p ∈]0, 2] and where x has been introduced in (3.1). It can be used to simulate
the non-linear conservation law ∂tm1+∂xm

eq
2 = 0 under the acoustic scaling ∆t ∼ ∆x.

The matrices A and B are

A =

 1
3 (x + 1 + x) (1−s)

2λ (x− x) (1−p)
6λ2 (x− 2 + x)

λ
3 (x− x) (1−s)

2 (x + x) (1−p)
6λ (x− x)

λ2

3 (x− 2 + x) λ(1−s)
2 (x− x) (1−p)

6 (x + 2 + x)

 ,

B =

0 s
2λ (x− x) p

6λ2 (x− 2 + x)
0 s

2 (x + x) p
6λ (x− x)

0 λs
2 (x− x) p

6 (x + 2 + x)

 .

4. Main result of the paper. With a new way of writing any lattice Boltz-
mann scheme using Definition 3.4 and thanks to Proposition 3.5, which provides the
ideal setting to generalize the Cayley-Hamilton theorem, we can proceed like in Sec-
tion 2 to prove the main result of the paper: any lattice Boltzmann can be viewed as
a multi-step Finite Difference scheme on the conserved variables.

4.1. Characteristic polynomial and Cayley-Hamilton theorem. Polyno-
mials with coefficients in Dd∆x and matrices with entries in Dd∆x play a central role in
what we are going to develop.

Definition 4.1 (Characteristic polynomial). Let R be a commutative ring and
C ∈ Mr(R) for some r ∈ N?. The characteristic polynomial of C, denoted χC ∈
R[X], is given by χC := (−1)rdet(C −XI), where det(·) is the determinant and I is
the r × r identity matrix.

The naive computation of the characteristic polynomial χC using its definition via
the determinant could be computationally expensive, especially when dealing with
symbolic computations like in our case. For this reason, we employed the Faddeev-
Leverrier algorithm [23] which is of polynomial complexity, generally lower than that
of the pivot method. The process is detailed in Algorithm 4.1 and only uses matrix-
matrix multiplications and the computation of the trace, denoted by tr(·).

Example 4.2. Coming back to Example 3.8, it is easy to show either by manual
computations or by using Algorithm 4.1 that χA = X3 + γ2X

2 + γ1X + γ0 with

γ2 = p(x + 4 + x)/6 + s(x + x)/2− (x + 1 + x),

= −(1− p)(x + 4 + x)/6− (1− s)(x + x)/2− (x + 1 + x)/3,

γ1 = ps(x + 1 + x)/3− p(5x + 2 + 5x)/6− s(x + 2 + x)/2 + (x + 1 + x),

= (−p(1− s)/3− (p+ s− 2)/2) (x + x) + 2 ((1− s)− s(1− p)− (p+ s− 2)) ,

γ0 = −(1− p)(1− s).

We see that γ0 = 0 if either s or p are equal to one, this shall be discussed in
Subsection 5.2. On the other hand γ1 = 0 if we have s = p = 1.
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Algorithm 4.1 Faddeev-Leverrier algorithm for the computation of the characteristic
polynomial of a square matrix on a commutative ring R.

Input: C ∈Mr(R)
Set D = C
for k ∈ J1, rK do

if k > 1 then
Compute D = C(D + γr−k+1I)

end if
Compute γr−k = − tr(D)

k
end for
Output: the coefficients (γk)k=r

k=0 ⊂ R of the characteristic polynomial χC =∑k=r
k=0 γkX

k

A central result used in this work is the Cayley-Hamilton theorem for matrices
over a commutative ring, see [5] for the proof, generalizing the same result holding
for matrices on a field utilized in Section 2.

Theorem 4.3 (Cayley-Hamilton). Let R be a commutative ring and C ∈Mr(R)
for some r ∈ N?. Then χC is a monic polynomial in the ring R[X] in the indeter-
minate X, under the form χC = Xr + γr−1X

r−1 + . . . γ1X + γ0 with (γk)k=r
k=0 ⊂ R.

Then10 Cr + γr−1C
r−1 + · · ·+ γ1C + γ0I = 0.

This result states that any square matrix with entries in a commutative ring verifies
its characteristic equation.

t

L

x

x + ∆x

x + 2∆x

x + 3∆xx−∆x

x− 2∆x

x− 3∆x

tn−2

tn−1

tn

tn+1

tn−3

At most q + 1

maxj∈J1,qK |cj |

Fig. 1. Maximal space-time domain of dependence of the corresponding Finite Differ-
ence scheme for N = 1 (full black points inside the grey area) by virtue of Proposition 4.4 in the
case of d = 1. The maximal space-time slopes are determined by the maximal shift of the considered
scheme whereas the number of involved time-steps is at most q + 1.

4.2. Corresponding Finite Difference schemes. The previous Theorem 4.3
is the key for proving the following results, whose backbone is essentially the same

10Sometimes, we shall indulge to the notation χC(C) = 0.
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than in Section 2.

4.2.1. One conserved moment. We first analyze the case of one conserved
moment, namely N = 1, to keep the presentation as simple as possible. We shall
eventually deal with N > 1 once the principles are established.

Proposition 4.4 (Corresponding Finite Difference scheme for N = 1). Let
N = 1, then the lattice Boltzmann scheme (3.4) corresponds to a multi-step explicit
Finite Difference scheme on the conserved moment m1 under the form

mn+1
1 = −

q−1∑
k=0

γkm
n+1−q+k
1 +

(
q−1∑
k=0

(
k∑
`=0

γq+`−kA
`

)
Bmeq|n−k

)
1

,

where (γk)k=q
k=0 ⊂ Dd∆x are the coefficients of χA =

∑k=q
k=0 γkX

k, the characteristic
polynomial of A.

This result means that the conserved moment satisfies an explicit multi-step Finite
Difference scheme with at most q steps, thus involving q+1 discrete time instants, see
Figure 1. The maximal size of spatial influence at each past time step can be deduced
by looking at Algorithm 4.1, derived from the Newton’s identities.

It is interesting to observe that also the non-conserved moments satisfy a Finite
Difference numerical scheme, see the following proof. However, these schemes would
depend on the conserved moment via the equilibria and are therefore not independent
from the rest of the system.

Proof. Let n ∈ N. Then for any k ∈ N, applying (3.4) recursively we have

mn+1 = Akmn−(k−1) +

k−1∑
`=0

A`Bmeq|n−`.

We perform a temporal shift in order to fix the first term on the right hand side
regardless of the value of k. Introduce ñ := n− (k − 1), therefore

mñ+k = Akmñ +

k−1∑
`=0

A`Bmeq|ñ+k−1−`.

