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Generalized conditional gradient and learning in potential

mean field games∗

J. Frédéric Bonnans† Pierre Lavigne†‡ Laurent Pfeiffer†

September 12, 2021

Abstract

We apply the generalized conditional gradient algorithm to potential mean
field games and we show its well-posedeness. It turns out that this method can
be interpreted as a learning method called fictitious play. More precisely, each
step of the generalized conditional gradient method amounts to compute the
best-response of the representative agent, for a predicted value of the coupling
terms of the game. We show that for the learning sequence δk = 2/(k + 2),
the potential cost converges in O(1/k), the exploitability and the variables of
the problem (distribution, congestion, price, value function and control terms)
converge in O(1/

√
k), for specific norms.

Key-words: mean field games, generalized conditional gradient, fictitious play,
learning, exploitability.

AMS classification: 90C52, 91A16, 91A26, 91B06, 49K20, 35F21, 35Q91.

1 Introduction

Mean field games were introduced by J.-M. Lasry and P.-L. Lions in [47, 48, 49]
and M. Huang, R. Malhamé, and P. Caines in [41], to study interactions among a
large population of players. Mean field games have found various applications such
has epidemic control [24, 26], electricity management [4, 21], finance and banking
[17, 19, 20, 28, 44], social network [5], economics [1, 38], crowd motion [45]. In these
models, the nature of the interactions can be of two kinds. Interactions through the
densitym of players, which appear typically in epidemic or crowd motion models, will
be modeled in the following by a congestion function denoted f . Interactions through
the controls v, which rather appear in economics, finance or energy management
models, will be modeled by a price function denoted φ.
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Framework In this article, we study the generalized conditional gradient algo-
rithm to solve potential mean field game problems. We consider the continuous and
finite time framework formulated in [9], consisting of a Hamilton-Jacobi-Bellman
equation, a Fokker-Planck equation, and other coupling equations. We show that
the generalized conditional gradient method can be interpreted as a learning proce-
dure called fictitious play. This perspective allows us to:

1. borrow and apply classical tools from the conditional gradient theory and
derive, under suitable assumptions, convergence rates for the potential cost,
the different variables generated by the fictitious play algorithm, and the ex-
ploitability;

2. show that the notion of exploitability from game theory is equivalent to the
notion of primal-dual gap defined (as defined in Section 5).

Potential mean field games We say that a mean field game has a convex po-
tential formulation if the congestion and price mappings f and φ derive from convex
potentials F and Φ. In the mean field game literature, potential (or variational)
mean field games were first considered in [48]. This class of games has been widely
investigated, we refer the reader to [8, 15, 18, 51, 57] for congestion interactions and
[9, 33, 34, 36, 35, 37] for price interactions. A key interest of potential mean field
games is that the mean field game system stands as sufficient first order conditions
for the potential control problem. This is of particular interest for numerical resolu-
tion: in such a case one expects classical optimization algorithms to be applicable.

Algorithms The numerical resolution of mean field games has been widely stud-
ied, see [3] for a survey. Primal-dual methods [10, 12, 13] fully use the primal-dual
structure of the potential problem. The augmented Lagrangian algorithm [6, 8, 10]
is a primal method based on successive minimization of the primal variable and gra-
dient ascent step of dual variables. Other methods have been investigated such as
the Sinkhorn algorithm [7] or the Mirror Descent algorithm [39, 53].

Let us emphasize that most of the above references deal with interaction terms
depending on the distribution of the states of the agents; few publications are con-
cerned with interactions through the controls (see [2, 10]).

Generalized conditional gradient The generalized conditional gradient algo-
rithm is a variant of the conditional gradient algorithm, also called Frank-Wolfe
algorithm, first developed in [29]. The conditional gradient method is designed to
minimize a convex objective function on a convex and compact set. The idea is to lin-
earize the objective function at each iteration k ∈ N, at a given point x̄k, and to find
a minimizer xk of this linearized problem. Then a new point x̄k+1 = (1−δk)x̄k+δkxk
is computed for some step size δk ∈ [0, 1]. As we will see later, the step size δk can
be interpreted as a learning rate for games. A classical choice of step size is given by
δk = 2/(k + 2) (see [25, 42]) which yields the convergence of the objective function
in O(1/k). For a recent description of the conditional gradient algorithm, we refer
to [43, Chapter 1]. In our study we consider the generalized conditional gradient
algorithm (first studied in [11]), which is based on a semi-linearization of the objec-
tive function instead of a full linearization. An interesting feature of this method is
that most of the existing convergence results obtained for the conditional gradient
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remain true for the generalized conditional gradient method. We refer to [58] for a
study. We mention that the previous references deal with finite dimensional prob-
lems but these algorithms have been also investigated in infinite dimensional setting,
see [11, 56, 60] respectively for studies in Hilbert, measures and Banach spaces.

Learning and exploitability Since most models in social science or engineering
rely on Nash equilibria, one can wonder whether such equilibria can be reached if all
agents follow their personal interests. Learning is thus a central question in game
theory [30]. Fictitious play is a best response iterative method for solving games,
introduced in [14, 59]. The idea is the following: at each step of the algorithm, for
a given belief on the strategy of the others, find the best response of the players;
then learn by averaging all the best responses found from the beginning of the
learning procedure. An application of the fictitious play to potential games can
be found in [52]. The fictitious play has been investigated in [16, 27, 40, 55]. The
convergence results for learning methods can be of various forms. In potential games,
one can study the convergence of the potential cost along a sequence generated by
the fictitious play algorithm. In general, one can consider the exploitability of the
game at each iteration and try to show its convergence to zero. Given a player and a
belief on the others behaviors, the exploitability is the expected relative reward that
the player can get by choosing a best response. This notion has recently received a
growing attention [22, 23, 31, 53, 54, 55]. The convergence of the exploitability has
been addressed in [55] in the context of continuous time learning and discrete mean
field games, and a convergence rate is provided.

Link between the generalized conditional gradient and fictitious play A
key message of this article is that, in the context of continuous potential mean
field games, the generalized conditional gradient algorithm can be interpreted as a
fictitious play method. It relies on the following fact: at each step of the method,
the problem to be solved (arising from a semi-linearization of the potential problem)
coincides with the individual control problem of the agents, for a given belief of the
coupling terms. The update formula x̄k+1 = (1 − δk)x̄k + δkxk corresponds to the
learning step in the fictitious play algorithm, where the agents update their belief
by averaging the past and the new distributions of states and controls.

This interpretation has already been highlighted in a very recent work [31], for a
class of potential mean field games with some discrete structure. To the best of our
knowledge, no other contribution in the literature has investigated the conditional
gradient method for mean field games and has pointed out this interpretation. A
minor difference between our framework and the one of [31] is the linearity of the
running cost of the agents, so that they can apply the classical conditional gradient
algorithm (and do not need to rely on semi-linearizations of the potential cost). In
our PDE setting, we must employ the standard change of variable “à la Benamou-
Brenier” and the perspective function of the running cost to get a convex potential
problem. It turns out that in order to get an interpretation of the method as a learn-
ing method, the contribution of the perspective function (in the potential cost) must
not be linearized, whence the use of the generalized conditional gradient algorithm.

Contributions Our contributions concern the well-posedness of the generalized
conditional gradient algorithm and its convergence to the solution of the problem.
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The well-posedness is established with the help of suitable regularity estimates for
the Hamilton-Jacobi-Bellman equation and the Fokker-Planck equation.

Similarly to [31], we use the standard convergence results of the conditional
gradient method to prove that the potential cost converges at a rate O(1/k) and the
exploitability at a rate O(1/

√
k), when δk = 2/(k + 2).

In comparison with [31], the main novelty of our work (besides the different
analytical framework) is the proof of convergence of all variables of the game: the
coupling terms (price and congestion), the distribution of the agents, and their value
function, at a rate O(1/

√
k). A key tool for the proof of convergence is a kind of

quadratic growth property satisfied by the potential cost, which itself follows from
the (assumed) strong convexity of the running cost of the agents.

Let us mention that we also provide convergence rates for the case δk = 1/(k+1)
which is more standard in the fictitious play algorithm: O(ln(k)/k) for the potential
cost, O(

√
ln(k)/k) for the exploitability and the different variables of the game.

