Survey of Bias Mitigation in Federated Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Survey of Bias Mitigation in Federated Learning

Résumé

Federated Learning (FL) interestingly allows a set of participants to collectively resolve a machine learning problem in a decentralized and privacy preserving manner. However, data distribution and heterogeneity, that are inherent to FL, may induce and exacerbate the problem of bias, with its prejudicial consequences such as racial or sexist segregation, illegal actions, or reduced revenues. In this paper, we describe the problem of bias in Federated Learning, and provide a comparative review of existing approaches of FL bias mitigation, before discussing open challenges and interesting research directions.
Fichier principal
Vignette du fichier
COMPAS2021_paper_19 (6).pdf (176.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03343288 , version 1 (15-09-2021)

Identifiants

  • HAL Id : hal-03343288 , version 1

Citer

Lynda Ferraguig, Yasmine Djebrouni, Sara Bouchenak, Vania Marangozova. Survey of Bias Mitigation in Federated Learning. Conférence francophone d'informatique en Parallélisme, Architecture et Système, Jul 2021, Lyon (virtuel), France. ⟨hal-03343288⟩
387 Consultations
1144 Téléchargements

Partager

More