This holds true, in particular, for any k ∈ J0, qK. We can then consider the coefficients

(γk)k=q
k=0 of the characteristic polynomial χA =

∑k=q
k=0 γkX

k of A and write

q∑
k=0

γkm
ñ+k =

(
q∑

k=0

γkA
k

)
mñ +

q∑
k=0

γk

(
k−1∑
`=0

A`Bmeq|ñ+k−1−`
)
.

Applying the Cayley-Hamilton Theorem 4.3 by virtue of Proposition 3.5, we know
that

∑k=q
k=0 γkA

k = 0. Using the monicity of the characteristic polynomial and coming
back by setting ñ+ q = n+ 1 gives

mn+1 = −
q−1∑
k=0

γkm
n+1−q+k +

q∑
k=0

γk

(
k−1∑
`=0

A`Bmeq|n−q+k−`
)
.

The last sum can start from k = 1. Performing a change of indices in the last double
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sum yields the result.

(4.1) mn+1 = −
q−1∑
k=0

γkm
n+1−q+k +

q−1∑
k=0

(
k∑
`=0

γq+`−kA
`

)
Bmeq|n−k.

Example 4.5. We come back to Example 3.8. Using Proposition 4.4, we have the
corresponding Finite Difference scheme given by

mn+1
1 =− p

6
(x + 4 + x)mn

1 −
s

2
(x + x)mn

1 + (x + 1 + x)mn
1 −

ps

3
(x + 1 + x)mn−1

1

+
p

6
(5x + 2 + 5x)mn−1

1 +
s

2
(x + 2 + x)mn−1

1 − (x + 1 + x)mn−1
1

+ (1− p)(1− s)mn−2
1 +

s

2λ
(x− x)meq

2 |n −
s(1− p)

2λ
(x− x)meq

2 |n−1

+
p

6λ2
(x− 2 + x)meq

3 |n +
p(1− s)

6λ2
(x− 2 + x)meq

3 |n−1.(4.2)

One can easily check its consistency – under the acoustic scaling – with the target
conservation law.

Remark 4.6. One could think of allowingM and/or S to depend on the space and
time variables. This would imply to consider weights made up of functions instead of
the real numbers in Definition 3.4. However, Dd∆x would no longer be commutative,
because the multiplication by a function does not commute with shifts (not shift-
invariant according to [33]). For example, take z ∈ Zd and a function g : L → R,
then ((

T z∆x ◦
(
gT 0

∆x

))
f
)

(x) = g(x− z∆x)f(x− z∆x),(((
gT 0

∆x

)
◦ T z∆x

)
f
)

(x) = g(x)f(x− z∆x),

for every x ∈ L and for any function f : L → R. The right-hand sides are not equal
in general, except if g is constant.

4.2.2. Several conserved moments and vectorial schemes. Consider now
to deal with multiple conservation laws, namely N > 1. We select a conserved moment
and we consider the other conserved moments as “slave” variables as the equilibria
have been until so far, for N = 1, because they imply variables that we eventually want
to keep. In particular, we utilize different polynomials for different conserved moments
to obtain the Finite Difference schemes. To formalize this concept, for any square
matrix C ∈ Mq(Dd∆x), consider CI := (

∑
i∈I ei ⊗ ei)C(

∑
i∈I ei ⊗ ei) ∈ Mq(Dd∆x)

for any I ⊂ J1, qK, corresponding to the matrix where only the rows and columns of
indices I are conserved and the remaining ones are set to zero. We can also consider
the matrix C[I] ∈M|I|×|I|(Dd∆x) obtained by keeping only the rows and the columns
indexed in I. A useful corollary of Theorem 4.3 and of the Laplace formula for the
determinant is the following.

Corollary 4.7. Let C ∈ Mq(Dd∆x) and I ⊂ J1, qK, then one has that χCI =
Xq−|I|χC[I]. Moreover, the polynomial χC[I] annihilates CI .

This means that the characteristic polynomial of CI is directly linked to that of
the smaller matrix C[I], which is thus faster to compute, and that the latter is an
annihilator for the first matrix.

For any conserved moment indexed by i ∈ J1, NK we introduce the matrix Ai :=
A{i}∪JN+1,qK and A�i := AJ1,NKr{i}. Notice that we have the decomposition A =
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Ai + A�i . Indeed, we “save” the conserved moments other than the ith by placing
them into A�i , which shall not participate in the computation of the characteristic
polynomial. With this notations, we have generated a family of problems from (3.4)
under the form

(4.3) mn+1 = Aim
n +A�im

n +Bmeq|n, i ∈ J1, NK.

It is useful to stress that the term Aim
n in (4.3) does not involve any conserved

moment other than the ith. Conversely, A�im
n does not involve any function except

the conserved moments other than the ith. Then, the corresponding Finite Differ-
ence schemes come under the form stated by the following Proposition.

Proposition 4.8 (Corresponding Finite Difference scheme for N ≥ 1). Let
N ≥ 1, then the lattice Boltzmann scheme (3.4) rewritten as (4.3) corresponds to the
multi-step explicit Finite Difference schemes on the conserved moments m1, . . . ,mN

under the form

mn+1
i = −

q−N∑
k=0

γi,km
n−q+N+k
i +

(
q−N∑
k=0

(
k∑
`=0

γi,q+1−N+`−kA
`
i

)
A�im

n−k
)
i

+

(
q−N∑
k=0

(
k∑
`=0

γi,q+1−N+`−kA
`
i

)
Bmeq|n−k

)
i

,

for any i ∈ J1, NK where (γi,k)k=q+1−N
k=0 ⊂ Dd∆x are the coefficients of the characteristic

polynomial χAi = XN−1
∑k=q+1−N
k=0 γi,kX

k of Ai.

This Proposition states that for each conserved moment, the corresponding Finite
Difference scheme has at most q − N steps, thus involves q − N + 1 discrete times.
This result encompasses and generalizes Proposition 4.4. The proof is the same than
that of Proposition 4.4 by taking advantage of Corollary 4.7. We show in another
contribution [1] that the result of Proposition 4.8 is the right one to bridge between
the consistency analysis of Finite Difference schemes and the Taylor expansions on
the lattice Boltzmann schemes for N ≥ 1 proposed by [15].

Example 4.9 (D1Q3 for two conservation laws). Consider the D1Q3 scheme [2]
with d = 1, q = 3 and c1 = 0, c2 = 1 and c3 = −1

(4.4) M =

1 1 1
0 λ −λ
0 λ2 λ2

 , S = diag(0, 0, p), with p 6= 1,

thus having N = 2. This scheme can be used to simulate the system of conservation
laws ∂tm1 + ∂xm2 = 0 and ∂tm2 + ∂xm

eq
3 = 0 under the acoustic scaling ∆t ∼ ∆x.