Plan of the paper In Section 2 we provide our framework, the mean field game
system we are interested in, and give our main assumptions. In Section 3 we study
a stochastic individual control problem. We derive the Hamilton-Jacobi-Bellman
equation associated with the value function of the control problem, and provide
some regularity results. We link this problem with a partial differential equation
(PDE) control problem of a Fokker-Planck equation and show existence of a (regular)
optimal policy. In Section 4 we explicit the potential problem under study. We derive
uniqueness results for the potential and the individual control problem. In Section 5
we recall the generalized conditional gradient algorithm and apply it to our context.
We show that the algorithm is well-defined. We define the exploitability and show
the equality with the primal-dual gap. At the end of the section we exhibit the
link with the fictitious play learning method. Finally, in Section 6, we provide our
convergence results.

2 Data and main assumptions

2.1 Notations

We fix T > 0 the duration of the game and d, k ∈ N? two dimensional coefficients.

Sets We set Q = Td × [0, T ]. Given a metric space X, we denote by X? its dual.
For any α ∈ (0, 1), we denote by Cα(Q) the set of Hölder continuous mappings on Q
of exponent α and by C2+α,1+α/2(Q) the set of continuous mappings u with Hölder
continuous derivatives ∂tu, ∇u and D2

xxu on Q of exponent α. We also denote by
C1+α,α(Q;Rd) the set of all v ∈ Cα(Q;Rd) with Dxv ∈ Cα(Q,Rd×d).

Sobolev spaces are denoted by Wn,q(Q), the order of derivation n being possibly
non-integral (following the definition in [46, section II.2]). We set

W 2,1,q(Q) = W 1,q(Q) ∩ Lq(0, T ;W 2,q(Td)), W 1,0,q(Q) = Lq(0, T ;W 1,q(Td)).

We define

D1(Td) =

{
m ∈ L∞(Td), m ≥ 0,

∫
Td
m(x)dx = 1

}
.

We fix a real number p such that p > d+ 2.
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Nemytskii notations For any mappings g : Q × Rd → Rd and u : Q → Rd, we
define g[u] : Q→ R,

g[u](x, t) = g(x, t, u(x, t))

called Nemytskii operator. This notation will mainly be used for the Hamiltonian
H. Note that Hp will denote the Nemytskii operator associated with the partial
derivative of H with respect to p (a similar notation will be used for the other
partial derivatives).

Data of the problem We fix an initial distribution and a terminal cost

m0 ∈ D1(Td), g : Td → R,

and four maps: a running cost L, a congestion cost f , a vector of price φ and an
aggregation term a,

L : Q× Rd → R,
f : Q×D1(Td)→ R,
φ : [0, T ]× Rk → Rd,
a : Q→ Rk×d.

We assume that L is strongly convex, more precisely, we assume that there exists a
constant C0 > 0 such that for any v, v′ ∈ Rd and for any (x, t) ∈ Q, we have

〈Lv(x, t, v)− Lv(x, t, v′), v − v′〉 ≥
1

C0
|v − v′|. (A1)

For any (x, t, p) ∈ Q× Rd, we define the Hamiltonian H,

H(x, t, p) = sup
v∈Rd

−〈p, v〉 − L(x, t, v).

The strong convexity assumption on L ensures that H takes finite values and is con-
tinuously differentiable (more regularity properties on H are collected in Appendix
A). We define the perspective function L̃ : Q× R× Rd → R,

L̃(x, t,m,w) =


mL

(
x, t, wm

)
, if m > 0,

0, if m = 0 and w = 0,

+∞, otherwise.

(1)

Note that L̃ is convex and lower semi-continuous with respect to (m,w). We define
A : L1(Q;Rd)→ L1(0, T ;Rk) and A? : L1(0, T ;Rk)→ L1(Q;Rd) as follows,

A[w](t) =

∫
Td
a(x, t)w(x, t)dx, A?[P ](x, t) = a?(x, t)P (t),

for any (x, t) ∈ Q.
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2.2 Coupled system and assumptions

The mean field game system under study is the following,

(i)

{
−∂tu−∆u+H[∇u+A?P ] = γ,

u(x, T ) = g(x),

(x, t) ∈ Q,
x ∈ Td,

(ii) v = −Hp[∇u+A?P ], (x, t) ∈ Q,

(iii)

{
∂tm−∆m+∇ · (vm) = 0,

m(0, x) = m0(x),

(x, t) ∈ Q,
x ∈ Td,

(iv) γ(x, t) = f(x, t,m(t)), (x, t) ∈ Q,

(v) P (t) = φ[A[vm]](t), t ∈ [0, T ],

(MFG)

where the unknown is (m, v, u, γ, P ) with m(x, t) ∈ R, v(x, t) ∈ Rd, u(x, t) ∈ R,
γ(x, t) ∈ R, and P (t) ∈ Rk, for any (x, t) ∈ Q. The equation (MFG,i) is a Hamilton-
Jacobi-Bellman equation and describes the evolution of the value function as time
goes backward. Equation (MFG,ii) defines the optimal control v, which is given
by the gradient Hp of the Hamiltonian. Equation (MFG,iii) is a Fokker-Planck
equation, describing the evolution of the state distribution of the agents. Equation
(MFG,iv) defines the congestion γ and equation (MFG,v) the price P .

Regularity assumptions We assume that Lv is differentiable with respect to x
and v and that a is differentiable with respect to x. All along the article, we make
use of the following assumptions.

Growth assumptions There exists C0 > 0 such that for all (x, t) ∈ Q, y ∈ Td,
v ∈ Rd, z ∈ Rk, and m ∈ D1(Td),

L(x, t, v) ≤ C0|v|2 + C0, (A2)

|L(x, t, v)− L(y, t, v)| ≤ C0|x− y|(1 + |v|2), (A3)

|φ(t, z)| ≤ C0, (A4)

|f(x, t,m)| ≤ C0. (A5)

Hölder and Lipschitz continuity assumptions For all R > 0, there exists
α0 ∈ (0, 1) such that

L ∈ Cα0(BR),

Lv ∈ Cα0(BR,Rd),
Lvx ∈ Cα0(BR,Rd×d),
Lvv ∈ Cα0(BR,Rd×d),


φ ∈ Cα0(B′R,Rd),
a ∈ Cα0(Q,Rk×d),

Dxa ∈ Cα0(Q,Rk×d×d),
(A6)

where BR = Q×B(Rd, R) and B′R = [0, T ]×B(Rk, R). There exists α0 ∈ (0, 1) and
C0 > 0 such that

|f(x2, t2,m2)− f(x1, t1,m1)| ≤ C0

(
|x2 − x1|+ |t2 − t1|α0 + ‖m2 −m1‖L2(Td)

)
,

(A7)
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for all (x1, t1) and (x2, t2) ∈ Q and for all m1 and m2 ∈ D1(Td). We further assume
that φ is Lipschitz continuous with respect to its second variable,

|φ(t, z2)− φ(t, z1)| ≤ C0|z2 − z1|, (A8)

for all (x, t) ∈ Q, for all z1 and z2 ∈ Rk.
Remark 1. Note that compared to the framework of [9] the Assumptions (A4) and
(A7) are strengthened. Indeed, we require here more regularity: on f with respect to
its third variable; on φ with respect to its second variable.

Boundary conditions and convention on constants We assume that there
exists ε0 > 0 such that m0(x) ≥ ε0 for any x ∈ Td. There exists α0 ∈ (0, 1) such
that

m0 ∈ C2+α0(Td), g ∈ C2+α0(Td). (A9)

All along the article, we make use of two generic constants C > 0 and α ∈ (0, 1).
The value of C may increase from an inequality to the next one; the value of α may
decrease. The constants depend on the data of the problem introduced above.

2.3 Potentials

Congestion We assume that f is monotone, that is to say,∫
Td

(f(x, t,m2)− f(x, t,m1))(m2(x)−m1(x))dx ≥ 0,

for any m1 and m2 ∈ D1(Td) and for any t ∈ [0, T ]. We assume that f has a
primitive, that is, we assume the existence of a map F : [0, T ]×D1(Td) such that

F (t,m2)− F (t,m1) =

∫ 1

0

∫
Td
f(x, t, sm2 + (1− s)m1)(m2(x)−m1(x))dxds. (2)

The monotonicity assumption implies that

F (t,m2) ≥ F (t,m1) +

∫
Td
f(x, t,m1)(m2(x)−m1(x))dx.

