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Pierre Lavigne® Laurent Pfeiffer!
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Abstract

We investigate the resolution of second-order, potential, and monotone mean
field games with the generalized conditional gradient algorithm, an extension
of the Frank-Wolfe algorithm. We show that the method is equivalent to the
fictitious play method. We establish rates of convergence for the optimality
gap, the exploitability, and the distances of the variables to the unique solution
of the mean field game, for various choices of stepsizes. In particular, we show
that linear convergence can be achieved when the stepsizes are computed by
linesearch.

Key-words: mean field games, generalized conditional gradient, fictitious play,
learning, exploitability.

AMS classification: 90C52, 91A16, 91A26, 91B06, 49K20, 35F21, 35Q91.

1 Introduction

Framework Mean field games (MFQG), introduced by J.-M. Lasry and P.-L. Lions
in [52, 53, 54] and M. Huang, R. Malhamé, and P. Caines in [44], are a class of
mathematical problems which allow to approximate differential games involving a
very large number of agents. The general situation of interest is as follows: each agent
aims at minimizing some cost function, depending on his own decision variables and
some coupling terms, common to all agents. There are two fundamental assumptions
in MFG theory: the coupling terms depend on the distribution of the agents and
each agent has a negligible contribution to the coupling terms. Mean field games
can typically be formulated as a coupled system of two equations, characterizing the
decisions of the agents as functions of the coupling terms and vice versa. Mean field
games have found various applications such as epidemic control [27, 29], electricity
management [3, 24], finance and banking [19, 22, 23, 31, 48], social network [4],
economics [1, 42], crowd motion [49].
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In this article, we consider the standard situation where each agent optimizes a
stochastic differential system and where the agents only differ from each other by
their initial condition; therefore, for given coupling terms, the agents share the same
optimal feedback function v, that can be characterized through the Hamilton-Jacobi-
Bellman equation. We consider two coupling terms: a first standard one, denoted -,
deduced from the density of the states of the agents through an interaction function
f. The density of the states, denoted by m, is itself deduced from v through the
Fokker-Planck equation. The second coupling term, denoted P, can be interpreted
as a price variable and depends on the distribution of the agents with respect to their
states and controls through a price function ¢. Our model thus falls into the class of
mean field games of controls. Interactions through the density of players typically
appear in epidemic or crowd motion models, while interactions through the controls
v typically appear in economics, finance or energy management models.

We assume in this work that the interaction cost and the price function derive
from convex potentials. Our MFG system has then a potential structure, that is, it
can be interpreted as the first-order necessary and sufficient optimality conditions
for some convex optimal control problem of the Fokker-Planck equation, referred
to as the potential problem. This class of games has been widely investigated, we
refer the reader to [7, 17, 21, 56, 61] for interactions through the density m and to
[9, 37, 38, 40, 39, 41] for price interactions.

Various methods from convex optimization have been been employed to solve
the potential problem, see [2] for a survey. A first approach consists in formulating
the potential problem as a saddle-point problem and to solve it with primal-dual
algorithms, see [10, 12, 13]. Another approach consists in applying the augmented
Lagrangian algorithm to the dual problem of the potential problem, see [5, 7, 10].
Other methods have been investigated such as the Sinkhorn algorithm [6].

Generalized condition gradient algorithm and learning The generalized
condition gradient (GCG) algorithm is an extension of the conditional gradient al-
gorithm, also called Frank-Wolfe algorithm, first introduced in [33]. The conditional
gradient method allows to minimize a convex objective function on a convex and
compact set. The idea is to linearize the cost function at each iteration k € N, at a
given point Zj, and to find a minimizer x; of the corresponding linearized problem.
Then a new point Zy1 = (1 —dg) Tk + 0k is computed for some step size oy, € [0, 1].
A classical choice of step size is given by o = 2/(k + 2) (see [28, 45]) which yields
the convergence of the objective function in O(1/k). For a recent description of the
conditional gradient algorithm and its extensions, we refer to [46, Chapter 1]. In our
study we consider the generalized conditional gradient algorithm (first introduced in
[11]), which is based on a partial linearization of the objective function instead of a
full linearization. Most of the basic existing convergence results for the conditional
gradient remain true for the GCG method, which also exhibits faster convergence
rates in some cases, typically when the partially linearized cost function enjoys some
coercivity property and when ¢ is obtained with a linesearch procedure. Improved
rates of convergence have been recently obtained in [47], in an infinite-dimensional
setting.

A fundamental issue in game theory is the formation of an equilibrium. It is
often unrealistic to consider that the agents can perfectly anticipate the behavior of
the others, in particular in the sophisticated situation underlying an MFG model.



On contrast, it is more realistic to assume that the game is repeated many times and
that the agents update their decisions according to a more or less complex procedure
called learning procedure. See [34] for a general reference. We consider in this article
the fictitious play, a learning procedure introduced in [14, 62] in which the agents
play at each iteration of the game an optimal decision (also called best-responses),
corresponding to a predicted value of the coupling term (also called belief), which
is then updated. An application of the fictitious play to potential games can be
found in [57]. In the context of MFGs, the fictitious play has been investigated
in [18, 30, 43, 60]. The convergence results for learning methods can be of various
forms. In potential games, one can study the convergence of the potential cost along a
sequence generated by the fictitious play algorithm. In general, one can consider the
exploitability of the game at each iteration and try to show its convergence to zero.
For a given value of the coupling terms, the exploitability is the highest reduction of
cost that a representative agent can achieve by changing his current decision to the
best-response, assuming that the coupling terms remain the same. This notion has
recently received a growing attention [25, 26, 35, 58, 59, 60]. The convergence of the
exploitability has been addressed in [60] in the context of continuous-time learning
and discrete mean field games, and a convergence rate is provided.

A key message of this article is that, in the context of second-order potential mean
field games, the GCG algorithm can be interpreted as a fictitious play method. It
relies on the following fact: at each step of the method, the problem to be solved
(arising from a semi-linearization of the potential problem) coincides with the indi-
vidual control problem of the agents, for a given belief of the coupling terms. We
will see that the primal-dual gap of the GCG method is equal to the exploitabil-
ity. The update formula Z;11 = (1 — 0x)T + Oy corresponds to the learning step
in the fictitious play algorithm, where the agents update their belief by averaging
the past and the new distributions of states and controls. This interpretation has
already been highlighted in a very recent work [35], for a class of potential mean
field games with some discrete structure. The connection between the Frank-Wolfe
algorithm and fictitious play has also been been investigated in [64] for a general
class of potential games.

Contributions The article [18] is the most related to ours. It considers a second-
order potential MFG, similar to our model but without price interaction. It is proved
that any cluster point (there exists at least one) of the sequences of value functions
and probability distributions generated by the fictitious play is a solution to the
MFG. In the case of a convex potential, the entire sequence converge.

The connection between the GCG algorithm and fictitious play, in the context of
second-order MFGs, is the first contribution of our work. As we already mentioned,
this connection was already established in [35], in a different MFG setting. Taking
advantage of this connection, we prove a general convergence result for the optimality
gap (associated with the potential cost), when the stepsizes are predefined. These
results easily lead to convergence rates, in particular, for 6 = p/(k + p) (with
p > 0), we prove a convergence rate of order O(k™P). This covers the case of the
fictitious play (with p = 1) and thus improves the convergence result of [18] in the
convex potential case. Our most important contribution is the proof of the linear
convergence of the optimality gap when the stepsizes are determined with classical
linesearch rules, which is of major interest from a numerical perspective. Let us



emphasize that the proof of convergence follows the techniques from [47]. With the
exception of [65], which is restricted to linear-quadratic MFGs, we are not aware of
any other numerical method for convex potential MFGs that can achieve this speed
of convergence.

Plan of the paper We formulate in Section 2 the mean field game of study.
We describe the generalized conditional gradient algorithm in Section 3 and we
explain its connection with fictitious play. We state our main convergence result in
Theorem 10. Section 4 contains technical results related to the Fokker-Planck and
the Hamilton-Jacobi-Bellman equations. We provide a stability result for optimal
control problems in Section 5. Finally, we proof our main result in Section 6 and
we give an other convergence result for the variables of the system, Theorem 35.
Numerical results for an academical problem are reported in Section 7.

2 Formulation of the mean-field game

2.1 Notation

Let T > 0 denote the horizon of the game. We fix d and k in N*. We denote by T¢
the d-dimensional torus and we set Q = T% x [0, T]. For any subsets O and K of R,
we denote C(O; K) the set of continuous mappings on O valued in K. In the article,
when K = R, we simply denote C(O) and we make use of this convention for any
other functional spaces.

Holder spaces For any a € (0,1), we denote by C*(Q) the set of Holder continu-
ous mappings on Q of exponent o. We denote by C*/2(Q) the set of functions on
() which are Holder continuous of exponent o with respect to space and Holder con-
tinuous of exponent «/2 with respect to time. We denote by C2+®1+%/2(Q) the set
of functions u € C*(Q) with partial derivatives dyu, Oy, u, and agmu in C%*/2(Q).
Finally, we denote by C>®(T?) the set of a-Holder continuous functions, such that
all partial derivatives up to the order two are a-Hoélder continuous.