Using Proposition 4.8 we have

mn+1
1 = mn

1 +
1

2
(1− p)(x + x)mn

1 −
1

2
(1− p)(x + x)mn−1

1 +
(x− x)

2λ
mn

2

− (1− p)(x− x)

2λ
mn−1

2 +
p(x− 2 + x)

2λ2
meq

3 |n,

mn+1
2 =

1

2
(2− p)(x + x)mn

2 − (1− p)mn−1
2 +

p(x− x)

2λ
meq

3 |n.

One could remark that the linear part is different from one scheme to the other, since
we have used different polynomials for each conserved moment.
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4.3. Initialization schemes. In the corresponding Finite Difference schemes
in Proposition 4.4 and Proposition 4.8, the only remaining freedom is to devise the
initialization schemes for the multi-step schemes at regime, analogously to (2.2) in
Section 2. This is the counter-part of the freedom of choice on the initial data for the
original lattice Boltzmann scheme, which are not necessarily taken at equilibrium, see
[25]. By applying (3.4) to the initial data as many times as needed, one progressively
obtains the initialization schemes, as function of the initial datum. It is worthwhile
observing that the choice of initial datum does not play any role in the previous
procedure and does not influence the stability analysis of Section 6. It only comes into
play during the consistency analysis of the numerical method, which is not investigated
in this paper, in particular, as far as time boundary layers are concerned, see [38, 32].

5. Examples, simplifications and particular cases. Now that the main re-
sults of the paper, namely Proposition 4.4 and Proposition 4.8, have been stated and
proved, we can analyze and comment some particular cases which deserve a closer
look. More examples are available in the Supplementary Material.

Example 5.1 (ODEs). To illustrate some basic peculiarities that easily trans-
pose to lattice Boltzmann schemes, we introduce the following matrices extending the
discussion of Section 2.

AII =

1 1 1
0 2 0
0 0 2

 , AIII =

1 1 0
1 2 0
1 2 1

 , AIV =

1 0 1
0 −2 0
0 0 2

 .

ForAII, we have χAII
= X3−5X2+8X−4, corresponding to y′′′1 −5y′′1 +8y′1−4y1 =

0. However, contrarily to AI in Section 2, the characteristic polynomial χAII
does not

correspond to the minimal polynomial µAII
= X2−3X+2. Thus in this case, we could

use the latter to obtain (2.2) having y′′1 − 3y′1 + 2y1 = 0. This phenomenon is studied
in Subsection 5.1. It indicates that we can achieve a more compact corresponding
ODE by using the annihilating polynomial of smallest degree on every variable. This
does not change the core of the strategy.

For AIII, we obtain χAIII
= X3 − 4X2 + 4X − 1, corresponding to y′′′1 − 4y′′1 +

4y′1 − y1 = 0. However, by inspecting AIII, one notices that the first two equations
do not depend on the last variable y3. For this reason, we could have considered the
matrix AIII[{1, 2}] obtained from AIII by removing the last row and column. In this
case χAIII[{1,2}] = X2−3X+1, corresponding to the equation y′′1 −3y′1 +y1 = 0. This
kind of situation for lattice Boltzmann schemes is investigated in Subsection 5.2. It
is interesting to observe once more that χAIII[{1,2}] divides χAIII

. This shows that an
initial inspection of the matrix can yield a reduction of the size of the problem that
can be achieved by a simple trimming operation, which eliminates some variable from
the problem but treats the remaining ones as usual.

Finally, consider AIV. In this case the characteristic polynomial and the minimal
polynomial coincide χAIV

= X3 −X2 − 4X + 4 corresponding to the equation y′′′1 −
y′′1 − 4y′1 + 4y1 = 0. However, if we take the polynomial νAIV

= X2 − 3X + 2 such
that νAIV divides χAIV

= µAIV and such that

νAIV(AIV) =

0 0 0
0 12 0
0 0 0

 ,

we see that it annihilates the first row, thus can be used instead of the other poly-
nomials to yield (2.2). This gives y′′1 − 3y′1 + 2y1 = 0. The question is elucidated for
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lattice Boltzmann schemes in Subsection 5.3 and show that asking for the annihilation
of the whole matrix is too much to achieve a restatement of the equation focusing
only on the first variable. This strategy is different from the previous one because not
all the lines of the matrix are treated in the same way.

Let us transpose these observations to actual lattice Boltzmann schemes. A ques-
tion which might arise concerns the possibility of performing better than the character-
istic polynomial, in terms of number of steps in the resulting Finite Difference scheme.
There are cases, which seem quite rare according to our experience (we succeeded in
finding only one special case where this happens), where the answer is positive. This
phenomenon has also been discussed by [19], without envisioning a systematic way of
guaranteeing the minimality of the Finite Difference scheme obtained by their algo-
rithm.

5.1. Minimal reductions in terms of time-steps. The first idea to obtain a
simpler scheme is to use the minimal polynomial of A (or its submatrices, if needed)
as done for AII in Example 5.1.

Definition 5.2 (Minimal polynomial). Let R be a commutative ring and C ∈
Mr(R) for some r ∈ N?. We define the minimal polynomial of C, denoted µC as
being the monic polynomial in R[X] of smallest degree, thus under the form

µC = Xdeg(µC) + ωdeg(µC)−1X
deg(µC)−1 + · · ·+ ω1X + ω0,

with (ωk)
k=deg(µC)
k=0 ⊂ R such that

Cdeg(µC) + ωdeg(µC)−1C
deg(µC)−1 + · · ·+ ω1C + ω0I = 0.

The characteristic and the minimal polynomial for problems set of a commutative
ring are linked by a divisibility property.

Lemma 5.3. Let R be a commutative ring and C ∈ Mr(R) for some r ∈ N?,
then µC divides χC . Therefore, we also have deg(µC) ≤ deg(χC).

Proof. The proof is standard and works the same than that of Lemma 5.10.

Unfortunately, the minimal polynomial cannot be mechanically computed by some-
thing like Algorithm 4.1 as for the characteristic polynomial. The same reduction
of Proposition 4.4 with deg(µA) instead of q and ωk instead of γk is possible. It
can be observed that for Example 3.8, the minimal and the characteristic polyno-
mial of the matrix A coincide. We have been unable to find an example of lattice
Boltzmann scheme where the minimal polynomial does not match the characteristic
polynomial.

5.2. Relaxation on the equilibrium. Secondly, a more careful look at re-
laxation matrix allows us to write it as S = diag(0, . . . , 0, sN+1, . . . , sN+Q, 1, . . . , 1),
where si ∈]0, 1[∪]1, 2] for i ∈ JN + 1, N +QK for some Q ∈ N and the last q −Q−N
relaxation parameters are equal to one, meaning that the corresponding moments
exactly relax on their respective equilibrium. Without loss of generality, we have
decided to put them at the end of S. The fact of considering some relaxation rates
equal to one is used in the so-called “regularization” models, see [8] and references
therein, showing the enhancement of the stability features of the schemes.