Since this inequality holds for any m1 ∈ D1(Td), F is convex with respect to its
second variable as the supremum of affine functions.

Price We assume that φ has a convex potential Φ, that is to say there exists a
measurable mapping Φ : [0, T ]×Rk → R, convex with respect to its second variable
and such that φ(t, z) = ∇zΦ(t, z) for any (t, z) ∈ [0, T ]× Rk.

3 Estimates for the individual control problem

In this section we establish regularity results on the variables u, v, and m, when
obtained by solving the equations (MFG,i-iii), for fixed congestion and price. We
investigate the stochastic optimal control problem associated with the HJB equation
(MFG,i). In the section we fix β ∈ (0, 1) and we consider

Uβ = C1,β(Q)× Cβ(0, T ;Rk). (3)

We also fix a pair (γ, P ) ∈ Uβ and a constant R > 0 such that

‖γ‖L∞(Q) + ‖∇γ‖L∞(Q;Rd) + ‖P‖L∞(0,T ;Rk) ≤ R. (4)
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3.1 The individual problem as a stochastic optimal control problem

Let (Bs)s∈[0,T ] denote a Brownian motion and let Y be a random variable, inde-
pendent of (Bs)s∈[0,T ], with probability distribution m0. Let F denote the filtration
generated by the Brownian motion (Bs)s∈[0,T ] and the initial random variable Y .

We denote by L2
F(t, T ;Rd) (resp. L2,K

F (t, T ;Rd), for some constant K > 0) the set
of progressively measurable stochastic processes ν on [t, T ] with value in Rd such

that E
[∫ T
t |νs|

2ds
]
< +∞ (resp. E

[∫ T
t |νs|

2ds
]
≤ K). For all ν ∈ L2

F(t, T ;Rd), we

denote by (Xν
s )s∈[0,T ] the solution to the stochastic differential equation

dXs = νsds+
√

2dBs, X0 = Y.

We define the individual cost Zγ,P : L2
F(0, T ;Rd)→ R,

Zγ,P (ν) = E
[∫ T

0
L(Xν

s , s, νs) + 〈A?[P ](Xν
s , s), νs〉+ γ(Xν

s , s)ds+ g(Xν
T )

]
. (5)

We consider the following stochastic individual control problem

inf
ν∈L2

F(0,T ;Rd)
Zγ,P (ν). (Pγ,P )

This problem will play an important role in the following, in particular in learning
procedures: at each step, a representative player assumes the behavior of the others
to be given and solves (Pγ,P ).

We define the mapping Jγ,P : Q× L2
F(0, T ;Rd)→ R,

Jγ,P (x, t, ν) = E
[∫ T

t
L(Xs, s, νs) + 〈A?[P ](Xs, s), νs〉+ γ(Xs, s)ds+ g(XT )

]
,

where (Xs)s∈[t,T ] is the solution to

dXs = νsds+
√

2dBs, Xt = x.

We define by u[γ, P ] : Q → R the value function associated with the individual
control problem (Pγ,P ),

u[γ, P ](x, t) = inf
ν∈L2

F(t,T ;Rd)
Jγ,P (x, t, ν). (6)

Lemma 2. Let u = u[γ, P ]. There exists a constant C > 0, only depending on R,
such that

u(x, t) = inf
ν∈L2,C

F (t,T ;Rd)
Jγ,P (x, t, ν)

for a.e. (x, t) ∈ Q, i.e. the optimization set in (6) can be restricted to L2,C
F (t, T ;Rd)

(the set is defined in the beginning of section 3.1).

Proof. We first derive a lower bound of L. By assumption (A6), L(x, t, 0) and
Lv(x, t, 0) are bounded. It follows then from the strong convexity assumption (A1)
that there exists a constant C > 0 such that

1

C
|ν|2 − C ≤ L(x, t, ν), for all (x, t, ν) ∈ Q× Rd. (7)
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Then, for any (x, s) ∈ Q and for any ν ∈ Rd, we have the following estimates:

L(x, s, ν) + 〈A?[P ](x, s), ν〉 ≥ 1

C
|ν|2 − ‖a‖L∞(Q;Rk×d)|P (s)||ν| − C

≥ 1

C
(|ν|2 − |P (s)|2 − 1) ≥ 1

C
(|ν|2 − 1).

Let t ∈ [0, T ], let ε ∈ (0, 1) and let ν̃ ∈ L2
F(t, T ;Rd) be an ε-optimal process. Using

the bound on g given in Assumption (A9) and using inequality (4), we deduce from
the above inequality that

E
[∫ T

t
|ν̃s|2ds

]
≤ C

(
inf

ν∈L2
F(t,T ;Rd)

Jγ,P (x, t, ν) + ε+ 1

)
≤ C (u[γ, P ](x, t) + 2) ≤ C,

where the constant C does not depend on t and ε. Thus any ε-optimal process lies
in L2,C

F (t, T ;Rd), which concludes the proof.

We now consider the Hamilton-Jacobi-Bellman equation

−∂tu−∆u+H[∇u+A?P ] = γ, (x, t) ∈ Q,
u(x, T ) = g(x), x ∈ Td. (8)

By the classical dynamic programming theory, we know that u[γ, P ] is the unique
viscosity solution to (8).

Lemma 3. There exists α ∈ (0, 1), depending on γ and P , such that u[γ, P ] ∈
C2+α,1+α/2(Q). In addition there exists a constant C > 0, only depending on R,
such that

‖u[γ, P ]‖W 2,1,p(Q) + ‖∇u[γ, P ]‖W 2,1,p(Q) ≤ C.

Proof. The proof is given in Appendix D.

3.2 The individual problem as a PDE optimal control problem

We consider in this subsection an equivalent formulation of (Pγ,P ) as an optimal
control problem of the Fokker-Planck equation. To this purpose, we consider the
mapping m : W 1,0,∞(Q) → W 2,1,p(Q) which associates to any v ∈ W 1,0,∞(Q) the
solution to the Fokker-Planck equation

∂tm−∆m+∇ · (vm) = 0, (x, t) ∈ Q,
m(x, 0) = m0(x), x ∈ Td. (9)

Lemma 4. The mapping m is well defined. Moreover, for any v ∈ W 1,0,∞(Q), we
have m[v](x, t) > 0, for any (x, t) ∈ Q.

Proof. Direct consequence of Lemma 29.

We define Bp = W 2,1,p(Q) ×W 1,0,∞(Q) (recall that p > d + 2 is fixed) and we
define

R = {(m, v) ∈ Bp, ∂tm−∆m+∇ · (vm) = 0, m(0) = m0, (x, t) ∈ Q} ,
R̃ = {(m,w) ∈ Bp, ∂tm−∆m+∇ · w = 0, m(0) = m0, m(x, t) > 0, (x, t) ∈ Q} .
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Lemma 5. The mapping χ : R → R̃ given by χ(m, v) = (m,mv) is well-posed and
bijective. Its inverse is given by χ−1(m,w) = (m,w/m).

Proof. Let (m, v) ∈ R. We have that m = m[v] ∈ W 2,1,p(Q), thus m ∈ L∞(Q) and
∇m ∈ L∞(Q;Rd), by Lemma 26. It follows that w := m[v]v ∈W 1,0,∞(Q). Moreover,
m > 0, by Lemma 4. Therefore (m,w) ∈ R̃, that is, χ is well defined. Similarly,
for any (m,w) ∈ R̃, we have that w/m ∈ W 1,0,∞(Q) and m[w/m] ∈ W 2,1,p(Q).
Obviously we have χ ◦ χ−1 = id and χ−1 ◦ χ = id, which concludes the proof.

Remark 6. Let (m, v) ∈ R and let (m,w) = χ(m, v) ∈ R̃. Recalling the definition
of the perspective function (1), we have∫

Q
L[v]mdxdt =

∫
Q
L̃[m,w]dxdt.

This fact, together with the existence of a bijection between R and R̃, will allow to
prove the equivalence of the optimal control problems, introduced later, posed over R
and R̃.