Sobolev spaces and density space We denote by W"’q(']l‘d) the Sobolev space
of functions with weak partial derivatives in L9(T?), up to the order n. We set

W2L(Q) = WHI(Q) N L7(0, T3 W24(T))
Wl,O,oo(Q) _ LOO(O, T; Wl,oo(r]rd))_
From now on, we fix a real number ¢ such that ¢ > d + 2.

Lemma 1. There ezists § € (0,1) and C > 0 such that for all u € W>14(Q),
[ulles @y + IVulles@rey < Cllullwzi.a(q)-
Proof. See [51, Lemma I1.3.3., page 80 and Corollary, page 342]. O

We introduce the space ©, which will be used for the control variable of the
system. It is defined by

0= {v €C(Q;RY) | Dy € Lq(Q;RdXd)},



where D,v denotes the weak space derivative of v with respect to x. We equip this
space with the norm

e = L (Q;R9) Ul La(Q;RIx )
[vlle = vl + | Dzo|

The coupling terms (v, P) of the MFG system of interest will be considered in the
space =, defined by

E= (WH(Q)NC(Q)) x C(0,T;RF).

In words, (v, P) lies in Z if and only if v is continuous in both variables, Lipschitz
continuous in z, uniformly in ¢, and P is continuous. Let R > 0, we define the
following subset of =:

ER:{(/%P)GE

||’Y||W1707°0(Q) + ”PHLOO(O,T;Rk) < R}

We also define

Dy(T?) = {m e L°(TY) ‘ m>0, [ mx)ds = 1}.

Td

Nemytskii operators Given two mappings g: X x Y — Z and u: X — ), we
denote by glu]: X — Z the mapping defined by

glul(z) = g(z,u(z)), Ve,

called Nemytskii operator. This notation will for instance be used for the Hamilto-
nian H: instead of writing H(x,t, Vu(z,t)), we write H[Vu](z,t). Note that H),
will denote the Nemytskii operator associated with the partial derivative of H with
respect to p (a similar notation will be used for the other partial derivatives).

Generic constants All along the article, we make use of a generic constant C' > 0,
depending only on the data of the problem. The value of C' may increase from an
inequality to the next one. In the same way, we will make use of a generic constant
C(R) depending only on the data of the problem and some positive real number
R>0.

2.2 Mean-field game system

We fix an initial distribution and a terminal cost
d . md
mo € D1(T?), g: T* - R,

and four maps: a running cost L, an interaction cost f, a price function ¢ and an
aggregation term a,

L: QxRY—SR, #: [0,T] x RF — RY
f: QxDy(T% — R, a: Q — RF*4,

For any (z,t,p) € Q x R? we define the Hamiltonian H by

H(l’,t,p) = sup _<p,'U> - L(l’,t, U)'
vERY



We define two linear operators A: w € LY(Q;RY) +— Afw] € L'(0,T;RF) and
A*: P e L®(0, T; R¥) v A*[P] € L®(Q;RY) as follows:

Alw](t) = /W a(z, t)w(z,t)dr, A*[P](z,t) = a*(x,t)P(t), V(z,t) € Q.

Note that the function a will be assumed to be bounded. The mean field game
system under study is the following;:

(0 { —O0u — Au+ H[Vu+ A*P] =7, (x,t) € Q,
u(z,T) = g(x), z e T?,

(i) v=—Hpy[Vu+ A*P], (x,t) € Q,

- { Oym — Am + V - (vm) = 0, (z,t) € Q, (MFG)
m(O,I) = m0($), T e Td,

(iV) V(xat) = f(l:,t, m(t))7 (‘T?t) € Q?

(v)  P(t) = ¢[Alvm]|(D), t€[0,T],

where the unknown is (m,v,u,, P), with m: Q@ — R, v: Q — R%, u: Q — R,
v: Q — R, and P: [0,T] — R*. In this model, the coupling terms are the variables
v and P. Given v and P, the optimal control problem solved by a representative
agent is described by (4) and (5); the optimal feedback v is obtained by computing
the corresponding value function u, solution the Hamilton-Jacobi-Bellman equation
(MFG,i) and then v is obtained with using Equation (MFG,ii). Conversely, the
coupling terms v and P are deduced from v by computing the distribution m of the
agents, solution to the Fokker-Planck equation (MFGi.iii). The first coupling term
7 is deduced from m through (MFG,iv) and the second coupling term P is deduced
from m and v through equation (MFG,v).

We will make use the Benamou-Brenier change of variable w = mwv, where mv
denotes the pointwise product of m and v (that is w(z,t) = m(z,t)v(x,t) for a.e.

(z,1) € Q).

2.3 Assumptions

We assume that there exist four constants Cy > 0, C; > 0, Co > 0, and o € (0,1)
such that the following holds true.

(H1) Convezxity of L. For any (z,t) € @, the function L(z,t,-) is strongly convex
with modulus 1/Cj.

(H2) Lipschitz continuity of L. For any z and y € T¢, for any ¢ € [0, 7], and for any
v e R?,
|L(z,t,0) = Ly, t,v)| < Colz — y|(1 + |v]).

(H3) Boundedness of L, ¢, and f. For any (z,t) € Q, for any v € R, and for any
z € R¥,

L(m,t,v) < CO|U‘2 + OOa |¢(taz)| < OOa and |f($7t>m)| < OO'



(H4) Regularity assumptions. The running cost L is differentiable with respect to
v and D, L is differentiable with respect to x and v. The mapping «a is dif-
ferentiable with respect to z. The mapping L, D,L, D,.L, D,,L, ¢, a, D,a

are Holder-continuous on any bounded set. The mappings mg and g lie in
02+a0 (Td).

(H5) Regularity of the coupling functions. For all (z1,t1) and (x2,t2) in @ and for
all m1 and ms in D; (']I‘d),

|f (22, ta, ma) = f(x1,t1,m1)| < Co(|z2 — 21|+ [t2 = 11]*°) + Cr[[ma —mal| p2(pa).-
For all ¢ € [0, 7] and for all z; and 2z in R¥, |¢(t, z2) — ¢(t, 21)| < Calza — 21].

(H6) Potential structure. The map f is monotone with respect to its third variable,
that is to say,

[ toma) = o) (mao) - ma o)) do > 0,

for any m; and my € D;(T?) and ¢ € [0, T]. We assume that f has a primitive,
that is, we assume the existence of a map F': [0,T] x D;(T?%) — R such that

1
F(t,mq) — F(t,m;) = /0 » f(z,t,smo + (1 — s)mq)(me(x) — my(x))dzds.
(1)

Moreover, ¢ has a convex potential ®, that is to say there exists a measurable
mapping ® : [0,7] x R¥ — R, convex and differentiable with respect to its
second variable and such that ¢(t,z) = V,®(t, 2) for any (¢,2) € [0,T] x RF.

Remark 2. 1. The monotonicity assumption on f implies that
F(t,mg) > F(t,m1) + /d f(z,t,m1)(ma(x) — my(z)) dz.
T

Since this inequality holds for any my € Di(T9), F is convex with respect to
its second variable as the supremum of affine functions.

2. Our assumptions are stronger than those of [9], since we require the bounded-
ness of ¢ and the Lipschitz continuity of f with respect to m, for the L?(T?)-
norm.

Lemma 3. The Hamiltonian H is differentiable with respect to p and H), is dif-
ferentiable with respect to x and p. Moreover, H, H,, H,,, and H,, are locally
Holder-continuous.

Proof. See [9, Lemma 1]. O

Theorem 4. There exists a € (0,1) such that the system (MFG) has a unique
solution (7,7, 1,7, P) in C*Fo1te/2(Q) x C*(Q;R?) x C*Helt/2(Q) x C*(Q) x
C%(0,T;R¥). Moreover Dv € C*(Q; R¥*9).

Proof. Direct application of [9, Theorem 1 and Proposition 2]. O

For the rest of the article, following Theorem 4, we denote by (m,v,u, ¥, P) the
unique solution to (MFG) and we set w = mao.



3 Generalized conditional gradient and fictitious play

In this section we present the GCG method and we provide an interpretation as a
learning method. We state our main convergence result, Theorem 10.

3.1 Mappings

We introduce in this subsection different mappings, which will allow to express in a
compact fashion the different mutual dependencies of the variables of the mean field
game. The well-posedness of all these mappings will be justified in Section 4.

Fokker-Planck mapping We first define the mapping M: v € © — M|[v] €
W25L4(Q) which associates any vector field v to the weak solution to the Fokker-
Planck equation

om—Am+V - (vm) =0 (z,t) € Q,
m(0,z) = mo(z) r €T

(2)

Next we consider the set R defined by

(m,w) € W24(Q) x O |
R = om—Am+V-w=0, m(0,-)=mg
Jv € L®(Q;RY), w = mw

Lemma 5. The set R is conver. Moreover, given v € ©, the pair (m,mv) lies in

R, for m = Mv].