In terms of matrix structure, the consequence is that the last q−N −Q columns
of A are zero, analogously to AIII in Example 5.1. We can therefore employ the
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following decomposition of A: A = AJ1,N+QK + AJN+Q+1,qK similarly to (4.3). We
shall consider the characteristic polynomial of A[J1, N + QK] (if N = 1, otherwise
the characteristic polynomials of its submatrices), whereas we know that the second
matrix does not involve the last q−N −Q moments (indeed, non conserved) because
the corresponding columns are zero. Therefore, Proposition 4.4 and Proposition 4.8
are still valid using N + Q instead of q and the matrix A[J1, N + QK] instead of A.
The corresponding Finite Difference scheme for each conserved moment shall therefore
have at most Q+ 1 steps instead of q + 1.

Example 5.4. We come back to Example 3.8 taking p = 1 and s 6= 1, thus having
Q = 1 and N = 1. Following the procedure described before gives χA[J1,2K] = X2 +
γ1X + γ0 with γ1 = −(1− s)(x + x)/2− (x + 1 + x)/3 and γ0 = (1− s)(x + 4 + x)/6
and the corresponding scheme

mn+1
1 =

(1− s)
2

(x + x)mn
1 +

1

3
(x + 1 + x)mn

1 −
(1− s)

6
(x + 4 + x)mn−1

1

+
s

2λ
(x− x)meq

2 |n +
1

6λ2
(x− 2 + x)meq

3 |n +
(1− s)

6λ2
(x− 2 + x)meq

3 |n−1.

Unsurprisingly, this is (4.2) setting p = 1, obtained treating a smaller problem.

Observe that the fact of taking all the relaxation rates equal to one, relaxing on the
equilibria, is the core mechanism of the relaxation schemes [4]. In this case, there
is nothing to do since the original lattice Boltzmann scheme is already in the form
of a Finite Difference scheme on the conserved moments. Our way of proposing a
corresponding Finite Difference scheme using characteristic polynomials is flawlessly
compatible with this setting.

5.3. A different reduction strategy. The third idea is to proceed as for AIV

in Example 5.1, namely looking for a polynomial which does not annihilate the whole
matrix A. To simplify the presentation, we limit ourselves to N = 1, namely one
conserved moment. We sketch this strategy to account for previous results on the
subject [12, 20]. Nevertheless, we shall justify its limited interest at the end of the
Section.

Example 5.5 (Link scheme with magic parameter). Consider the so-called link
scheme by [12, 20] defined for any spatial dimension d = 1, 2, 3 considering q = 1+2W
with W ∈ N? with c1 = 0 and any c2j = −c2j+1 6= 0 for j ∈ J1,W K. The system is
taken with all the so-called “magic parameters” equal to one-fourth, therefore S =
diag(0, s, 2− s, s, 2− s, . . . ) ∈M1+2W (R) for s 6= 1 and

M =



1 1 1 · · · · · · 1 1
0 λ −λ 0 0 0 0
0 λ2 λ2 0 0 0 0
... 0 0

. . .
. . . 0 0

... 0 0
. . .

. . . 0 0
0 0 0 0 0 λ −λ
0 0 0 0 0 λ2 λ2


∈M1+2W (R),

The claim in [20] is that the corresponding Finite Difference scheme is the two-steps



FINITE DIFFERENCE FORMULATION OF ANY LATTICE BOLTZMANN SCHEME 15

scheme

mn+1
1 = (2− s)mn

1 − (1− s)mn−1
1 + s

(
W∑
`=1

(T c2`

∆x − T−c2`

∆x )

2λ
meq

2` |n
)

+
(2− s)

2

(
W∑
`=1

(T c2`

∆x − 2 + T−c2`

∆x )

λ2
meq

2`+1|n
)
.(5.1)

This is true regardless of the choice of d and W . By direct inspection of the cor-
responding Finite Difference scheme (5.1), we can say that this reduction has been
achieved using the polynomial νA = X2−(2−s)X+(1−s). However, it can be easily
shown that this polynomial does not annihilate the entire matrix A as the minimal
and characteristic polynomials do: it only does so for the first row.

Indeed, we have seen for ODEs in Example 5.1 that we might try just to annihilate
the first row of the problem. Thus, we define the polynomial annihilating all the first
row of the matrix A, except the very first element.

Definition 5.6. We call νA ∈ Dd∆x[X] “minimal polynomial annihilating most
of the first row” (MPAMFR) of A the monic polynomial of minimal degree under the
form

νA = Xdeg(νA) + ψdeg(νA)−1X
deg(νA)−1 + · · ·+ ψ1X + ψ0,

with (ψk)
k=deg(νA)
k=0 ⊂ Dd∆x such that for every j ∈ J2, qK

(Adeg(νA))1j + ψdeg(νA)−1(Adeg(νA)−1)1j + · · ·+ ψ1(A)1j = 0.

By seeing the coefficients of this unknown polynomial as the unknowns of a linear
system, the problem of finding νA can be rewritten in terms of matrices.11 Let
K ∈ J1,deg(µA)K and construct the matrix of variable size

(5.2) VK =

 (A)12 · · · (AK)12

...
...

(A)1,Q+1 · · · (AK)1,Q+1

 ∈MQ×K(Dd∆x).

Therefore, we want to find the smallest K ∈ J1,deg(µA)K such that ker(VK) 6= {0},
that is, the smallest K ∈ J1,deg(µA)K such that VK is not injective. Since the kernel
of the “minimal” VK shall be a Dd∆x-module of dimension 1, we can chose a monic
polynomial by always taking ψK = 1. On the other hand, it should be observed that
the zero order coefficient ψ0 remains free. This underdetermination comes from the
fact that we do not request that νA annihilates the whole first row.

Proposition 5.7. Let N = 1, then the lattice Boltzmann scheme (3.4) can be

11The same procedure is used to find the minimal polynomial, since we do not have a definition
like Definition 4.1.
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rewritten as a Finite Difference scheme on the conserved moment m1 under the form

mn+1
1 =−

deg(νA)−1∑
k=1

ψkm
n+1−deg(νA)+k
1 +

deg(νA)∑
k=1

ψk(Ak)11

m
n+1−deg(νA)
1

+

deg(νA)−1∑
k=0

(
k∑
`=0

ψdeg(νA)+`−kA
`

)
Bmeq|n−k


1

,(5.3)

where (ψk)
k=deg(νA)
k=1 ⊂ Dd∆x are the coefficients of νA =

∑k=deg(νA)
k=0 ψkX

k.