We define the individual cost Zγ,P : R → R,

Zγ,P (m, v) =

∫
Q

(L[v] + γ)mdxdt+

∫ T

0
〈A[mv], P 〉dt+

∫
Td
gm(T )dx.

We define the following individual control problem

inf
(m,v)∈R

Zγ,P (m, v). (Pγ,P )

Here the state equation of the agent is a Fokker-Planck equation with controlled
drift v. We define the individual cost Z̃γ,P : R̃ → R,

Z̃γ,P (m,w) =

∫
Q

(
L̃[m,w] + γm

)
dxdt+

∫ T

0
〈A[w], P 〉dt+

∫
Td
gm(T )dx,

where L̃ is the perspective function of L (see the definition (1)), and the following
control problem

inf
(m,w)∈R̃

Z̃γ,P (m,w). (P̃γ,P )

Given v ∈W 1,0,∞(Q), we denote (Xv
s )s∈[0,T ] the solution to the following stochas-

tic differential equation

dXs = v(Xs, s)ds+
√

2dBs, X0 = Y. (10)

We further consider the associated control νvs ∈ L2
F(0, T ;Rd) defined by νvs =

v(s,Xv
s ).

Lemma 7. For any v ∈W 1,0,∞(Q,Rd), we have

Zγ,P (νv) = Zγ,P (m[v], v) = Z̃γ,P ◦ χ(m[v], v).

Proof. It is clear that Zγ,P (m[v], v) = Z̃γ,P ◦ χ(m[v], v), see Remark 6. Since v ∈
W 1,0,∞(Q,Rd), the process νv lies in L2

F(0, T ;Rd) and Zγ,P (νv) < +∞. For any
t ∈ [0, T ], m[v](·, t) is the probability density of the distribution of Xv

t . In addition
we have by definition that νvt = v(t,Xv

t ), which yields that Zγ,P (νv) = Zγ,P (m[v], v).
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Lemma 8. Let u = u[γ, P ] and let v = −Hp[∇u + A?P ]. Let m = m[v] and let
(m,w) = χ(m, v).

1. There exists α ∈ (0, 1), depending on γ and P , such that

v ∈ C1+α,α(Q;Rd), m ∈ C2+α,1+α/2(Q), w ∈ C1+α,α(Q;Rd).

2. There exists C > 0, depending only on R, such that

‖v‖W 1,0,∞(Q;Rd) ≤ C, ‖m‖W 2,1,p(Q) ≤ C, ‖w‖W 1,0,∞(Q;Rd) ≤ C.

3. The stochastic process (νvs )s∈[0,T ] is the solution to (Pγ,P ).

4. The pair (m, v) is a solution to (Pγ,P ) and (m,w) is a solution to (P̃γ,P ).

Proof. Point 1. We know that Hp is Hölder continuous (Lemma 21), ∇u is Hölder
continuous (Lemma 3), and P is Hölder continuous by assumption. Thus v is Hölder
continuous. Now we show that Dxv ∈ Cα(Q,Rd×d). The derivative of v is given by

Dxv = −Hpx[∇u+A?P ]−Hpp[∇u+A?P ](D2
xxu+DxA

?P ). (11)

Assumption (A6) yields DxA
?P ∈ Cα(Q;Rd×d). In addition we have that ∇u ∈

Cα(Q;Rd) and D2
xxu ∈ Cα(Q;Rd×d). Finally the Hölder continuity of Hpp (see

Lemma 21) yields v ∈ C1+α,α(Q). It follows thatm ∈ C2+α,1+α/2(Q;Rd), by Theorem
27 and w = mv ∈ C1+α,α(Q;Rd), as was to be proved.
Point 2. The constants C used for proving the second point only depend on C. By
Lemma 21, Hp, Hpp, and Hpx are Hölder continuous. By (4) and Lemma 3, there
exists C > 0 only depending on R such that ‖v‖L∞(Q;Rd) ≤ C.

We use again formula (11) for proving that Dxv is uniformly bounded. We
know that a and Dxa are bounded (Assumption (A6)) and by Lemma 3, ∇u and
Dxx

2u are bounded in L∞ by some constant depending on R. We conclude that
‖v‖W 1,0,∞(Q;Rd) ≤ C, for some C depending only on R. Now we have that m is the
solution to the Fokker-Planck equation

∂tm−∆m+m(∇ · v) +∇m · v = 0, (x, t) ∈ Q,
m(0, x) = m0(x), x ∈ Td.

Since ‖v‖W 1,0,∞(Q;Rd) ≤ C, we have that m is the solution of a parabolic PDE
with bounded coefficients, which implies that ‖m‖W 2,1,p(Q) ≤ C, by Theorem 23.
By Lemma 26, we have ‖m‖L∞(Q) ≤ C and ‖∇mk‖L∞(Q;Rd) ≤ C. It follows that
‖w‖W 1,0,∞(Q;Rd) ≤ C since w = mv.
Point 3. The statement holds by a classical verification argument.
Point 4. This is a direct consequence of Point 3 and Lemma 7. Indeed, for any
(m′, v′) ∈ R, we have

Zγ,P (m′, v′) = Zγ,P (νv
′
) ≥ Zγ,P (νv) = Zγ,P (m[v], v),

which proves the optimality of (m[v], v). The optimality of χ(m[v], v) follows then
from Remark 6.
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4 Properties of the solution to the mean field game sys-
tem

We first recall the main result of [9] concerning the existence and uniqueness of a
solution (m̄, v̄, ū, γ̄, P̄ ) to (MFG). Then we establish a quadratic growth property
(inequality (13)) which is at the heart of our convergence analysis in Section 6. It
allows to show that (m̄, v̄) is the unique solution to an optimization problem (P) and
that (m̄, m̄v̄) is the unique solution to an equivalent convex potential problem (P̃).
With an analogous reasonning, we prove the uniqueness of the solutions to problems
(Pγ,P ) and (P̃γ,P ).

Theorem 9. There exists α ∈ (0, 1) such that (MFG) has a unique classical solution
(m̄, v̄, ū, γ̄, P̄ ), with 

m̄ ∈ C2+α,1+α/2(Q),

v̄ ∈ C1+α,α(Q;Rd)
ū ∈ C2+α,1+α/2(Q),

γ̄ ∈ Cα(Q),

P̄ ∈ Cα(0, T ;Rk).

(12)

Proof. Direct application of [9, Theorem 1, Proposition 2].

We define the following primal problem

inf
(m,v)∈R

J (m, v) :=

∫
Q
L[v]mdxdt+

∫ T

0
(F [m] + Φ[A[mv]]) dt+

∫
Td
gm(T )dx. (P)

Lemma 10. Let (m̄, v̄, ū, γ̄, P̄ ) be the solution to (MFG). Then there exists a con-
stant C > 0 such that for any (m, v) ∈ R we have the following estimate:

J (m, v)− J (m̄, v̄) ≥ 1

C

∫
Q
|v − v̄|2mdxdt. (13)

Proof. By [9, Proposition 2], we have that (m̄, v̄) is solution to Problem (P). By
(MFG,ii) we have that v̄ = −Hp[∇ū+A?P̄ ]. Then by Lemma 22,

L[v](x, t)m(x, t)−L[v̄](x, t)m̄(x, t) ≥ −H[∇ū+A?P̄ ](x, t)(m(x, t)− m̄(x, t))

−〈(∇ū+A?P̄ )(x, t), w(x, t)− w̄(x, t)〉+
1

C
|v(x, t)− v̄(x, t)|2m(x, t),

(14)

for all (x, t) ∈ Q, v ∈ C1+α(Q;Rd) where (w, w̄) = (mv, m̄v̄). By (MFG,i),∫
Q
−H[∇ū+A?P̄ ](m− m̄)dxdt =

∫
Q

(−∂tū−∆ū− γ̄)(m− m̄)dxdt. (15)

By (MFG,iv) we have that γ̄(x, t) = f(x, t, m̄(t)) thus by convexity of F ,∫ T

0
(F [m]− F [m̄]) dt ≥

∫
Q
γ̄(m− m̄)dxdt. (16)

12



By (MFG,v) we have that P̄ = φ[Aw̄] thus by convexity of Φ,∫ T

0
(Φ[A[w]]−Φ[A[w̄]]) dt ≥

∫ T

0
〈P̄ , A[w − w̄]〉dt =

∫
Q
〈A?P̄ , w − w̄〉dxdt. (17)

Combining (14), (15), (16), and (17) and integrating by parts we obtain that

J (m, v)− J (m̄, v̄) ≥
∫
Q

((∂tū−∆ū)(m− m̄)−∇ū(w − w̄)) dxdt

+

∫
Td

(m(T )− m̄(T ))gdx+
1

C

∫
Q
|v − v̄|2mdxdt

≥
∫
Q
ū (∂t(m− m̄)−∆(m− m̄) +∇ · (w − w̄)) dxdt

+

∫
Td
ū(0)(m(0)−m0)dx+

1

C

∫
Q
|v − v̄|2mdxdt.