Proof. The proof of convexity is left to the reader. The second part of the lemma is
a consequence of Lemma 1 and Lemma 16. O

HJB mapping Given (v, P) € E, we define u[y, P] as the viscosity solution to
the following HJB equation:

—O0u— Au+ H[Vu+A*P] = v (z,t) €Q, 3
u(z, T) = g(x) r € T (3)

Let us given an interpretation of u as the value function of an optimal control
problem. Let (Bs)gc[o,7] denote a d-dimensional Brownian motion. Let F denote the
filtration generated by the Brownian motion (Bj)sejo,7]- We denote by L& (¢, T') the
set of progressively measurable stochastic processes v defined on [t, 7] and valued
in R? such that E[ftT [us|?ds] < +oo. Given (v, P) € E, we consider the mapping
J[v, P]: Q@ x L&(0,T) — R, defined by

Ty PV t) = B [ (B CKas000) 4 (ATTPICEs8),04) 42X+ 0061)]

(4)
where (Xs)gef,7) 18 the solution to d X = vsds + V2dB;, X; = x. Then, u[y, P] is
the value function of the optimal control problem associated with J[y, P], that is to
say, for any (z,t) € Q,

wly Pl )= | int I Pl ) )
velz (0,

This is a classical result from dynamic programming theory, see [32].



The other mappings Next we introduce three mappings, v, m, and w, defined
on =, and such that

m[y, P] € W34(Q), v[y, P] € ©, and wly, P] € O©.
For any pair (v, P) € Z, they are given by

’U[’)/, P] = - Hp[vuh/vp] +A*P]’
m[y, P] = M [v]y, P]],
wly, Pl = m[y, Plv[y, P].

Finally, using Nemytskii operators, we define

v: WHh(Q) — W0 (Q) N C(Q), P: ©—C(0,T;RF)
m— f[m], qub[A[w]].

In summary, the mappings u, v, m, and w, derived from the equations (MFG,i-iii),
allow to express the behavior of the agents in function of the coupling terms ~ and P.
Conversely, the mappings v and P, derived from the equations (MFG,iv-v), allow
to express the coupling terms as a function of the behavior of the agents, described
by the variables m and w.

3.2 Optimal control problems

We introduce two optimal control problems involving the Fokker-Planck equation:
problem (P), which is the potential formulation associated with the coupled system
(MFG), and problem (P[y, P]), which is a PDE formulation for the optimal control
problem (5). A key observation is that (P[y, P]) can be seen as a partial linearization
of (P). The results announced in this subsection will be proved in Section 5.

The potential problem is given by

inf  J(m,w) =T (m,w)+ Jo(m,w), (P)
(mw)eR

where

Ji(m,w) = /QI:[m,w](as,t) dz dt + /’[rd g(x)m(z,T)dz,
T (6)
To(m, w) = /O (Flm)() + ®[Auw](1))dt,

and where L is the Nemytskii operator of the perspective function L: Q xRxR% — R
of L, defined by

mL(x,t, %), if m >0,
L(z,t,m,w) =< 0, ifm=0and w=0,

400, otherwise.

Note that L is convex and lower semi-continuous with respect to (m,w) (see [8,
Lemma 1.157]).

Lemma 6. The pair (m,w) is the unique solution to the potential problem (P).



Proof. Lemma 6 is a direct consequence of Corollary 32, proved in Section 5. O

We introduce now the PDE formulation of the stochastic optimal control problem
solved by the representative agent. Given a pair (v, P) € =, we consider the criterion

T
2, Pl(m,w) = Falm.w) + ([ (.m0 dede+ [ (Al(0), PO) dr),
Q 0
and the associated optimal control problem

i Zl Pl(m,w). (P, Pl)

Lemma 7. For any (v, P) € E, the pair (m[y, P],w[y, P]) is the unique solution to
(Plv, P)).

Proof. This is a direct consequence of Proposition 31, proved at page 23. ]

Take a pair (7, 1W) € R and set 4 = ~[rh] and P = P[i]. The criterion Z[4, P](-)
can be seen as a partial linearization of J: while the term Jj(m,w) is the same
in both cost functions, fQ Amdx dt is a linearization of fOT [m] dt around r and

fo P) dt is a linearization of fo [Aw] dt around w. The connection between
J and Z is made more precise in the following lemma.

Lemma 8. Let (m1,w1) and (ma, wz) be in R. Let y1 = ~vy[m1] and let Py = Plw;].
Then, there exists a constant C' > 0, independent of (m1,w1) and (ma,ws) such that

T
/Q’h(mz —my)dzdt +/ (Alwy — w1], Pr)dt < Jo(ma,wa) — Ja(mi,w1) (7)
0
and

Jo(ma, wa) — Ja(mi,wy) < /

T
'yl(mg — ml) dxdt + / <A[w2 — wl],P1> de
Q 0

T
+01/0 lma(t,-) = ma(t, )l p2gray [ma(t, -) = ma(t, )l pr(pa) dt

+ /OT | /Tda(zv,t)(wg(:r,t) —wi(a, 1)) daf . (8)

Proof. Using the definitions of v; and P;, we obtain

T
(jz(mg,wz) — jg(ml,wl)) — (/Q’}/l(mg — ml)dl‘dt —1—/() <A[w2 — wl],P1> dt)
= (a) + (b),

where
= /OT — F[my](t) — /Jl‘d flmal(z, t) (mo(z, t) — ma(z,t)) dx) dt,

T
_ /0 B[ Aws] — B[Awn] — ($[Awi](1), Aws(t) — Awn (1)) dt.

10



Using Assumption (H6), we obtain that

@= | ' / 1 L, s+ s(ma = m)] = flons]) mz = ) o s,

Then Assumptions (H5) and (H6) imply that

T
0<(a) < 01/0 lma(t, ) = ma(t, )l z2gray[lma(t, -) — ma(t, )l gy ray dt.

We estimate (b) in a similar way and obtain inequalities (7) and (8) easily. O

Corollary 9. Let (mi,w1) and (mg,we) be in R. Let v1 = vy[m1] and let P; =
Plwi]. Then,

Z[m, P](m2,ws) — Z[y1, Pil(ma, w1) < J(m2, wa) — J (ma, wr).
Proof. This is an immediate consequence of inequality (7) from Lemma 8 and the
definitions of J and Z. ]
3.3 GCG algorithm and interpretation as a learning method

Using the partial linearization of 7 introduced in the previous subsection, the GCG
algorithm yields Algorithm 1.

Algorithm 1 Generalized conditional gradient
Choose (mg,wp) € R
for 0 <k < N do
1. Set v = vy[my] and P, = Plwy).
2. Find the solution to P[vyx, Px|, that is, define successively:

up = u[vk, Prl, v =0, Pr), me = my, P, wi = w, Pl

3. Choose ¢ € [0,1].
4. Update (Mmp41, Wit1) = (mik,w,‘ik), where

(m, w)) = (1 — 8) (M, k) + d(my, wy,), Vo € [0,1]. 9)

end for
return (my,wy).

We can give an interpretation of Algorithm 1 as a learning method. At Step
1, my and wy are can be seen as predictions of the equilibrium values m and w.
The agents use them to make a prediction of the coupling terms, v and Pg. In the
second step, they find the corresponding best-response, by solving the HJB equation
associated with their optimal control problem. Finally, in Steps 3 and 4, they update
their prediction of m and w. In particular, when 6 = 1/(k 4+ 1), for any k € N,
we are in the setting of the fictitious play, as investigated in [18] (without price
interaction).

We denote by ¢ the optimality gap at iterate k, defined by

er = J(my, W) — i%fj = J(mg,wy) — J(m, ).
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We define the exploitability as follows

o(m,w) = Z[y, Pl(m,w) = (_inf _ Z[y, Pl(m’,w))
(m/,w")eER
= Z[y, Pl(m,w) — Z[y, P|(m[y, P}, w[y, P]) = 0,
where v = y[m] and P = PJw]. The exploitability is the largest decrease in cost
that a representative agent can reach by playing its best response, assuming that all

other agents play (m,w). At equilibrium, since there is no profitable deviation, the
exploitability is null. We denote by o the exploitability at iterate k, given by

o = Z[k, Pel(mi, r) — Z[yk, Pr] (Mg, wi). (10)

3.4 On the choice of stepsizes

The convergence analysis will concern two kinds of stepsizes: predefined stepsizes,
whose value only depends on k, and adaptive stepsize, whose value depend on the
two pairs (my,wy) and (myg,wy). Following [47], we will investigate three different
rules for the determination of adaptive stepsizes.

e Optimal stepsizes: Find §; such that

O € argmin J(m3, @), (11)
6€[0,1]

where (m2,w?) is defined as in (9).

e Quasi-Armijo-Goldstein condition: fix two parameters ¢ € (0,1) and 7 €
(0,1). At iterate k, we say that ¢ € [0, 1] satisfies the Quasi-Armijo-Goldstein
(QAG) condition if

J(ms, @) < J(m, ) — cdoy.