The proof can be found in the Supplementary Material. Looking at (5.3), we see that
we do not need the value of ψ0 to reduce the scheme, neither to reduce A nor to deal
with the equilibria through B. Changing time indices and putting everything on the
left hand side

deg(νA)∑
k=1

ψkm
ñ+k
1 −

deg(νA)∑
k=1

ψk(Ak)11

mñ =

deg(νA)∑
k=0

ψ̃km
ñ+k
1 ,

=

deg(νA)∑
k=1

ψk

(
k−1∑
`=0

A`Bmeq|ñ+k−1−`
)

1

,

=

deg(νA)∑
k=1

ψ̃k

(
k−1∑
`=0

A`Bmeq|ñ+k−1−`
)

1

,

where we have defined

ψ̃k =

{
ψk, k ∈ J1,deg(νA)K,
−∑`=deg(νA)

`=1 ψ`(A
`)11, k = 0.

This generates a polynomial, which is indeed νA but with a precise choice of ψ0. We
will soon give a precise characterization of this particular polynomial.

Definition 5.8. We call ν̃A ∈ Dd∆x[X] “minimal polynomial annihilating the
first row” (MPAFR) of A the monic polynomial of minimal degree under the form

ν̃A = Xdeg(ν̃A) + ψ̃deg(ν̃A)−1X
deg(ν̃A)−1 + · · ·+ ψ̃1X

1 + ψ̃0,

such that for every j ∈ J1, qK

(5.4) (Adeg(ν̃A))1j + ψ̃deg(ν̃A)−1(Adeg(ν̃A)−1)1j + · · ·+ ψ̃1(A)1j + ψ̃0 = 0.

Compared to Definition 5.6, we are just asking the property to hold also for the very
first element of the first row, namely for j = 1. This polynomial is νA for a particular
choice of ψ0. It has been deduced from the reduction of the lattice Boltzmann scheme.

Lemma 5.9. The polynomial of degree deg(νA) given by

ν̃A = Xdeg(νA) + ψdeg(νA)−1X
deg(νA)−1 + · · ·+ ψ1X −

deg(νA)∑
l=1

ψl(A
l)11,

where (ψk)
k=deg(νA)
k=1 ⊂ Dd∆x are the coefficients of a MPAMFR νA of A being νA =∑k=deg(νA)

k=0 ψkX
k, is the MPAFR ν̃A of A.
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Proof. We are only left to check (5.4) for j = 1.

So in order to reduce the lattice Boltzmann scheme to a Finite Difference scheme
using the new strategy, considering a MPAMFR or the MPAFR is exactly the same
thing. Moreover, the MPAFR (but not the more general MPAMFR) can be linked to
the minimal/characteristic polynomial.12

Lemma 5.10. Let µA ∈ Dd∆x[X] be the minimal polynomial of A, then ν̃A exists
and divides the minimal polynomial µA. Moreover deg(ν̃A) = deg(νA) ≤ deg(µA).

The proof is given in the Supplementary Material. We now show how this discussion
allows to account for Example 5.5 and more specifically for (5.1).

Example 5.11. We come back to Example 5.5. We introduce the notations A` :=
T c2`

∆x + T
c2`+1

∆x , the “average” on the `th link and D` := T c2`

∆x − T
c2`+1

∆x , the “difference”
on the `th link, for any ` ∈ J1,W K. Elementary computations show that

V2 =



(1−s)D1

2λ
(1−s)(2−s)D1

2λ

− (1−s)(A1−2)
2λ2 − (1−s)(2−s)(A1−2)

2λ2

(1−s)D2

2λ
(1−s)(2−s)D2

2λ

− (1−s)(A2−2)
2λ2 − (1−s)(2−s)(A2−2)

2λ2

...
...

(1−s)DW
2λ

(1−s)(2−s)DW
2λ

− (1−s)(AW−2)
2λ2 − (1−s)(2−s)(AW−2)

2λ2


∈M(2W )×2(Dd∆x).

The equations have the same structure for every 2 × 2 block: thus we can find a
solution by studying each block if it turns out that the solution does not depend on
the block indices. Let ` ∈ J1,W K. We want to solve for non-trivial ψ1, ψ2 such that{

(1−s)D`
2λ ψ1 + (1−s)(2−s)D`

2λ ψ2 = 0,

− (1−s)(A`−2)
2λ2 ψ1 − (1−s)(2−s)(A`−2)

2λ2 ψ2 = 0,

thus we clearly see that the solution is ψ1 = −(2 − s)ψ2, but we can pick ψ2 = 1
to have a monic polynomial. Therefore ψ1 = −(2 − s) independently from `. Thus,
the polynomial νA = X2 − (2 − s)X + ψ0. Picking ψ0 = −ψ2(A2)11 − ψ1(A)11 =
−1 + (2− s) = 1− s yields the polynomial ν̃A as previously seen.

This approach correctly recovers the result from [20] following a different path.
However, to our understanding, this new strategy is of moderate interest since it re-
lies on an ad hoc and problem-dependent procedure (5.2) which can be practically
exploited only for highly constrained systems, see Example 5.5 or for schemes of mod-
est size. Moreover, for general schemes, it yields the same result than Proposition 4.4
using the characteristic polynomial (take Example 3.8 for instance) but passing from
an inefficient approach to the computation of the polynomial instead of using the
more performant Algorithm 4.1.

5.4. Conclusion and future perspectives. Beyond the divisibility property
Proposition 5.7, the fact of not utilizing the characteristic polynomial with its explicit
Definition 4.1 constitutes – due to the previously highlighted lack of generality – an
obstruction to show the link with the Taylor expansions [15], as we did in [1]. We

12The principle is the same than the one linking the characteristic and the minimal polynomial
through divisibility.
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therefore stress once more the interest of the general formulations by Proposition 4.4
and Proposition 4.8, which shall allow to enlighten the issue of the stability of the
schemes, as in the following Section.

6. Stability. Arguably, the von Neumann analysis is the most widely used tech-
nique to investigate the stability of lattice Boltzmann schemes. Though employed
for any number N of conserved moments, we shall consider it only for N = 1, to
keep mathematical rigour. The von Neumann analysis consists in the linearization of
the problem around an equilibrium state [35], followed by the rewrite of the scheme
using the Fourier transform and the study of the spectrum of the derived matrix.
Unsurprisingly, this is also common in the framework of Finite Difference methods,
see Chapter 4 in [22] and Chapter 4 in [36]. We observe that the linear L2 stability,
though being widespread, is not the only possible one for lattice Boltzmann schemes:
the interested reader can refer to [26, 25] for the L2-weighted stability, to [6] for the
L1 stability and finally to [16] for the L∞ stability. Future efforts shall be dedicated
to the investigation of the impact of Proposition 4.4 and Proposition 4.8 on these
different notions of stability.

6.1. Fourier analysis. We briefly introduce the Fourier analysis on lattices
following Chapter 2 of [36]. We define F : `2(L) ∩ `1(L) → L2([−π/∆x, π/∆x]d),
called Fourier transform, defined as follows. Let f ∈ `2(L) ∩ `1(L), then

F [f ](ξ) :=
1

(2π)d/2

∑
x∈L

e−ıx·ξf(x), ξ ∈
[
− π

∆x
,
π

∆x

]d
.