Then (13) holds since (m,w) and (m̄, w̄) lie in R̃.

We next consider the problem

inf
(m,w)∈R̃

J̃ (m,w) :=

∫
Q
L̃[m,w]dxdt+

∫ T

0
(F [m] + Φ[Aw]) dt+

∫
Td
gm(T )dx. (P̃)

Corollary 11. Let (m̄, v̄, ū, γ̄, P̄ ) be the unique solution to (MFG). Then (m̄, v̄) is
the unique solution to Problem (P) and (m̄, w̄) := χ(m̄, v̄) is the unique solution to
Problem (P̃).

Proof. Let (m, v), (m′, v′) ∈ R be two solutions to Problem (P). Then by Lemma
10 we have

∫
Q |v − v

′|2mdxdt = 0 which yields v = v′ since m is positive. Then m

and m′ are solution to the same Fokker-Planck equation and thus m = m′. Finally,
(m̄, w̄) is the unique solution to (P̃), by Remark 6.

Lemma 12. Let β ∈ (0, 1), let (γ, P ) ∈ Uβ, let u = u[γ, P ] and let v = −Hp[∇u+P ].
Then (m[v], v) is the unique solution to Problem (Pγ,P ) and χ(m[v], v) is the unique
solution to Problem (P̃γ,P ).

Proof. The optimality of (m[v], v) and χ(m[v], v) has been established in Lemma 8.
Following the proof of Lemma 10, one can easily show that

Zγ,P (m′, v′)−Zγ,P (m[v], v) ≥ 1

C

∫
Q
|v′ − v|2m′dxdt,

for any (m′, v′) ∈ R. Applying the same reasoning as in the proof of Corollary 11
and using Remark 6 allows to conclude the proof.

5 Generalized conditional gradient

In this section we first present the generalized conditional gradient method in an
abstract framework. Then we present a generalized conditional gradient method for
our potential mean field game. We show that this procedure is linked with the ficti-
tious play method, a learning procedure. The generalized conditional gradient point
of view allows us to link two notions from different areas: the notion of exploitability
from game theory and the notion of duality gap defined in (generalized) conditional
gradient theory.
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Abstract framework We present here the main ideas of the generalized condi-
tional gradient method in a finite dimensional setting. Consider the optimization
problem

min
x∈K

f(x) = f1(x) + f2(x), (Pf )

where K is a convex and compact subset of Rn of finite diameter D, f1 is a (possibly
non-smooth) convex function and f2 a continuous differentiable function with L-
Lipschitz gradient. We consider the mapping h : K ×K → R defined by

h(x, y) = f1(y)− f1(x) + 〈∇f2(x), y − x〉.

The mapping h is a kind of first-order approximation of f(y)− f(x), where only f2

is linearized. Let (δk)k∈N ∈ [0, 1] be a sequence of step sizes. The method generates
iteratively two sequences (x̄k)k∈N and (xk)k∈N in K. At iteration k, x̄k is available
and (xk, x̄k+1) is obtained as follows:

xk ∈ arg min
y∈K

h(x̄k, y),

x̄k+1 = (1− δk)x̄k + δkxk.

We also consider the mapping σ : K → R defined by

σ(x) = −min
y∈K

h(x, y) ≥ 0.

We call σ(x) the primal-dual gap at x ∈ K. This terminology is motivated by the
following. Consider the Lagrangian L : K × Rd × Rd → R,

L(x, y, λ) = f1(x) + f2(y) + 〈λ, x− y〉.

It is easy to verify that (Pf ) can be formulated as follows:

inf
x∈K, y∈Rd

sup
λ∈Rd

L(x, y, λ).

In particular, for x ∈ K, we have f(x) = supλ′∈Rd L(x, x, λ′). The dual problems
writes

sup
λ∈Rd

inf
x∈K, y∈Rd

L(x, y, λ).

Given x ∈ K, a candidate for the dual problem is λ = ∇f2(x). The dual cost is then

inf
x′∈K, y′∈Rd

L(x′, y′, λ) = inf
x′∈K

f1(x′) + 〈λ, x′〉+ inf
y′∈Rd

f2(y′)− 〈∇f2(x), y′〉

= f(x) + inf
x′∈K

h(x, x′) = f(x)− σ(x).

Thus σ(x) is nothing but the difference between the primal cost at x, and the dual
cost at ∇f2(x). We will later see that it coincides with the notion of exploitability
in the context of mean field games.

Under the previous assumptions, one can show that (see [58, Lemma 2.4])

0 ≤ f(x̄k)− f(x̄) ≤ σ(x̄k), (18)

where x̄ is a solution to problem (Pf ). In words, any point x ∈ K is σ(x)-optimal.
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Application to potential mean field games Our framework is infinite dimen-
sional, we aim at minimizing the potential J̃ (m,w) under the constraint (m,w) ∈ R̃.
Following the ideas presented in the previous paragraph, we define a mapping
h : R̃ × R̃ → R,

h((m,w), (m′, w′)) = Z̃γ,P (m′, w′)− Z̃γ,P (m,w)

=

∫
Q

(
L̃[m′, w′]− L̃[m,w]

)
dxdt+

∫
Td
g(m′ −m)(T )dx

+

∫
Q
γ(m′ −m)dxdt+

∫ T

0
〈A[w′ − w], P 〉dt (19)

where γ(x, t) = f(x, t,m(t)) and P (t) = φ(t, Aw(t)) for any (x, t) ∈ Q. By analogy
with the previous abstract framework, we can interpret h((m,w), (m′, w′)) as a par-
tial linearization of J̃ (m′, w′) − J̃ (m,w): we have a non-linearized part composed
of the perspective function L̃ (analogous to the term f1) and a linearized part com-
posed of all the other terms (analogous to the term f2): the congestion γ, the price
P and the terminal cost g. Two reasons motivates this choice of linearization:

1. In general the perspective function L̃ is not differentiable.

2. This particular choice of linearization allows to link the generalized conditional
gradient method with the fictitious play algorithm, as explained in the end of
this section.

We define the following generalized conditional gradient algorithm for potential
mean field games as follows:

Algorithm 1 Generalized conditional gradient

Choose (m̄0, w̄0) ∈ C2+α,1+α/2(Q) × C1+α,α(Q;Rd) with m̄0(x, t) > 0 for any
(x, t) ∈ Q and choose a sequence (δk)k∈N ∈ [0, 1].
for 0 ≤ k < N do

Find (mk, wk) = arg min(m,w)∈R̃ h((m̄k, w̄k), (m,w))

Actualise (m̄k+1, w̄k+1) = (1− δk)(m̄k, w̄k) + δk(mk, wk)
end for
return (m̄N , w̄N ).

We first justify the well-posedness of the algorithm (in particular, we need to
justify the existence and uniqueness of (mk, wk)). To this goal, we introduce the
following sequences

Pk(t) = φ(t, Aw̄k(t)), γk(x, t) = f(x, t, m̄k(t)),
uk(x, t) = u[γk, Pk](x, t), vk(x, t) = −Hp[∇uk +A?Pk]](x, t),

for any (x, t) ∈ Q. For future reference, we define

v̄k = w̄k/m̄k.

In the next lemma, we provide an explicit formula to the minimization step, directly
derived from Lemma 8.
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Figure 1: Illustration of the potential cost J̃ , the individual cost Z̃γ,P and the
exploitability σ.

