Generalized conditional gradient and learning in potential mean field games - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Generalized conditional gradient and learning in potential mean field games

Résumé

We investigate the resolution of second-order, potential, and monotone mean field games with the generalized conditional gradient algorithm, an extension of the Frank-Wolfe algorithm. We show that the method is equivalent to the fictitious play method. We establish rates of convergence for the optimality gap, the exploitability, and the distances of the variables to the unique solution of the mean field game, for various choices of stepsizes. In particular, we show that linear convergence can be achieved when the stepsizes are computed by linesearch.
Fichier principal
Vignette du fichier
main.pdf (4.59 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03341776 , version 1 (12-09-2021)
hal-03341776 , version 2 (07-10-2022)
hal-03341776 , version 3 (17-08-2023)

Identifiants

Citer

Pierre Lavigne, Laurent Pfeiffer. Generalized conditional gradient and learning in potential mean field games. 2022. ⟨hal-03341776v2⟩
306 Consultations
185 Téléchargements

Altmetric

Partager

More