In this Section, the regularity assumptions shall hold for any function. The Fourier
transform is extended to less regular entities by density arguments. The interest of
the Fourier transform lies in the fact that it is an isometry, thanks to the Parseval’s
identity [36] and that it allows to represent the action of operators acting via the
convolution product (also called filters) like the Finite Difference operators Dd∆x as
a multiplication on C. We can therefore represent any shift operator in the Fourier
space.

Lemma 6.1 (Shift operator in the Fourier space). Let z ∈ Zd and f ∈ `2(L) ∩
`1(L), then

F [T z∆xf ](ξ) = e−ı∆xz·ξF [f ](ξ), ξ ∈
[
− π

∆x
,
π

∆x

]d
.

Therefore, the representation of the shift operator T z∆x in the Fourier space is T̂ z∆x :=
e−ı∆xz·ξ and acts multiplicatively.

The rewrite of T d∆x and Dd∆x in the Fourier space is done in the straightforward
manner, namely

T̂ d∆x :=
{
T̂ z∆x = e−ı∆xz·ξ with z ∈ Zd

}
, D̂d∆x := RT̂ d∆x,

where the sum and the products are the standard ones on C. All that has been said
for Dd∆x holds for the new representation in the Fourier space D̂d∆x. Indeed, for any

D =
∑

T∈T d∆x αTT ∈ Dd∆x, we indicate D̂ :=
∑

T∈T d∆x αTT̂ ∈ D̂d∆x its representative in

the Fourier space. Considering a matrix C ∈ Mq(Dd∆x), its Fourier representation

Ĉ ∈Mq(D̂d∆x) is obtained by taking the entry-wise Fourier transform ofC. Moreover,
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we have that

(6.1) χC =

q∑
k=0

γkX
k,

F⇐==⇒ χĈ =

q∑
k=0

γ̂kX
k,

where (γk)k=q
k=0 ⊂ Dd∆x and (γ̂k)k=q

k=0 ⊂ D̂d∆x.

6.2. Correspondence between the stability analysis for Finite Differ-
ence and lattice Boltzmann schemes. Considering linear (or linearized) schemes
written in the Fourier space is, thanks to the Parseval’s identity, the standard set-
ting to perform the L2 linear stability analysis both for lattice Boltzmann and Finite
Difference schemes. Assume to deal only with one conserved variable, thus N = 1.

The polynomial associated with a linear Finite Difference scheme – or quite often,
its Fourier representation – is called amplification polynomial, see Chapter 4 of [36].
The study of its roots in the Fourier space is the key of the so-called von Neumann
stability analysis.

Definition 6.2 (von Neumann stability of a Finite Difference scheme). Con-
sider a multi-step linear Finite Difference scheme for the variable u under the form13

(6.2)

q∑
k=0

ϕq−ku
n+1−k = 0,

for (ϕk)k=q
k=0 ⊂ Dd∆x. Consider its amplification polynomial Φ :=

∑k=q
k=0 ϕkX

k, with

corresponding amplification polynomial in the Fourier space Φ̂ :=
∑k=q
k=0 ϕ̂kX

k. We
say that the Finite Difference scheme (6.2) is stable in the von Neumann sense if for

every ĝ : [−π/∆x, π/∆x]d → C such that Φ̂(ĝ(ξ)) =
∑k=q
k=0 ϕ̂k(ξ)ĝ(ξ)k = 0, then

1. |ĝ(ξ)| ≤ 1, for every ξ ∈ [−π/∆x, π/∆x]d.
2. If |ĝ(ξ)| = 1 for some ξ ∈ [−π/∆x, π/∆x]d, then ĝ(ξ) is a simple root.

The conditions by Definition 6.2 are necessary and sufficient for stability (Theorem
4.2.1 in [36]) if the scheme is explicitly independent of ∆x and ∆t.

Consider now the lattice Boltzmann scheme (3.4) with linear (or linearized) equi-
libria, that is, there exists ε ∈ Rq such that meq = εm1 = (ε ⊗ e1)m. Writing the
corresponding Finite Difference scheme from Proposition 4.4, we have

(6.3) mn+1
1 +

q−1∑
k=0

γkm
n+1−q+k
1 −

(
q−1∑
k=0

(
k∑
`=0

γq+`−kA
`Bε⊗ e1

)
11

mn−k
1

)
= 0,

where χA =
∑k=q
k=0 γkX

k. Rearranging gives

(6.4) mn+1
1 +

q−1∑
k=0

(
γq−1−k −

(
k∑
`=0

γq+`−kA
`Bε⊗ e1

)
11

)
mn−k

1 = 0,

which is a Finite Difference scheme of the form given in (6.2) (with u = m1) by setting

(6.5) ϕk =

{
1, if k = q,

γk −
(∑`=q−1−k

`=0 γk+1+`A
`Bε⊗ e1

)
11
, if k ∈ J0, q − 1K.

13In this formulation, we do not account for the presence of source terms, since they do not play
any role in the linear stability analysis.
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LBM FD

Linear LBM Linear FD

χA

Linearity
assumption

Linearity
assumption

χA+Bεeᵀ1

Fig. 2. Different equivalent path to find the linear Finite Difference corresponding scheme from
a non-linear lattice Boltzmann scheme. One can either reduce via χA and then suppose that the
equilibria are linear or suppose that they are linear and then reduce with the characteristic polynomial
of the new scheme matrix A+Bε⊗ e1.

Proposition 6.3. Let N = 1 and consider the lattice Boltzmann scheme (3.4)
with linear equilibria, that is, there exists ε ∈ Rq such that meq = εm1 = (ε⊗ e1)m.
It thus reads mn+1 = (A+Bε⊗ e1)mn, where A+Bε⊗ e1 ∈Mq(Dd∆x). Then

Φ ≡ χA+Bε⊗e1
,

where Φ :=
∑q
k=0 ϕkX

k, with (ϕk)k=q
k=0 given by (6.5).

This result – proved in the Appendix – states that, under adequate assumptions, the
amplification polynomial of the corresponding Finite Difference scheme coincides with
the characteristic polynomial associated with the original lattice Boltzmann scheme.
Proposition 6.3 has also confirmed that assuming the linearity of the equilibria and
then performing the computation of the corresponding Finite Difference scheme using
the polynomial χA+Bε⊗e1

yields the same result than performing the computation
with χA on the possibly non-linear scheme and then considering linear equilibria only
at the very end, see Figure 2. Thus, a similar notion of stability holds for lattice
Boltzmann schemes.