Lemma 13. For all k ∈ N, we have (mk, wk) = χ(m[vk], vk). Moreover, there exists
αk ∈ (0, 1) such that 

mk, m̄k ∈ C2+αk,1+αk/2(Q),

vk, wk, w̄k ∈ C1+αk,αk(Q;Rd),
uk ∈ C2+αk,1+αk/2(Q),

γk ∈ Cαk(Q),

Pk ∈ Cαk(0, T ;Rk).

(20)

Proof. We prove the result by induction. Let k ∈ N. Assume that there exists
α ∈ (0, 1) such that m̄k ∈ C2+α,1+α/2(Q), w̄k ∈ C1+α,α(Q;Rd).
Step 1: Pk ∈ Cα(0, T ;Rk) and γk ∈ Cα(Q). By assumptions (A6) and (A8),

|Pk(t2)− Pk(t1)| = |φ[Aw̄k](t2)− φ[Aw̄k](t1)|
≤ C (|t2 − t1|α + |Aw̄k(t2)−Aw̄k(t1)|)

≤ C
(
|t2 − t1|α + ‖a‖L∞(Q;Rk×d)

∫
Td
|w̄k(t2)− w̄k(t1)|dx

)
,

for all t1, t2 ∈ [0, T ]. It follows that Pk is Hölder continuous, since by induction
assumption, w̄k ∈ C1+α,α(Q;Rd). The announced regularity on γk is a direct conse-
quence of the induction assumption (m̄k ∈ C2+α,1+α/2(Q)) and Assumption (A7).
Step 2: uk ∈ C2+α,1+α/2(Q). The regularity of Pk and γk obtained in the previous
steps allows us to apply 3, which yields the announced regularity on uk.
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Step 3: (mk, wk) = χ(m[vk], vk). By Lemma 8 and Lemma 12, χ(m[vk], vk) is the
unique minimizer of Zγk,Pk , thus the unique minimizer of h((m̄k, w̄k), ·) on R̃.
Step 4: vk ∈ C1+α,α(Q;Rd), mk ∈ C2+α,1+α/2(Q), and wk ∈ C1+α,α(Q;Rd). Direct
consequence of the previous steps and Point 1 of Lemma 8.
Conclusion. By Step 4 and by the induction assumption, we have that (m̄k+1, w̄k+1) ∈
C2+α,1+α/2(Q)×C1+α,α(Q;Rd). Thus the induction assumption holds at k+1, which
concludes the proof.

Link with the fictitious play Let us consider the primal-dual gap

σk = − min
(m,w)∈R̃

h((m̄k, w̄k), (m,w)). (21)

As mentioned earlier, σk is a primal gap certificate; it provides us with an upper
bound of J̃ (m̄k, w̄k) − J̃ (m̄, w̄) (this will be proved in Lemma 15). In the current
mean field game context, it coincides with the notion of exploitability: it is the
largest decrease in cost that a representative agent can reach by playing its best
response, assuming that all other agents use the feedback v̄k := w̄k/m̄k. Indeed, we
have

σk = Z̃γk,Pk(m̄k, w̄k)− inf
(m,w)∈R̃

Z̃γk,Pk(m,w)

= Zγk,Pk(ν v̄k)− inf
ν∈L2

F(t,T ;Rd)
Zγk,Pk(ν),

by Lemma 8 and Lemma 13.
We provide now an interpretation of the generalized gradient algorithm as a

learning procedure called fictitious play. A definition and a study of the latter
learning algorithm in the context of mean field games can be found in [16, 40]. Each
iteration k of Algorithm 1 relies on the following steps:

For k ∈ N let (m̄k, w̄k) be a given belief and γk and Pk the resulting beliefs on
congestion and price. Then there are four main steps:

1. Given (m̄k, w̄k) compute the congestion terms Pk and γk. In words, the agents
make a prediction of the congestion term and the price at equilibrium, based
on the belief (m̄k, w̄k).

2. Find the value function uk solution to the Hamilton-Jacobi-Bellman equation
parametrized by (γk, Pk). Then compute the optimal control vk, given the
value function uk and the price Pk. This step can be interpreted as follows:
for a given belief on the distributions of the others (mk, wk), a representative
agent computes its best response vk.

3. Find the solution mk to the Fokker-Planck equation for the given drift vk and
compute the associated distribution of controls wk.

4. The actualization step of (m̄k+1, w̄k+1) can be interpreted as a learning step.
The learning rule consists in averaging the past realizations of the distribution
and flow at a rate determined by the sequence (δk)k∈N.
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6 Convergence Results

In this section, the generic constants C and α depend on the data of the problem
(introduced in Section 2.2) and depend on the pair (m̄0, w̄0) chosen to initialize
Algorithm 1.

Lemma 14. There exists C > 0 such that for any k ∈ N,

‖γk‖W 1,0,∞(Q;Rd) ≤ C ‖mk‖W 2,1,p(Q) ≤ C
‖Pk‖L∞(0,T ;Rk) ≤ C ‖wk‖W 1,0,∞(Q;Rd) ≤ C
‖uk‖W 2,1,p(Q) ≤ C ‖m̄k‖W 2,1,p(Q) ≤ C
‖∇uk‖W 2,1,p(Q;Rd) ≤ C ‖w̄k‖W 1,0,∞(Q;Rd) ≤ C.
‖vk‖W 1,0,∞(Q;Rd) ≤ C

In addition, we have

mk(x, t) ≥ 1/C, m̄k(x, t) ≥ 1/C, ‖v̄k‖L∞(Q;Rd) ≤ C,

for all (x, t) ∈ Q.

Proof. Let k ∈ N. Assume that there exists C > 0 such that the bounds hold for all
i ∈ {0, . . . , k − 1}.
Step 1: Bounds of γk and Pk. These bounds directly follow from assumptions (A4),
(A5), and (A7). They imply the existence of C > 0 such that

‖γk‖L∞(Q) + ‖∇γk‖L∞(Q;Rd) + ‖Pk‖L∞(0,T ;Rk) ≤ C,

so that we can employ the technical Lemmas of Section 3 to prove the other an-
nounced bounds.
Step 2: Bounds of uk and ∇uk. Direct consequence of Step 1 and Lemma 3.
Step 3: Bounds of vk, mk and wk. Direct consequence of the previous steps and
Point 2 of Lemma 8.
Step 4: Bounds of m̄k and w̄k. This is a direct consequence of the fact that (m̄k, w̄k)
can be expressed as a convex combination of (mk, wk)i=0,...,k−1 and (m̄0, w̄0).
Step 5: mk(x, t), m̄k(x, t) ≥ 1/C for any (x, t) ∈ Q. Since mk = m[vk] with
‖vk‖W 1,0,∞(Q;Rd) ≤ C and m0(x) ≥ ε0 for any x ∈ Td, therefore mk(x, t) ≥ 1/C
by Lemma 29. Then m̄k(x, t) ≥ 1/C as a convex combination of (mk)i=0,...,k−1.
Step 6: ‖v̄k‖L∞(Q;Rd) ≤ C. By Step 4 and Step 5,

‖v̄k‖L∞(Q;Rd) = ‖w̄k/m̄k‖L∞(Q;Rd) ≤ C.

Conclusion. Since (m̄0, w̄0) ∈ C2+α,1+α/2(Q) × C1+α,α(Q;Rd) with m̄0(x, t) > 0 for
any (x, t) ∈ Q, the conclusion follows by induction.

Recall the definition of the exploitability σk, given in (21). We define the sequence
of primal gaps (εk)k∈N as follows

εk = J̃ (m̄k, w̄k)− J̃ (m̄, w̄).

We recall that (m̄, w̄) = arg min(m,w)∈R̃ J̃ (m,w). The following Lemma is a certifi-

cate result, similar to inequality (18).

18



Lemma 15. We have that εk ≤ σk.

Proof. For any (m,w) ∈ R̃ we have that

h((m̄k, w̄k), (m,w)) = J̃ (m,w)− J̃ (m̄k, w̄k) + a+ b,

where

a =

∫ T

0
F [m̄k]− F [m]dt+

∫
Q
f(x, t, m̄k(t))(m(x, t)− m̄k(x, t))dxdt ≤ 0,

b =

∫ T

0
Φ[Aw̄k]−Φ[Aw]dt+

∫ T

0
〈φ(t, Awk(t)), A[w − w̄k](t)〉dt ≤ 0,

by convexity of F and Φ. Then we have that

inf
(m,w)∈R̃

h((m̄k, w̄k), (m,w)) ≤ inf
(m,w)∈R̃

J̃ (m,w)− J̃ (m̄k, w̄k), (22)

and the conclusion follows.