Then §;, is defined by

0 = 7%, i = argmin {j eN ‘ 77 satisfies the QAG condition}. (12)

o Exploitability-based stepsizes: we take

. Ok
0 =min< 1, , (13)
{%QW”@%%}

where C and Cy are the constants of Assumption (H5) and where

T
D?:AHmw»—mw»ummmm»—mm»wwmw
(14)

T
Dg):(A M&ddxjﬂwﬂxj)—wﬂxjﬁdw2&
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3.5 Main convergence results and discussion

Theorem 10. 1. At each iteration, assume that (0k)ren satisfy one the three
adaptive rules described above: either (11), (12) (for values of T and c inde-
pendent of k), or (13). Then, there exist two constants C > 0 and A > 0 such
that

er <CNF¥, VkeN.

Moreover, the number iy of iterations for the QAG condition is bounded by
some constant independent of k.

2. There exists a constant C' > 0, independent of the stepsize choice, such that

€0 €Xp (C’ Z?:o 5]2)
€xp ( Z;?:o 0j )

Ekt1 < ; (15)

for all k € N.

The theorem is proved in Subsection 6.2.

Let us first discuss some aspects related to adaptive stepsizes. While the method
for computing J in the case of the QAG condition or the exploitability-based formula
is explicit, it is impossible to find 0 that exactly satisfies (11). We suggest to
compute an approximation of the optimal stepsize with the golden-section method,
which we briefly describe. Denote by ¢ := (v/5+1)/2 the golden number and choose
a tolerance k € (0,1). At each step k € {0, ..., N}, the learning rate d; is computed
as follows: Set (a,d) = (0,1) and (b,c) = (d — (d —a)/p,a + (d — a)/p). While
a—d > K, find

5 € argmin J(md,@?). (16)
de{a,b,c,d}
Then set d = b (resp. d =c,a =bora=c)if § =a (resp. 6 =b, 6 = cor § = d).
When a—d < &, stop and set 5,?5 = 4. Finally, denote 5,(3AG the stepsize determined
by (12). As a substitute for (11), one can choose J; such that

op € argmin J(md, @)
5e{69S 6249}

In view of the proof of Theorem 10, it is clear that linear convergence is also achieved
for this choice of stepsize.

Remark 11. The practical computation of o requires a bounded number (with re-
spect to k) of evaluations of the cost functional J in each of the three considered
cases, (12) (since iy is bound), (13) (the formula is explicit), (16) (the number of
evaluations can be bounded by some constant depending on k and ). Therefore
linear convergence is not only achieved with respect to k but also with respect to the
number of evaluations of J .

We discuss now the convergence of (ej)ren for predefined stepsizes. The following
lemma covers the case of the fictitious play learning rate (d; = k%rl) and the Frank-
Wolfe stepsize (6 = ,%2)

Lemma 12. Let p > 0. Assume that 0 = k%p, for any k € N. Then, for all k € N,

go pP exp(2Cp)

k=T hrprip
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Proof. We have the following inequalities:
k+1
,L > / P ds =pln
+p 0 s+p

2 00
P el / 1
— ) <p*(-+ ——ds | = 2p.
<J +p> <p o (s+p)? )

Using inequality (15), we deduce that €5 < g9 exp (2Cp —pln(k+p) —i—pln(p)), from
which the announced result follows. O

(=5

.
I M?r
(=]
<o

M=

I
o

J

Remark 13. Lemma 12 shows that rates of convergence of order O(k™P) can be
achieved. Yet it is instructive to compute the value of p which yields the best estimate,
for a given iteration number k. To this purpose, we define h(p) = 2Cp — pln(k +
p+1)+pla(p). In view of the proof of Lemma 12, it is enough to minimize h with
respect to p. We have

p p
h (p) = 2C — 1 1.
(p) k+p+1+n<k+p+1)+

It is easy to verify that h'(p) is increasing over [0,00). Using the change of variable
u(p) = zrbyg, we see that W' (p) = 0 if and only if u(p) = ¢(C), where ((C) is the
unique solution of the equation

(2C+1)—u+1In(u) =0 (17)

in (0,1). Let us denote by p(k,C) the optimal value of p, we have p(k,C') = %’g&l)
Since u(C) € (0,1), we deduce from (17) that In(u(C)) < —2C, which finally implies

that

exp(—2C)(k + 1)

1 —exp(—2C) °
This confirms the interest of taking a large value of p when a large number of iter-
ations of k is allowed. However, the optimal value of p decreases exponentially with
C. The constant C' will be constructed in the proof of Theorem 10, in particular, it
is proportional to the Lipschitz moduli C1 and Co appearing in Assumption (H5).
This fact severely mitigates the interest of choosing a high value of p, especially as
the constant C is cumbersome to compute explicitely.

p(k,C) <

Lemma 14. Let the sequence of stepsizes (0)ren converge to zero. Then, for any
r € (0,1), there exist two constants C' > 0 and ko € N, both depending on the
sequence of stepsizes and r, such that

Cé‘o
, Yk > k.
exp [(1-r)( 250 6))] ’

In particular, if Y2, 0k = 00, then e, —> 0.
k—o00

g1 <

Proof. Let r € (0,1). Let ko € N be such that §; < 7, for any k > kg (and where C
is as in (15) holds true). Then for any k > ko, we have

k ko—1

cy o3 chaMcakOZa

Jj=0 J =ko

14



It follows that

k ko—1 ko—1

k
cY#-Ya<(CY d4rY o) -0-nY
j=0 i=0 j=0 ‘

k
j=0 7=0

Applying the exponential function to the above inequality, we obtain the announced
result. O

Lemma 14 shows that high convergence rates can be achieved if the sequence
(0 )ken decreases slowly, as we already noticed in Lemma 12. However, if the con-
vergence to 0 is slow, the values of kg and C may be very large, as was revealed in
the proof.

Remark 15. In the case where 6, = (1 + k)=, for a € (0,1). Then

k k+1 J ) l—a_l
S5 [ B2
i=0 0 —

Then it is easy to show with Lemma 1/ that for any o’ € (0, ), there exist kg € N
and C > 0 (both depending on o) such that

klfa
1—do

ep+1 < Cegexp (— ) ,  Vk > ko.

The best speed of convergence is achieved for values of o close to 0. However, the
same phenomenon as the one noticed in Remark 13 arises: the benefit of a small o
1s likely to be observed only for huge values of k.

4 Properties of the auxiliary mappings

This section is dedicated to the statement of technical lemmas concerning the well-
posedness and the stability of auxiliary mappings and to their proofs (given in Sub-
sections 4.3 and 4.4).
4.1 Statement of the results
Lemma 16. The map M is a bounded linear map from © to W2%4(Q).

The proof is given at page 17.

Lemma 17. Let R > 0. Let v; and vy € ©. Let m; = Mv;] € W219(Q) for
i € {1,2}. Assume that |ville < R and |[mal/p~(q) < R. Then, there erists a
constant C(R), independent of vi and va, such that

1/2
s — ma | e 0.7z 0y < C(R)(/ o2 — w1 [Pms e di
Q

The proof is given at page 17.

Lemma 18. Let R > 0. There ezists a constant C(R) such that for all (1, P1) and
(72, P2) in ZR, the following holds:

[ulye, P2] — uly1, Pill| Lo (@) < C(R)(HP2 — Pil| 20, 0mey + 172 — 71HLoo(Q))-
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The proof will be given at page 19.

Proposition 19. The map w is well-defined from = to W>14(Q). Moreover, for
any R > 0, there exists a constant C(R) > 0 such that for any (v,P) € Zg,

luly, Plllw21.aq) < C(R).
The proof will be given at page 20.

Lemma 20. The maps v, m, and w are well-defined from = to ©, W>4(Q), and
O, respectively. Moreover, for any R > 0, there exists C(R) > 0 such that for any
(v, P) € ER, it holds:

o[y, Pllle + lm[y, Plllw21.4(q) + wy, Pllle < C(R).
The proof will be given at page 21.

Lemma 21. The mappings v and P are well-defined. There exists a constant C > 0
such that for all m € W19(Q) and for all w € ©,

70,00 (@) + 1PNl oo 0,7mEy < C,
where v = vy[m] and P = Plw|. There exists a constant C' > 0 such that for all my
and my in WH4(Q) and for all wy and wy in ©,
[v[ma] = v[mallle (@) < Cllma — mall Lo (0.1;02(Te))
| Plwa] — Plun]l| 20, 7mey < Cllwz — will12(gure)-

The proof will be given at page 21.