Definition 6.4 (von Neumann stability of a lattice Boltzmann scheme). Let
N = 1 and consider the lattice Boltzmann scheme (3.4) with linear equilibria. It thus
reads

(6.6) mn+1 = (A+Bε⊗ e1)mn,

where A + Bε ⊗ e1 ∈ Mq(Dd∆x). We say that the lattice Boltzmann scheme (6.6)
is stable in the von Neumann sense if for every ξ ∈ [−π/∆x, π/∆x]d, then every

ĝ ∈ σ(Â(ξ) + B̂(ξ)ε⊗ e1) is such that
1. |ĝ| ≤ 1.

2. If |ĝ| = 1, then ĝ is a simple eigenvalue of Â(ξ) + B̂(ξ)ε⊗ e1.
Here, σ(·) denotes the spectrum of a matrix.

Item 1 alone, in Definition 6.4, coincides with the standard definition of stability
for lattice Boltzmann schemes, see [35]. With Item 2, we have been more precise
on the subtle question of multiple eigenvalues14 by bringing this definition closer to
Definition 6.2. Thus, Proposition 6.3 has the following Corollary.

Corollary 6.5. For N = 1, the lattice Boltzmann scheme (3.4), rewritten as
(6.6) under linearity assumption on the equilibria, is stable in the von Neumann sense

14This question is not harmless since for instance the D1Q2 scheme rewrites as a leap-frog scheme
[10] if the relaxation parameter is equal to two (see Supplementary Material). This very Finite
Difference scheme can suffer from linear growth of the solution due to this issue, see Chapter 4 of
[36].
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according to Definition 6.4 if and only if its corresponding Finite Difference scheme
obtained by Proposition 4.4 is stable in the von Neumann sense according to Defini-
tion 6.2.

This result gives a precise and rigorous framework to the widely employed notion of
stability [35] for lattice Boltzmann schemes.

7. Convergence of lattice Boltzmann schemes on an example. In this
Section, we show on Example 3.8 (taking p = 1 to simplify the stability analysis, see
Example 5.4) that the theory available for multi-step Finite Difference schemes can
be used to study the underlying lattice Boltzmann scheme. The target conservation
law is the Cauchy problem

(7.1)

{
∂tu(t, x) + λC∂xu(t, x) = 0, (t, x) ∈ [0, T ]× R,
u(t = 0, x) = u0(x), x ∈ R.

The equilibria are considered to be linear as in Section 6: meq
2 = λCm1 where C is the

Courant number and meq
3 = 2λ2Dm1 with D the Fourier number. The corresponding

Finite Difference scheme from Example 3.8 and Example 5.4 is consistent with

(7.2) ∂tm1 + λC∂xm1 − λ∆x

(
1

s
− 1

2

)(
2

3
(1 + D)− C2

)
∂xxm1 = O(∆x2).

In what follows, we shall fix C = 1/2. One can make the residual diffusion in this
equation vanish if s = 2, which is a staple of lattice Boltzmann schemes [14, 24, 21, 34],
or by having D = 3C2/2 − 1. We shall analyze both the case D > 3C2/2 − 1, where
expect only linear consistency with (7.1) or – using the notations from [36] – where
the scheme is accurate of order [r, ρ] = [1, 2] and the case D = 3C2/2− 1, the scheme
is second-order consistent with (7.1) or [r, ρ] = [2, 3] accurate.

1.0 1.5 2.0

s

−0.6

−0.4

−0.2

0.0

0.2

0.4

D

1.18 1.20 1.22

s

−0.64

−0.63

−0.62

−0.61

−0.60

D

Fig. 3. Stability region (in black), obtained numerically, as function of s and D for the D1Q3
of Example 3.8, considering C = 1/2. The black dashed line corresponds to D = 3C2/2− 1 = −0.625,
for which the residual diffusivity vanishes, see (7.2). The right image is a magnification of the left
one close to s = 1.2.

The numerical von Neumann stability analysis has been done and the result is
shown in Figure 3. One sees that enforcing positive residual diffusivity is necessary
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but not sufficient to obtain stability. Using the method from [29] to locate the zeros
of the amplification polynomial, we show the following.

Proposition 7.1. The amplification polynomial of the Finite Difference scheme
corresponding to the D1Q3 scheme from Example 5.4 considered in this Section is
a simple von Neumann polynomial, namely fulfills Definition 6.2, if the following
constraints hold.

3

2
C2 − 1 ≤ D ≤ 1

2
, and max

γ∈[−1,1]

{
s2C2(1 + γ)(1 + Ω)2

+
4

9
(2− s)(D + 1)(1− Ω)

(
(2− s)(D + 1)(1− γ)(1− Ω) + 3(Ω2 − 1)

)}
≤ 0,

where Ω = Ω(γ; D, s) := (1− s)(γ + 2 + 2D(1− γ))/3.

The first inequality from this Proposition gives only a necessary condition selecting a
rectangle in the (s, D) plane. The second one provides a sufficient condition yielding
the non-straightforward profile visible on Figure 3. This comes from the fact that
the maximum can be reached either on the boundary of [−1, 1] (for s ≤ 1.18 approx-
imately) yielding the flat profile close to s = 1, or inside this compact (for s > 1.18),
giving the tightening shape as s increases towards s = 2.

Using the generalization of Theorem 10.1.4 from [36] to multi-step schemes for
regular data and that of Corollary 10.3.2 for non-smooth data, one obtains the fol-
lowing convergence result for the lattice Boltzmann scheme.

Proposition 7.2 (Convergence of the D1Q3 scheme). Consider the D1Q3 linear
scheme of Example 3.8 presented in this Section with a choice of (C, D, s) rendering
a stable scheme according to Definition 6.4, as discussed in Proposition 7.1. The
scheme is initialized with the point values of u0 and at equilibrium. Then

• For D > 3C2/2 − 1, namely the corresponding Finite Difference scheme is
accurate of order [r, ρ] = [1, 2].

– If u0 ∈ H2, the convergence of the lattice Boltzmann scheme is linear:

‖Eu(tn, ·)−mn
1‖`2,∆x ≤ C∆x‖u0‖H2 , n ∈ J0, [T/∆t]K,

where E is the evaluation operator such that Eu : L → R with (Eu)(x) =
u(x) for every x ∈ L.

– If u0 ∈ Hσ for any σ < σ0 < 2 and there exists a constant C(u0) such
that ‖u0‖Hσ ≤ C(u0)/

√
σ − σ0, then

‖Eu(tn, ·)−mn
1‖`2,∆x ≤ C∆xσ0/2

√
|ln(∆x)|C(u0), n ∈ J0, [T/∆t]K.15

• For D = 3C2/2 − 1, namely the corresponding Finite Difference scheme is
accurate of order [r, ρ] = [2, 3].

– If u0 ∈ H3, the convergence of the lattice Boltzmann scheme is quadratic:

‖Eu(tn, ·)−mn
1‖`2,∆x ≤ C∆x2‖u0‖H3 , n ∈ J0, [T/∆t]K.