Lemma 16. There exists C > 0 such that for any δ ∈ [0, 1], it holds:

J̃ (m̄δ
k, w̄

δ
k) ≤ J̃ (m̄k, w̄k)− δσk + δ2C, (23)

where (m̄δ
k, w̄

δ
k) = δ(mk, wk) + (1− δ)(m̄k, w̄k).

Proof. The convexity of L̃ yields∫
Q
L̃[m̄δ

k, w̄
δ
k]dxdt ≤

∫
Q
L̃[m̄k, w̄k] + δ

(
L̃[m̄k, w̄k]− L̃[mk, wk]

)
dxdt. (24)

Using that F is the primitive of f in the sense of (2), we have for all t ∈ [0, T ],

F [m̄δ
k](t) = F [m̄k](t)

+ δk

∫ 1

0

∫
Td
f (x, t, m̄k(t) + sδ(mk(t)− m̄k(t))) (mk(x, t)− m̄k(x, t))dxds, (25)

For any (x, t) ∈ Q, the Lipschitz-continuity of f yields

f (x, t, m̄k(t) + sδ(mk(t)− m̄k(t))) ≤ f(x, t, m̄k(t)) + sδC‖mk(t)− m̄k(t)‖L2(Td)

≤ f(x, t, m̄k(t)) + sδC,

since m̄k,mk are uniformly bounded by Lemma 14. Plugging into (25) yields

F [m̄δ
k](t) = F [m̄k](t) + δ

∫
Td
f(x, t, m̄k(t))(mk(x, t)− m̄k(x, t))dx+ δ2C. (26)

Now using that Φ is the primitive of φ, we have

Φ[Aw̄δk](t) ≤ Φ[Aw̄k](t) + δ〈φ(t, Aw̄k(t)), A[wk − w̄k](t)〉+ δ2|A[wk − w̄k](t)|2

by Assumption (A8). Using that w̄k, wk are uniformly bounded by Lemma 14 yields

|A[wk − w̄k](t)| ≤ ‖a(t)‖L∞(Td)‖wk(t)− w̄k(t)‖L∞(Td) ≤ C.
Combining the two last inequalities yields

Φ[Aw̄δk](t) ≤ Φ[Aw̄k](t) + δ〈φ(t, Aw̄k(t)), A[wk − w̄k](t)〉+ δ2C. (27)

Then inequality (23) holds combining the Assumption (A9) on g and inequalities
(24), (26), and (27) which concludes the proof.
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Lemma 17. We have that

εk+1 ≤ (1− δk)εk + δ2
kC.

Proof. A direct application of Lemma 16 yields,

J̃ (m̄k+1, w̄k+1) ≤ J̃ (m̄k, w̄k)− δkσk + δ2
kC.

Thus εk+1 ≤ εk − δkσk + δ2
kK and the conclusion follows by Lemma 15 since −σk ≤

−εk.

Lemma 18. Let L0 := max{ε0/2, C} and L1 := max{2ε1, C}/ ln(2). We have that
(i) εk ≤ 4L0

k+2 if δk = 2
k+2 , for any k ∈ N,

(ii) εk ≤ ln(k+1)L1

k+1 if δk = 1
k+1 , for any k ∈ N \ {0}.

(28)

The above Lemma summarizes the rate of convergence of the sequence (εk)k∈N
for two learning rates. The first result (28,i) is classical in the context of conditional
gradient algorithm (see [25, 29]). For the sake of completeness we recall how to
derive this result in the following proof. The second result (28,ii) corresponds to the
classical fictitious play learning rate.

Proof. Step 1: (28,i) holds. Let δk = 2/(k + 2) for any k ∈ N. For k = 0, it is
clear that (28,i) holds. For k > 0, assume that εk satisfies the inequality (28,i). By
Lemma 17 we have that

εk+1 ≤
(

1− 2

k + 2

)
4L0

k + 2
+

4C

(k + 2)2
≤ 4L0(k + 1)

(k + 2)2
≤ 4L0

(k + 3)
,

and by induction the step 1 is proved.
Step 2: (28,ii) holds. Let δk = 1/(k + 1) for any k ∈ N. For k = 1, it is clear that
(28,ii) holds by Lemma 17. For k > 1 assume that εk satisfies the inequality (28,ii)
then by Lemma 17 we have

εk+1 ≤
(

1− 1

k + 1

)
ln(k + 1)L1

k + 1
+

C

(k + 1)2
.

Then to prove (28,ii) it is enough to check

k ln(k + 1)L1 + C

(k + 1)2
≤ ln(k + 2)

(k + 2)
.

Multiplying both side by (k + 1)2(k + 2), the inequation (28,ii) holds if

(k + 2)
C

L1
≤ (k + 1)2 ln(k + 2)− k(k + 2) ln(k + 1)

≤ k(k + 2) ln

(
1 +

1

k + 1

)
+ ln(k + 2). (29)

The concavity of the logarithm yields ln (1 + 1/(k + 1)) ≥ ln(2)/k. Thus the in-
equality (29) holds whenever

C

L1
≤ ln(2) +

ln(k + 2)

k + 2
,

which holds by definition of L1. Then Step 2 is proved, which concludes the proof.
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Lemma 19. There exists C > 0 such that σk ≤ Cε
1/2
k for all k ∈ N.

Proof. For any δ ∈ [0, 1], Lemma 16 yields J̃ (m̄, w̄) ≤ J̃ (m̄k, w̄k) − δσk + δ2C. It
follows that

σk ≤ εk/δ + δC, ∀δ ∈ (0, 1], (30)

by Lemma 18. The optimal choice of δ ∈ (0, 1] in the latter inequality is given by
δ = min{

√
εk/C, 1}. Since the sequence (εk)k∈N is uniformly bounded from above,

we can increase the constant C, so that one can choose δ =
√
εk/C ∈ (0, 1]. For this

choice of δ, inequality (30) yields the announced result.

For any k ∈ N we denote

δm̄k = m̄k − m̄, δw̄k = w̄k − w̄, δv̄k = v̄k − v̄,
δPk = Pk − P̄ , δγk = γk − γ̄, δuk = uk − ū.

Theorem 20. There exists C > 0 such that for all k ∈ N,

‖δv̄k‖L2(Q;Rd) + ‖δm̄k‖L∞(0,T ;L2(Td)) + ‖δw̄k‖L2(Q;Rd)

+‖δPk‖L2(0,T ;Rk) + ‖δγk‖L∞(Q) + ‖δuk‖L∞(Q) ≤ Cε
1/2
k .

Proof. Step 1: ‖δv̄km̄k‖L2(Q;Rd) ≤ Cε
1/2
k . By Lemma 10, we have

1

C

∫
Q
|δv̄k|2m̄kdxdt ≤ J (m̄k, v̄k)− J (m̄, v̄) = εk.

Combining the above inequality with ‖m̄k‖L∞(Q) ≤ C yields the desired estimate.

Step 2: ‖δv̄k‖L2(Q;Rd) ≤ Cε
1/2
k . By Step 1 and Lemma 14,

‖δv̄k‖L2(Q;Rd) ≤ ‖δv̄km̄k‖L2(Q;Rd)‖1/m̄k‖L∞(Q) ≤ Cε
1/2
k ,

and Step 2 holds.

Step 3: ‖δm̄k‖C(0,T ;L2(Td)) ≤ Cε
1/2
k . We have that δm̄k satisfies

∂tδm̄k −∆δm̄k +∇ · (v̄δm̄k) = −∇ · (δv̄km̄k), (x, t) ∈ Q,
δmk(0, x) = 0, x ∈ Td.