4.2 Parabolic estimates

In this section we provide estimates for the following parabolic equation:

Ou — oAu+ (b, Vu) + cu = h, (x,t) € Q,

u(z,0) = ug(z), r €T, (18)

for different assumptions on b: Q — R%, ¢: Q = R, h: — R, and ug: T — R. The
proofs of the following results can be found in the Appendix of [9]; they largely rely
n [51]. We recall that ¢ is a fixed parameter and ¢ > d + 2.
In the next theorem, we consider the Sobolev space W?2~2/P2(T9) with a frac-
tional order of derivation, see [51, section II.2] for a definition.

Theorem 22. For all R > 0, there exists C' > 0 such that for all ug € W2~2/¢9(T%),
for all b € LY(Q;RY), for all ¢ € LY(Q), and for all h € LI(Q) satisfying

[uollw2-2/a.a(ray + bl La(@iray + llellza@) + 1Al La@) < R:
equation (18) has a unique solution u in W>19(Q). Moreover, |lully21.q(q) < C.

Theorem 23. There exists C > 0 such that for all ug € W?=2/99(T%) and for
all h € LY(Q), the unique solution u to (18) (with b = 0 and ¢ = 0) satisfies the
following estimate:

lullw21.a¢q) < C([luollyz-2/aacray + 1Pl La))-
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Theorem 24. For all B € (0,1), for all R > 0, there exist a € (0,1) and C > 0
such that for all ug € C*t8(T9), b e CPP/2(Q;RY), ¢ € CPP/2(Q) and h € CPP/2(Q)
satisfying

[uollcz+s ey + 1bllcs.er2(oray + llcllcssrzig) + Illessrzg) < R,
( ) () ()

the solution to (18) lies in C*t*1+/2(Q) and satisfies [ullgztaitarzgy < C.

4.3 Fokker-Planck equation

Proof of Lemma 16. Let us write the Fokker-Planck equation in the form of equation
(18): Oym—Am+ (V- -v)m+ (v, Vm) = 0. The lemma follows from Theorem 22. [

Proof of Lemma 17. Set w = vo —v1 and y = ms — my. Then p is the solution to

O — Ap+ V- (np) = =V - (wma), (z,t) € Q,
p(x,0) = 0, r € T

Denote by V' the space W12(T%) and consider the Gelfand triple (V, L?(T%), V*),
where V* denotes the dual of V. Then g is solution of a parabolic equation of the

form
Orm(t) + B(t)m(t) = f(t),  (x,1) € Q,
m(z,0) = 0, x €T,
where B(t) € L(V,V*) and f(t) € V*. For any m € V, we have
(B(t)m,m)y = / (= Am+ V- v (t)m+ (vi(t), Vm))mdz
Td

:/ (]Vm\2 — (Ul(t),Vm)m)dx,
Td

where the second equality is obtained by integration by parts. Using Cauchy-Schwarz
inequality and [|v1 | oo () < R, we obtain the following inequality:

(B(t)ym,m)y > vaHiz(Td;Rd) — CIVm| 2(ra;ray Il 2 ray
where the constant C' is independent of ¢ (but depends on R). A direct application
of Young’s inequality yields the existence of C' (depending on R) such that
1 2 2
(Bltym,m)y > glml — Ol g

Thus B(t) is semi-coercive, uniformly in time. With similar techniques, one can
show that
(B&ym,m)yy < Cllmllv|m|v,

for a.e. t € (0,T) and for all mm and m/ in V. We can apply [55, Chapter 3, Theorems
1.1 and 1.2], from which we derive
[ 1ell oo 0,722 (Tay) < C(”MHL?(O,T;V) + ||atu||L2(0,T;V*))
< Clfll2o,ryv+) < CIV - (wma)|l 20,77+
< Cllwma| g2 (gre)-

Finally, since |[mal|r=(q) < R, we have me2||%2(Q;Rd) < C’fQ |w|?mso dz dt. Com-

bining the two last obtained inequalities, we obtain the announced result. O
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4.4 HJB equation

The analysis of the HJB equation relies on its connection with the value function of
an optimal control problem, that was introduced in (5). This connection allows first
to show a uniform bound for u[y, PJ.

Lemma 25. Let R > 0 and let (v,P) € Zg. There exists a constant C(R) > 0
such that ||uly, P]||r~(q) < C(R) and such that u is C(R)-Lipschitz continuous with
respect to x. Moreover, for any (z,t) € Q,

vel. 2P 1)
In the above relation, ]L]%’C(R) (t,T) denotes the set of stochastic processes v € L2(t,T)

such that E[ftT lus|?ds] < C(R).
Proof. We first derive a lower bound of L. By assumption (H4), L(z,¢,0) and

Ly(z,t,0) are bounded. It follows then from the strong convexity assumption (As-
sumption (H1)) that there exists a constant C' > 0 such that

1
6\1/\2 — C < L(z,t,v), forall (z,t,v) € Q x R (20)
Then, for any (z,s) € Q and for any v € R%, we have the following estimates:

1
L(w,5,v) + (A [P)(2,5),) = SIVI* = l|a]l o ey P(s) [V] = €

1

> S = |P(s) = 1) = S(v* = 1),

Now we show that u[y, P|] is bounded in L*°(Q). For any (z,t) € @, using the
above lower bound for the running cost L, the bound ||v||z~(g) < R, together with
Assumption (H4) on the terminal cost g, we obtain that

uly, Pl(z,t) =2 —C(R).

In addition, using Assumption (H3) and the fact that that ||v[| () < R, we deduce
that
uly, Pl(z,t) < J[y, Pl(,t,0) < C(R),

from which we conclude that ||uly, P]||re ) < C(R).

Finally we show equation (19). Let ¢t € [0, T], let e € (0,1) and let 7 € L4(¢, T) be
an e-optimal process. Since g is bounded (Assumption (H4)) and since (v, P) € Eg,
we deduce from the above inequality that

T
~ 12 < .
E[/t A ds} _C<ueﬂig(f;,T)J[%P](x’t’y)+€+1)

< CO(uly, P(z,t) +2) < C,

where the constant C' does not depend on ¢ and €. Thus any e-optimal process lies
in ]LIQF’C(t, T'), which concludes the proof. O

Using again the interpretation of w[y, P] as the value function of an optimal
control problem, we can prove the stability property stated in Lemma 18.
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Proof of Lemma 18. Let (y1,P1) and (72, P2) be in ZEp. Let uy = u|vy1, P] and
ug = ulye, P2]. By Lemma 25, there exists C' > 0 such that

ug(z,t) —up(x,t) = inf  Jly, P)(x,t,-) — inf  Jm, Pi](z,t,-),
Ly (tT) Ly (T)
for any (z,t) € Q. We denote (XY)scp,7) the solution to the stochastic differential
equation dX; = vsds + /2d B with X} = =, for any v € L2(¢,T). Then

|u2(x,t)—u1(x,t)] < sup ‘J[’}/27P2](13,t7V)—J[’}/l,Pﬂ(J?,t,V)‘
vel2 (t,T)

T
< sw B[ [ AR I 2 - ) (X 9] d].
t,T) t

VE]L]?JC(

For any (z,s) € Q and v € R%, the Cauchy-Schwarz inequality yields

(A" [Py = Pi](x,5),v)| < [(a(x, 5) Pa(s) — Pa(s)||v]
< [lall oo (@irrxa) | Pa(s) — Pr(s)] V-

Using again Cauchy-Schwartz inequality and ||| e (g.rrxay < C', we finally conclude
that

juaz,t) — ur (2, 8)] < C(IP2 = Pillzzozesy + 2 = ll=())-
as was to be proved. ]

We prove Proposition 19 with a density argument. In a nutshell: we prove in
Proposition 26 below that the result of Proposition 19 holds true when v and P are
Holder continuous. Then we pass to the limit, using Lemma 18.

Proposition 26. Let R > 0 and let 3 € (0,1). For any (v,P) € 2 NCA(Q) x
C?(0,T;R¥), the viscosity solution to the Hamilton-Jacobi-Bellman equation (3) is
a classical solution. Moreover, there exists a € (0,1) such that u[y, P] lies in
C2tel+a/2(Q) and there exists a constant C(R), depending only on R, such that
uly, Plllw21.qq) < C.

The proof of Proposition 26 is given at page 20 and relies on a fixed point ap-
proach which requires some preparatory work. We introduce the map 7 : W214(Q) x
[0,1] — W2L4(Q) which associates to any u € W*14(Q) and 7 € [0, 1] the classical
solution @ = T [u, 7| to the linear parabolic equation

—0u — Au+TH[Vu+ A*P] = 17 (x,t) € Q,
u(z,T) = Tg(x) r € T

For any (u,7) € W214(Q) x [0, 1], we have 7(y— H [Vu+A*P]) € L*>(Q), by Lemma
3 and Lemma 1. Tt follows then from Theorem 22 that T [u, 7] lies in W254(Q),
proving that 7 is well-defined.

