Generalized conditional gradient and learning in potential mean field games
Résumé
We apply the generalized conditional gradient algorithm to potential mean field games and we show its well-posedeness. It turns out that this method can be interpreted as a learning method called fictitious play. More precisely, each step of the generalized conditional gradient method amounts to compute the best-response of the representative agent, for a predicted value of the coupling terms of the game. We show that for the learning sequence δk = 2/(k + 2), the potential cost converges in O(1/k), the exploitability and the variables of the problem (distribution, congestion, price, value function and control terms) converge in O(1/ √ k), for specific norms.
Origine | Fichiers produits par l'(les) auteur(s) |
---|