Mono-Vision based Moving Object Detection using Semantic-Guided RANSAC - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Mono-Vision based Moving Object Detection using Semantic-Guided RANSAC

Résumé

This paper proposes a novel two-stage approach for detecting moving objects with a non-stationary monocular camera mounted on a vehicle. We formulate an innovative method called semantic-guided random sample consensus (Semantic-Guided RANSAC) to detect moving objects by semantic-geometric information fusion and integration. Firstly, semantic constraints from deep learning architecture (YOLO v4) are applied to predict the objects' location in the image frame. The fundamental matrix is then estimated robustly from two views through the sparse optical flow tracking with the help of semantic prior. Semantic-guided RANSAC is used to reject instancelevel outliers which are actually moving objects based on the epipolar geometry and flow vector bound constraints. Experimental results on KITTI dataset reflect the effectiveness of our approach to identify moving objects in complex urban traffic scenes with the average precision above 0.82 for 4 sequences in the City category.
Fichier principal
Vignette du fichier
MFI2021_Songming_Chen_final.pdf (6.69 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03413852 , version 1 (04-11-2021)

Identifiants

  • HAL Id : hal-03413852 , version 1

Citer

Songming Chen, Haixin Sun, Vincent Frémont. Mono-Vision based Moving Object Detection using Semantic-Guided RANSAC. 2021 IEEE International Conference on Multisensor Fusion and Integration (MFI 2021), Sep 2021, Karlsruhe, Germany. ⟨hal-03413852⟩
64 Consultations
111 Téléchargements

Partager

More