Lemma 27. The mapping T is continuous and compact. In addition, for all K > 0,
there exists o € (0,1) and C' > 0 depending on K, vy, and P such that ||UHW2,1,q(Q) <
K implies || T u, 7]||c24a1+ar2(g) < C.
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Proof. Step 1: Continuity of T. Let (ug, ) € W254(Q) x [0,1] be a sequence
converging to (u,7) € W>L4(Q) x [0,1]. Then Vuy, — Vu in L=(Q;R?%) by Lemma
1. Then 7(y — H[Vuy, + A*P]) — 7(y — H[Vu+ A*P]) in L>(Q;R?) by continuity
of the Hamiltonian (see Lemma 3). Finally the continuity of 7 follows from Theorem
23.

Step 2: Compactness of T. Let K > 0 and let (u,7) € W*L4(Q) x [0,1] be such
that ||ully2.1.4() < K. Combining Lemma 1 and Lemma 3 there exist a € (0,1) and
C > 0 such that ||y — H[Vu + A*P]||ca(g) < C. Then applying Theorem 24, there
exist a € (0,1) and C > 0 such that ||T[u, 7][c2ta14ar2(g) < C. By the Arzela-
Ascoli Theorem the centered ball of C2t®1+¢/2(Q) of radius C' > 0 is a relatively
compact subset of W24(Q). As a consequence 7T [u, 7] is a compact mapping and
the conclusion follows. O

Theorem 28. (Leray-Schauder) Let X be a Banach space and let T : X x[0,1] — X
be a continuous and compact mapping. Assume that T'(x,0) = 0 for all x € X and
assume there exists C > 0 such that ||z||x < C for all (z,7) € X x [0,1] such that
T(xz,7) = x. Then, there exists v € X such that T'(z,1) = x.

Proof. See [36, Theorem 11.6]. O

Proof of Proposition 26. We prove that under the assumptions of the proposition,
the HJB equation has a classical solution in C2*®*%/2(Q) (for some a € (0,1)),
which is then necessarily the unique viscosity solution w[y, P]. To this purpose,
we prove the existence of a solution to the fixed point equation v = Tlu,1]. We
have T[u,0] = 0 for all u € W219(Q). Now let (u,7) € W219(Q) x [0, 1] be such
that 7[u,7] = u. From Lemma 27, the mapping 7 is continuous and compact, in
addition wu is a classical solution and thus the viscosity solution to the Hamilton-
Jacobi-Bellman equation

—Ou — Au+TH[Vu+ A*P] = vy (z,t) € Q,
u(z, T) = Tg(x) z € T,

and can be interpreted as the value function associated to the following stochastic
control problem

T
inf 7E| / L(XT.,2) + (A [P(X]. 5). ) +(X]. 9)ds + g(XF)].
ZIE]LHQ;(O,T) 0

where (X7 )ger,) is the solution to dXs = 7vsds + V2dBg, Xo = Y. Following [9,
Proposition 1, Step 2], there exists a constant C' > 0, depending only on R, such that
[l oo (@) + 1 VUl Lo (;ray < €. Then using Lemma 3 and recalling that (v, P) € g,
we deduce that [|[H[Vu + A*P] — 7|~ (q) < C. It follows that u is the solution to
a parabolic PDE with bounded coefficients and thus ||u([yy2.1.4(g) < C, by Theorem
22. Again, C only depends on R. Finally, by the Leray-Schauder theorem (Theorem
28), there exists a solution to u = 7 [u, 1], which is necessarily equal to u[y, P]. O

Proof of Proposition 19. Take (v,P) € Zg and fix 8 € (0,1). Let (v, FP,) be a
sequence in Zry1 NCP(Q) x CP(0, T; RF) such that

[ = VllLeo(@) — 0 and [Py — Pllp2¢0 r.re)y — 0
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We do not detail the construction of such a sequence, this can be done by convolution.
Define u™ = u[y", P"| and u = u[y, P]. By Lemma 18, u,, — u for the L>-norm.
Moreover, by Proposition 26,

[u" w2140y < C(R), VneN. (21)

Thus, the three sequences (Oyu™)nen, (Au™)nen, and (Vu™),en are bounded in
L7(Q). By the Banach-Alaoglu theorem, the three sequences have at least one ac-
cumulation point for the weak topology of L4(Q). These three accumulation points
are necessarily (by definition of weak derivatives) equal to du, Au, and Vu, re-
spectively. Since the L%-norm is weakly lower semi-continuous, we deduce that
ullw21.0() < C(R), where C(R) is as in (21). This concludes the proof. O

4.5 The other mappings

Proof of Lemma 20. Let (v,P) € Zg. Let u = uly, P]. We already know from
Proposition 19 that |lully21.4(g) < C(R). Then Lemma 1 implies that u and Vu
are continuous and that [[ullp~(q) < C(R) and [[Vu|pe(grey < C(R). Let v =
vy, Pl = —H,[Vu + A*P]. We have

Dyv = —H,,[Vu + A*P| — H,y[Vu + A*P)(D2,u + D, A*P).

Using the regularity of u, the regularity properties of the Hamiltonian given in
Lemma 30, and the regularity assumptions on a (Assumption (H4)), we deduce that
[v][ Lo (@irey < C(R) and that || Dyv|| pa(graxey < C(R). Moreover, v is continuous.

Next, let m = m[y, P] = M|v]. A direct application of Lemma 16 yields that
[mllw21.4(q) < C-

Finally, let w = w[y, P] = mv. Using again Lemma 1, we obtain that m is
continuous and that [|m||L=(q) < C(R) and [[Vm|| e (grey < C(R). We deduce that
w € O, with a norm bounded by some constant C'(R). The lemma is proved. O

Proof of Lemma 21. The two statements concerning -~ are directly deduced from
Assumptions (H3) and (H5). Let w € ©. Recalling the definition of the operator A
(page 6), it is easy to see with Assumption (H4) that Aw € C(0,T;R?). Assump-
tions (H3) and (H5) ensure then that P[w] = ¢[A[w]] lies in C(0,T;R¥) and that
[Pw]l| o 0,7m0) < C-

Let us next consider wy and wy in ©. We have

[Aws — Awr| oo 0, 1mr) < llal| Loo (@irrxayllwz — w1l poo (0,721 (Te;R4Y)

< Cllwz — w1l p2gre)

by Assumption (H4). Using next the Lipschitz-continuity of ¢ (Assumption (H5)),
we obtain that

|p[Aws] — ¢[Aw1”|L2(O,T;Rk) < Cllwz — wl”L?(Q;Rd)v

as was to be proved. ]
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5 Stability results for solutions to stochastic optimal
control problems
The main result of this section, Proposition 31, shows that any approximate solution

to Problem (P[v, P]) is close to its solution, for suitable norms. This is a key result
for achieving linear convergence in the GCG method.

~ ~ ~

Lemma 29. Let (3, P) € B. Let mn = m[3, P], o = v[4, P] and let & = wl[3, P).
There exists a constant C > 0 such that for any (m,w) € R, the following holds:

N A~

Z[5, Pl(m,w) — Z[¥, P](m,w) > é/@ lv(z,t) — 0(z, t)[*m(z, t) dz dt,

where v € L®(Q;RY) is such that w = mw.
The proof of Lemma 29 relies on the following inequality.

Lemma 30. Let (z,t) € Q. Letv € RY, p € RE, m > 0, and m > 0. Let
0= —Hpy(z,t,p). Let C > 0 be such that L(x,t,-) is strongly convex with modulus
1/C. Then,

1
L(z,t,v)m — L(x,t,0)m > —H(x,t,p)(m — ) — (p,w — W) + 5|U — 0)*m.

Proof. See [9, Proof of Proposition 2]. O

Proof of Lemma 29. Using the definition of Z[4, P], we have

~ N

Z[#, Pl(m,w) — Z[4, P](m, ) = /Q (L[v)m — L[t]m) dz dt

+ /Q&(m —m)dzdt + /Q(A*P, w —w)dzdt + /Td g(m(T) —m(T))dz. (22)

We set @& = u[y, P]. By definition of %, we have o = —H,[Vi + A*P]. Applying
Lemma 30 with p = Vi + A*P, we obtain

/ (L[vlm — L[o]/n) da dt > —/ H[Vi + A*P](m — m) dz dt
Q Q

. 1
—/(Vﬂ+A*P,w—w>dxdt+/ lv — 0*m da dt.
Q CJq

We inject the obtained inequality into (22) and we use H [Vi+A* P]+4 = —dyi—Adi.
This yields

Z[4, P](m,w) — Z[3, P](in,w) > /Q(—ata—m)(m—m) dz dt
U ) T l v —o>mdzx
+/Q(—Vu,w—w) dxdt+Adg(m(T)—m(T))dx+ C/Q| |“m dz dt.

The first three integrals in the right-hand side cancel out: this can be shown by
doing an integration by parts and by using the Fokker-Planck equation satisfied by
m and m. This concludes the proof. O
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Proposition 31. Let R > 0 and let (, P P) € Zp. Let i = ml[4, P] and let v =
wly, P|. Let (m,w) € R be such that ||m||r~qy < R. There exists a constant C(R)
such that for any (m,w) € R,

[lm = 100|| oo (0,1 02(10y) < C(R)V,
< C(R)(Vo +0),

where o = Z[4, P](m,w) — Z[f, P|(in, 0).