– If u0 ∈ Hσ for any σ < σ0 < 3 and there exists a constant C(u0) such
that ‖u0‖Hσ ≤ C(u0)/

√
σ − σ0, then

‖Eu(tn, ·)−mn
1‖`2,∆x ≤ C∆x2σ0/3

√
|ln(∆x)|C(u0), n ∈ J0, [T/∆t]K.

15The logarithmic term is rarely observed in simulations.
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The constants C have the following dependencies: C = C(T, C, D, s).

We now corroborate these results with numerical simulations, which are carried,
for the sake of the numerical implementation, on the bounded domain [−1, 1] enforcing
periodic boundary conditions. The final simulation time is T = 1/2 and λ = 1. We
stress the fact that we employ the lattice Boltzmann scheme and not its corresponding
Finite Difference scheme. Guided by the considerations from Proposition 7.2 in terms
of regularity, we take different initial functions with various smoothness, inspired by
[36].

(a) u0(x) = χ|x|≤1/2(x) ∈ Hσ, for any σ < σ0 = 1/2.

(b) u0(x) = (1− 2|x|)χ|x|≤1/2(x) ∈ Hσ, for any σ < σ0 = 3/2.

(c) u0(x) = cos2 (πx)χ|x|≤1/2(x) ∈ Hσ, for any σ < σ0 = 5/2.

(d) u0(x) = exp
(
−1/(1− |2x|2)

)
χ|x|≤1/2(x) ∈ C∞c .
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Fig. 4. D = 0.4. `2 error at final time T between the solution (conserved moment) of lattice
Boltzmann scheme and the exact solution, for different initial data (a), (b), (c) and (d) and different
relaxation parameters s.

The numerical convergence for the case D = 0.4 is given on Figure 4. According
to Figure 3 and Proposition 7.1, we expect stability for every choice of s. Thus,
the empirical convergence rates are in excellent agreement with Proposition 7.2. The
error constant is smaller for larger s, since for this choice, less numerical diffusion is
present.
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Fig. 5. D = −0.625. `2 error at final time T between the solution (conserved moment) of
lattice Boltzmann scheme and the exact solution, for different initial data (a), (b), (c) and (d) and
different relaxation parameters s.

Concerning the case D = −0.625 presented on Figure 5, we had to utilize relaxation
parameters s close to one in order to remain in the stability region as prescribed by
Figure 3 and Proposition 7.1. As far as the scheme stays stable, for s ≤ 1.15, we
observe the expected convergence rates according to Proposition 7.2. Nevertheless,
looking at the right image in Figure 3, we see that s = 1.2 is not in the stability region.
This is why we observe, in (a) from Figure 5, thus for the less smooth solution, that
the scheme is not convergent. The instability originates from high-frequency modes
which are abundant in the test case (a). This is the empirical evidence that the Lax-
Richtmyer theorem [27] holds for lattice Boltzmann schemes: an unstable scheme
cannot be convergent.

8. Conclusions. In this paper, we proved that any lattice Boltzmann scheme
corresponds to a multi-step Finite Difference scheme on the conserved moments, us-
ing a simple yet crucial result of linear algebra. This showed that lattice Boltz-
mann schemes, in all their richness, fall in the framework of this latter category of
well-known numerical schemes. Moreover, for linear problems and one conserved
moment, we proved that the usual notion of stability employed for lattice Boltz-
mann schemes is relevant, since it corresponds to the von Neumann stability analysis
for the Finite Difference schemes. Therefore, the Lax-Richtmyer theorem [27, 36],
stipulating that consistency and stability are the necessary and sufficient conditions
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for the convergence of linear Finite Difference schemes, also holds for the lattice Boltz-
mann schemes.

A question left unanswered in this work, being the object of current investiga-
tions, concerns the link between the consistency for the corresponding Finite Differ-
ence scheme and the theory of equivalent equations by [14, 15]. In a complementary
work [1], we have proved that the two notions are equivalent up to second-order. The
conjecture is that this holds for higher orders. The difficulty lies in the fact that
performing a priori Taylor expansions on the coefficients of the characteristic poly-
nomial of A is generally a hard task, due to their intrinsic non-linear dependence on
A. Furthermore, the multi-step nature of the corresponding Finite Difference scheme
is an additional toil.
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Appendix. This Appendix is devoted to the proof of Proposition 6.3. We need
the following result concerning the determinant of matrices under rank-one updates,
see [13] for the proof.

Lemma 8.1 (Matrix determinant). Let R be a commutative ring, C ∈ Mr(R)
for some r ∈ N? and u,v ∈ Rr, then det(C + u ⊗ v) = det(C) + vᵀadj(C)u, where
adj(·) denotes the adjugate matrix, also known as classical adjoint.

We are ready to prove Proposition 6.3.
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Proof. Using Lemma 8.1, one has

χA+Bε⊗e1
: = (−1)qdet(A+ (Bε⊗ e1)−XI),

= (−1)qdet(A−XI) + (−1)qeᵀ1adj(A−XI)Bε,

= χA + (−1)qeᵀ1adj(A−XI)Bε.

By the definition of adjugate and by the Cayley-Hamilton Theorem 4.3, we have

(−1)q(A−XI)adj(A−XI) = (−1)qdet(A−XI)I = (−1)qdet(A−XI)I−χA(A)

= −
q∑

k=0

γk(Ak −XkI) = −
q∑

k=1

γk(Ak − (XI)k),

= −(A−XI)

q∑
k=1

γk

k−1∑
`=0

A`(XI)k−1−`,

= −(A−XI)

q∑
k=1

γk

k−1∑
`=0

A`Xk−1−`,

where we have used that if C,D ∈Mq(R) on a commutative ring, then Ck −Dk =
(C −D)(Ck−1 +Ck−2D + · · ·+CDk−2 +Dk−1). We deduce that

(8.1) adj(A−XI) = −(−1)q
q∑

k=1

γk

k−1∑
`=0

A`Xk−1−`.

This yields

χA+Bε⊗e1
(X) = Xq +

q−1∑
k=0

γkX
k − eᵀ1

q∑
k=1

γk

k−1∑
`=0

A`Xk−1−`Bε.

Performing the following change of variable t = k − 1 − ` ∈ J0, q − 1K with ` ∈
J0, q − 1− tK, thus k = t+ 1 + `, gives

χA+Bε⊗e1
(X) = Xq +

q−1∑
k=0

(
γk − eᵀ1

q−1−k∑
`=0

A`Bεγk+1+`

)
Xk,

= Xq +

q−1∑
k=0

(
γk −

(
q−1−k∑
`=0

γk+1+`A
`Bε⊗ e1

)
11

)
Xk.

Thus we have that Φ :=
∑k=q
k=0 ϕkX

k = χA+Bε⊗e1
.
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