As a consequence of Proposition 31, (m[9, P],w[’y, ]3]) is the unique solution to
Problem (P[v, P]), with (v, P) = (¥, P).

Proof of Proposition 31. Lemma 30 yields fQ |v — 0|*mdzdt < Co. By Lemma 20,
we know that [[9][y1.0,00(Qre) < C, for some constant depending on R. Applying
next Lemma 17, we obtain the estimate of |[m — M| oo, L2 (T4))- The estimate of
|[w — ]| ;2(gray follows directly from w —1 = m(v —9) —|— (m —1)0. The proposition
is proved. O

Corollary 32. Let R > 0. Let (m,w) € R be such that ||m| =) < R. There
exists a constant C(R) such that
lm — | Lo (0,1 02(10)) < C(R)VE
Jw — | 12(gray < C(R)(Ve +¢),
where ¢ = J(m,w) — J(m,w).

Proof. By definition, m = m[¥, P] and w = w[Yy, P]. We obtain the announced
estimates by combining Corollary 9 and Proposition 31. O

6 Convergence results

6.1 General results

Proposition 33. Algorithm 1 is well-posed. It generates sequences in the following
sets: (my, W) € R, (W, Pe) € B, (ug,vx) € WH(Q) x ©, (my, wi) € R, for all
k € N. Moreover, there exists a constant C > 0 such that (i, Px) € E¢ and such
that

ukllw21.a(q) + [vklle < C,
mkllwz1.0Q) + llwklle < C,

Imllw2ra@) + [[wklle < C,
for all k € N. Finally, there exists a constant C > 0 such that e, < C, for all k € N.

Proof. The well-posedness of the algorithm and the bounds on my, Wk, Vg, Pk, Uk,
vk, my, and wg can easily be established by induction and by using Proposition
19, Lemma 20, and Lemma 21. Lemma 5 shows that (mg,wy) lies in R, for all
k € N. Using the convexity of R given in Lemma 5, we deduce by induction that
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(mg,wg) € R, for all k € N. The bounds on my, and v imply the existence of a
constant C' such J(mg,wy) < C, since

T
T (my,wi) = /QL[vk]mk dxdt —i—/o (F[mk] + @[A(mkvk)})dt + /]I‘d gmy(T) dx.

The boundedness of J(myg,wy) follows then by induction, since J is convex and
thus
T (Mg, Wy1) < (1 = 0x) T (Mg, W) + 6T (Mg, wi,).

The proposition is proved. O
Lemma 34. For all k € N, it holds that e, < op,.

Proof. By Corollary 9, we have for all (m,w) € R
2k, Pl (M, wr) — Z[ vk, Pel(ms w) < T (Mg, wg) — T (m, w) < e

By definition, oy is the supremum of the left-hand side with respect to (m,w). The
conclusion follows immediately. O

Theorem 35. There exists C > 0 such that for all k € N,

[k — 1| oo (0,722 (7)) + [0k — W[ L2(Qiray < CV/eR,
vk — ’7HL°°(Q) + || P — PHLOO(O,T;Rk) < Cy/eg,
Juk — 1l Lo (@) < Cv/Ek,

lImue — Ml Lo (0,722 (7e)) + Wk — Wkl L2(Qrey < CVOk-

Proof. The first estimate on [[mg — M| oo 1,214y and [[wg — W[ 12(gra) is ob-
tained by combining Corollary 32, the boundedness of ¢, and the boundedness
of [|myllL=(q)- The second estimate on [|vr — ¥llpeo(q) and [|[Px — Pl poo(o,rirr) 8
obtained by combining the first estimate and Lemma 21. The third estimate on
|ug — @[ Loo(q) follows from the second one and from Lemma 18. Using Proposition
33 and Lemma 1, there exists C' > 0 such that (v, Px) € Ec and [[my| () < C, for
all £ € N. Moreover, by construction, my = m/|vyg, P;| and wy = w[y, Px] and the
pair (mg, wy) is ox-optimal for the minimization problem of Z[vg, Px|(-). Therefore,
Proposition 31 applies and yields the last estimate that was to be proved. ]

Corollary 36. Assume that ¢, — 0. Then v uniformly converges to v.

Proof. If e, — 0, then uy converges to 4. We know by Proposition 33 that uy is
bounded in W214(Q); as a consequence of Lemma 1, Vuy, is bounded in C*(Q; R?).
By Arzela-Ascoli theorem, any subsequence of (Vuy)ren has at least one accumula-
tion point for the uniform topology, which is then necessarily Vu. Therefore, Vuy
converges to @ for the uniform tolopology. Recalling that vy = —H,[Vuy + A*Py],
using the convergence of Py already established, and using the regularity properties
of the Hamiltonian, we obtain the announced result. ]

Lemma 37. Let C; > 0 and Cy > 0 denote the Lipschitz constants of f and ¢ (see
Assumption (H5)). Then for any § € [0,1], it holds that

J(md, @) < T (my, ) — oy + (C1 DY + CyDP) 62, (23)

24



where (m{,w)) is defined by (9) and where D,(Cl) and D,(f) are defined by (14). More-
over, there exists a constant C > 0 such that

T (s, }) < J (g, @) — 60y + Copd. (24)
Recall that the terms D,(gl) and D,(f) represent the distance of the current approx-
imate solution to the solution of the (partially) linearized problem. In the classical

proof of convergence of the Frank-Wolfe algorithm, one writes a similar estimate

to (23), where D,E}) and D,(f) are simply bounded by some constant. In order to

achieve linear convergence (instead of the classical sublinear rate of convergence), it
is crucial to keep these terms and to estimate them with the exploitability o, as
will become clear in the next section. This proof technique is largely inspired by [47,
Section 4.3].

Proof of Lemma 57. The proof relies on the decomposition J = J1 + J2 introduced
(6). First, by convexity of L, we have

T (i, @)) — T (g, @) < 6(Ti (mye, wy) — Tn (g, @) (25)

Next, using inequality (8) of Lemma 8, we obtain that
Ta(mi, wp) — Fa(im, wy) < 5/ V(g — my,) da dt
Q

+6 /0 (A — ), Py dt 4 O (llms = il 22y + llwn = k)22 gna) ) - (26)
By definition of Z[yy, Px], we have
or, = 2k, Pe) (Mg, W) — Z[vk, Pl (mu, wi)
= J1(mp, wy) — J1(my, Wy,)
+ /Q e (my, —my) da dt + /0 " (Afwg — ], Py (27)
Finally, by Theorem 35 we have
[ — M| 2 oo (0 12y + 0k = @)1 22 (g ay < Co (28)

Summing up (25) and (26) and combining the result with (27) and (28), we obtain
the announced result. O

Lemma 38. There exists C > 0 such that o, < Cey, for all k € N.

Proof. For any 6 € [0,1], Lemma 37 yields J (m, w) < J (my, W) — dop + Cd2op. Tt
follows that
0 S Ek — (1 — 0(5)(50k (29)

Increasing if necessary the value of C' in the above inequality, we can assume that
C > 1/2. Taking 6 = 1/(2C), we conclude that 0 < ¢ — 1/(4C)oy, as was to be
proved. O
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6.2 Proof of the main convergence result

We prove here Theorem 10. We start with the proof of the second part of the
theorem, which is almost direct. Combining the upper bound of the cost function
proved in Lemma 37 (inequality (24)) with the inequality €, < o} and the bound on
the exploitability obtained in Lemma 38, we obtain the following inequality:

€j41 < (1 —0; + 05]2-)8j, Vi e N.

Here the constant C is independent of the choice of stepsize. Multiplying the ob-
tained inequalities for j = 0, ..., k, we obtain

k
€j+r1 < ggexp <Z In (1 — (5j +C5]2-) )
=0

Using next the inequality In(z) < x—1, satisfied for any « > 0, we obtain the desired
result, inequality (15).

Let us consider the case of adaptive stepsizes. Let us fix the iteration number
k. It suffices to show that for dj satisfying either (11), (12), or (13), there exists a
constant 3 € (0,1), independent of k, such that e < Bey.

Case of the QAG condition. The main idea is to show that the QAG condition is
satisfied when ¢ is smaller than a certain threshold, which is independent of k. Let
0 > 0 be such that the condition is not satisfied. Then, using Lemma 37, we obtain
that

J (m, @) — cdoy, < T (M3, 03) < J(m, @) — dop + C6%0p.

Re-arranging, we deduce that § > § := % > 0. By contraposition, the QAG
condition holds true for any ¢ such that § < 4.

We can now prove that i; is finite and uniformly bounded. Two cases can be
considered. If § > 1, then i, = 0 and §;, = 1. Otherwise, for any j € N, we have

In(0)

In(7)’

Therefore, i < [In(d)/In(7)]. If i = 0, then &, = 1. Otherwise, if iy > 0, then 7'+~
does not satisfy the QAG condition and therefore, 7%~" > § and thus 6, = 7% > 79.
So, in all cases, we have d > dpin := min(1, 7). It follows that

<y = j>

k1 = J (M1, Wey1) — J (M, )
< (j(mk,u‘)k) — j(m,u‘))) — co0k
S Ek — C5min0k S (1 — Cdrnin)fk- (30)

The last inequality was obtained with Lemma 34.
Case of exploitability-based stepsizes. Let us set ap = (C’lD,(:) + CQD]E?)). By
definition, d; = min (1, 2%2) Assume that oy > 2ay, i.e. ay < 0x/2. Then 0 = 1.

Inequality (23) in Lemma 37 and Lemma 34 yield

€ <e Tk < 18
k+1 > Ck 9 — 9 k-
Now assume that o, < 2a,. Then 0, = 2% and inequality (23) yields

o
Ek+1 S €k — @-

26



It follows from the last estimate of Theorem 35 that ar < Coj. Therefore, using
again Lemma 34,

o 1
Ep+1 S € — i < <1 - E>€k’

as was to be proved.
Case of an optimal size. If &), minimizes J(m2,w?), then (30) is necessarily
satisfied. This concludes the proof of the theorem.

7 Numerical illustration

As a numerical illustration, we solve the mean field game system (MFG) with f = 0.
In this situation, the agents only interacts through the law of their controls. The
associated potential problem has the following form

T
inf / £, w] dz dt + / B[ Aw] dt + / gm(T) da.
(mw)eR JqQ 0 Td

Data and numerical scheme We take d =2, kK = 2 and T = 1 so that Q =
T? x [0,1]. The initial measure mg is normally distributed on the torus (it is the
product of two independent von Mises distributions centered at 1/4 and is shown in
Figure 1a). The terminal condition g(x) = 25:1 cos(2mx;) for any x = (21, 12) € T?
is shown in Figure 1b.

(a) Initial measure my. (b) Terminal condition g.

We define L(z,t,v) = %[v%, a(z,t) = Id and ¢(t,2) = 10z. Obviously ¢
derives from the potential ®(t,z) = 5(2? + 23). In other words, we have a two-
dimensional price variable, and the two price relations write, for ¢ = 1,2 as follows:
P; =10 [q vi(@, t)m;(z,t) dz dt. For any control vy € L2(0,1), the cost function of
a representative agent writes:

E[/OT %\utﬁ + 10 (P(t), ) dt + g(X%)].

In this numerical experiment we consider a volatility equal to 0.1 for the con-
trolled stochastic state equation satisfied by X”. Algorithm 1 requires to compute
the mappings w (i.e. a solution to the Hamilton-Jacobi-Bellman equation) and M
(i.e. a solution to the Fokker-Planck equation) at each step. The resolution is done
via an explicit finite difference scheme. In the following, we discretize ) with a
uniform grid containing 10? points in space and 42 points in time.
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Figure 2: Density of players m evaluated at several time steps.

Interpretation and numerical solution When P = 0, the optimal trajectories
of the agents look like slightly perturbed straight lines (with constant speed), ending
in a close neighborhood of the point (0.5,0.5) (it would be a straight in the deter-
ministic case without diffusion coefficient). In view of the initial condition, located
in the “bottom right corner” of the square [0, 1], the agents use in this case positive
controls v; and ve. However, when P is positive, some agents may try to reach the
point (0.5,0.5) using control with a first coordinate that is negative. Graphically
speaking, these agent would cross the left vertical axis (1 = 0) and “jump” to the
right vertical axis (x; = 1). This strategy is particularly interesting for agents an
initial condition x such that x; is positive and close to zero. Of course the same
reasoning is valid for P» positive: some agents would cross the horizontal axis.

The two equilibrium prices are positive, leading to four different kinds of optimal
trajectories: those which do not cross any axis, those crossing only the vertical axis,
those crossing only the horizontal axis, and those crossing both axes, as can be
seen from the graphs of the equilibrium vector field v on Figure 3. Thus the initial
distribution is split into four groups as shown by Figure 2. The group of agents
crossing both axes is actually of very small mass, thus not visible on the graph.
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Figure 3: Vector field v evaluated at several time steps.

Convergence and execution time The convergence results are reported on Fig-
ure 5, for a maximal number N = 250 of iterations. We use the exploitability as an
indicator of convergence, since it can be evaluated explicitely at each iteration. We
recall that g, < o) < Cey.

e Prescribed stepsizes, with d; = p/(k + p) and p € {1,2,5,10}. Figures 5a and
5b show that the convergence of the exploitability with an empirical rate of
convergence of order k7P, in accordance with Lemma 12. The value of p which
yields the best convergence, for a fixed number of iterations k, increases slowly
with respect to k, in accordance with Remark 13.

e Prescribed stepsizes, with 0 = (k 4+ 1)~¢, with a € {0.6,0.7,0.8,0.9}. See
Figure 5c. Similar comments can be done: a better asymptotic rate of con-
vergence is observed for smaller values of «; the value of o which yields the
best convergence for a fixed number of iterations k, decreases with respect to
k. We have done some tests with smaller values of «, which are not shown on
the figure. For N = 250 iterations, the performance is severely degraded for
such values of a and convergence cannot be observed in a reasonable number
of iterations.
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e Adaptive stepsizes. See Figure 5d. Optimal stepsizes are approximated with
golden section search (see page 13) with tolerances k = 1073 and x = 10719; the
QAG condition is implemented with ¢ = 1/4 and 7 = 0.9. The three methods
all yield a linear convergence; the golden section and the exploitability-based
methods are particularly fast. Note that in the case of optimal stepsizes, a
very precise resolution of problem (11) with tolerance 1071° does not improve
the convergence of the method, in comparison with the tolerance 1073,

Finally we compare the time required for the GCG algorithm to satisfy a precision
criterion (o) < 1072 and o < 107*) for different stepsizes. For the considered
example, the time needed to compute the adaptive stepsizes is not significantly
longer than the time needed for the resolution of the HJB and the Fokker-Planck
equation. Unsurprisingly, the adaptive stepsizes are more efficient than the tested
prescribed stepsizes, for the two stopping criteria.

Learning method o, <1073 [ o, <1074
Prescribed
p=1 345.82 3379.41
k%;p p=2 27.39 85.27
p=>5 11.14 17.0
p=10 13.93 15.61
a=20.9 42.46 132.37
op=(k+1)"| a=0.8 15.62 32.3
a=0.7 9.46 14.95
a=0.6 10.3 12.4
Adaptative
Quasi-Armijo-Goldstein 9.1 13.11
Golden-section £k = 1073 2.0 2.2
Golden-section k = 10~19 2.54 2.68
Exploitability-based 3.26 3.91

Figure 4: Execution time of generalized conditional gradient

8 Conclusion

The connection between the GCG method and fictitious play investigated in this
article is not specific to second-order MFGs and could be established in different
settings. Before discussing some possible extensions of our work, let us make some
general comments.

e While we have focused here on a class of MFGs with a convex potential formu-
lation, the case of nonconvex potential MFGs is also of interest. An example of
interactions with a nonconvex variational structure, arising from a consensus
model, is given in [63]. The article [50] shows that in the case of noncon-
vex optimization problems, the Frank-Wolfe algorithm converges to stationary
points, when suitable stepsizes are utilized. The notion of stationarity involved
in [50] should lead to the MFG system associated with the nonconvex potential
formulation.
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(e) Golden section search, QAG and
exploitability-based stepsizes.

Figure 5: Convergence results for prescribed and adaptative stepsizes.

e The very first assumption to be satisfied in the analysis of the Frank-Wolfe

31




algorithm is the Lipschitz continuity of the gradient of the cost function. In
the case of MFGs, this means that the coupling functions should Lipschitz-
continuous in suitable functional spaces. As a consequence, the analysis of
the GCG method for potential MFGs with nonsmooth coupling functions (for
example, MFGs with a local congestion term) may be particularly difficult.

e In general, the GCG method only has a sublinear rate of convergence. The
linear rate of convergence obtained in this article heavily relies on the specific
stability analysis which was done in Section 5 for optimal control problems.

A first natural extension of our work concerns the case of an unbounded domain. We
expect that the linear convergence can be achieved. At a technical level, one difficulty
concerns the boundedness of the distribution mj. While we have established it
with the help of parabolic estimates, we could follow the methodology of [20] to
address this more general case. We also think that linear convergence of the GCG
method can be established for fully discrete MFGs, as formulated in [10], taking
Lipschitz-continuous coupling functions and a strongly convex running cost. Finally,
we mention the case of first-order MFGs, in a Lagrangian formulation (as formulated
n [18], for example): for this case, we only expect a sublinear rate of convergence
for the GCG method.

Finally, let us mention that the fictitious play algorithm is quite similar to the
policy iteration method proposed and analyzed in [15] and [16] for MFGs, since
this method also relies on iterative resolutions of the HJB and the Fokker-Planck
equation. The analysis techniques of our article may bring new insights to the policy
iteration method.
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