We define the space V = W 2,1(Td) and its dual V ∗. Then δmk is solution of a
parabolic equation of the form

∂tm(t) +B(t)m(t) = f(t), (x, t) ∈ Q,
m(0, x) = 0, x ∈ Td,

whereB(t) ∈ L(V, V ∗) and f(t) ∈ V ∗. It is easy to verify that since v̄ ∈W 1,0,∞(Q;Rd),
there exists a constant C such that 〈B(t)y, y′〉V ≤ C‖y‖V ‖y′‖V , for a.e. t ∈ (0, T )
and for all y and y′ in V . For any y ∈ V we further have that

〈B(t)y, y〉V =

∫
Td

(−∆y +∇ · v̄(t)y + 〈v̄(t),∇y〉) ydx

≥
∫
Td
|∇y|2 + C|y|2 − C|∇y||y|dx ≥ 1

2
‖y‖2V −

C

2
‖y‖2L2(Td),
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where we have used that −
∫
Td |∇y||y|dx ≥ −

1
2

∫
Td |∇y|

2/C +C|y|2dx. Then B(t) is
semi-coercive, uniformly in time. Thus by [50, Chapter 3, Theorem 1.2] we have

‖δm̄k‖L2(0,T ;V ) + ‖∂tδm̄k‖L2(0,T ;V ∗) ≤ C‖f‖L2(0,T ;V ∗)

≤ C‖∇ · δv̄km̄k‖L2(0,T ;V ∗)

≤ C‖δv̄km̄k‖L2(Q;Rd) ≤ Cε
1/2
k .

We conclude Step 3 with the continuous inclusion (see [50, Chapter 3, Theorem 1.1])

{m ∈ L2(0, T ;V ); ∂tm ∈ L2(0, T ;V ∗)} ⊆ C(0, T ;L2(Td)).

Step 4: ‖δw̄k‖L2(Q;Rd) ≤ Cε
1/2
k . By definition of δw̄k we have

‖δw̄k‖L2(Q;Rd) ≤ ‖δv̄km̄k‖L2(Q;Rd) + ‖v̄δm̄k‖L2(Q;Rd) ≤ Cε
1/2
k ,

where the last inequality follows from Step 1 and Step 3.

Step 5: ‖δPk‖L2(0,T ;Rk) ≤ Cε
1/2
k and ‖δγk‖L∞(Q) ≤ Cε

1/2
k . Using that φ is Lipschitz

with respect to its second variable (see Assumption (A8)),

|δPk(t)| = |φ(t, Aw̄k(t))− φ(t, Aw̄(t))| ≤ C|Aδw̄k(t)|

for almost every t ∈ [0, T ]. Since

|Aδw̄k(t)| =
∣∣∣∣∫

Td
a(x, t)δw̄k(x, t)dx

∣∣∣∣ ≤ ‖a(t)‖L∞(Td;Rk×d)‖δw̄k(t)‖L1(Td;Rd),

Since ‖a‖L∞(Q;Rk×d) ≤ C, Step 4 yields the desired estimate

‖δPk‖L2(0,T ;Rk) ≤ C‖δw̄k‖L2(Q;Rd) ≤ Cε
1/2
k .

Using that f is Lipschitz with respect to its third variable (see Assumption (A7))
yields

|δγk(x, t)| = |f(x, t, m̄k(t))− f(x, t, m̄(t))| ≤ C‖δm̄k(t)‖L2(Td),

for any (x, t) ∈ Q. Taking the supremum over (x, t) ∈ Q both sides of the inequality

yields that ‖δγk‖C(Q) ≤ Cε
1/2
k by Step 3, which concludes the step.

Step 6: ‖δuk‖C(Q) ≤ Cε
1/2
k . Since ‖γk‖L∞(Q) ≤ C, ‖Pk‖L2(0,T ;Rk) ≤ C, ‖γ̄‖L∞(Q) ≤

C, and ‖P̄‖L2(0,T ;Rk) ≤ C, Lemma 2 yields

δuk(x, t) = inf
α∈L2,C

F (t,T ;Rd)
Jγk,Pk(x, t, α)− inf

α′∈L2,C
F (t,T ;Rd)

Jγ̄,P̄ (x, t, α′),

for any (x, t) ∈ Q. We denote (Xα
s )s∈[t,T ] the solution to the stochastic differential

equation dXs = αsds+
√

2dBs with Xα
t = x, for any α ∈ L2

F(t, T ;Rd). Then

|δuk(x, t)| ≤ sup
α∈L2,C

F (t,T ;Rd)

|Jγk,Pk(x, t, α)− Jγ̄,P̄ (x, t, α)|

≤ sup
α∈L2,C

F (t,T ;Rd)

E
[∫ T

t
|〈A?[δPk](Xα

s , s), αs〉|+ |δγk(Xα
s , s)|ds

]
.
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For any (x, s) ∈ Q and α ∈ Rd, the Cauchy-Schwarz inequality yields

|〈A?[δPk](x, s), α〉| ≤ |〈a(x, s)δPk(s)||α|
≤ ‖a‖L∞(Q;Rk×d)|δPk(s)||α|.

Since ‖a‖L∞(Q;Rk×d) ≤ C, we finally have

|δuk(x, t)| ≤ C
(
‖δPk‖L2(0,T ;Rk) + ‖δγk‖L∞(Q)

)
.

Thus Step 6 holds by Step 5, which concludes the proof.

Let us comment our last convergence results: Lemma 19 and Theorem 20. For
the fictitious play learning rate δk = 1/(k + 1), we have proved that the primal gap
sequence (εk)k∈N converges in O(ln(k)/k) and the exploitability sequence (σk)k∈N
and the sequence of variables (m̄k, w̄k, v̄k, Pk, γk, uk)k∈N converge in O(

√
ln(k)/k).

We have obtained a sharper convergence result for the Frank-Wolfe learning rate
δk = 2/(k+2). For this choice, we have shown that the primal gap sequence (εk)k∈N
converges in O(1/k) and the exploitability sequence (σk)k∈N and the sequence of
variables (m̄k, w̄k, v̄k, Pk, γk, uk)k∈N converge in O(

√
1/k). The convergence results

for (m̄k, w̄k, v̄k, Pk, γk, uk) are new in the mean field game literature.
We conclude this section with a discussion on our results. The results concerning

the convergence of the primal gap and the exploitability (Lemmas 18 and 19) are the
same as those obtained in [31] for different mean field game models, with a discrete
structure. These results are indeed general, since they only rely on the convexity
structure of the potential problem and the regularity properties of the coupling
terms. Therefore, they could certainly be adapted to other models, for example first
order mean field games.

We also expect that similar convergence results, for the coupling terms, the value
function, and the distribution, could be obtained in a different framework. A key
step in the proof would be to establish a quadratic growth property (as the one
obtained in Lemma 10), under a strong convexity assumption on the running cost
L.

A Regularity of the Hamiltonian

Some properties of the Hamiltonian can be deduced from the convexity assumption
(A1) and the Hölder continuity of L and its derivatives (Assumption (A6)). They
are collected in the following lemmas. whose proofs can be found in [9].

Lemma 21. The Hamiltonian H is differentiable with respect to p and Hp is differ-
entiable with respect to x and p. Moreover, for all R > 0, there exists α ∈ (0, 1) such
that H ∈ Cα(BR), Hp ∈ Cα(BR,Rd), Hpx ∈ Cα(BR,Rd×d), and Hpp ∈ Cα(BR,Rd×d).

Proof. See [9, Lemma 1].

Lemma 22. There exists a constant C > 0 such that for all (x, t) ∈ Q, for all
p ∈ Rd and for all v ∈ Rd,

H(x, t, p) + L(x, t, v) + 〈p, v〉 ≥ 1

C
|v +Hp(x, t, p)|2. (31)
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In addition for any m, m̄ ≥ 0 and v̄ = −Hp(x, t, p) we have that

L(x, t, v)m− L(x, t, v̄)m̄ ≥ −H(x, t, p)(m− m̄)− 〈p, w − w̄〉+
1

C
|v − v̄|2m, (32)

where (w, w̄) := (mv, m̄v̄).

Proof. See [9, Proof of Proposition 2].

B A priori bounds for parabolic equations

In this appendix we provide estimates for the following parabolic equation:

∂tu− σ∆u+ 〈b,∇u〉+ cu = h, (x, t) ∈ Q,
u(x, 0) = u0(x), x ∈ Td, (33)

for different assumptions on b, c, h, and u0. The proofs of the following results can
be found in the Appendix of [9]; they largely rely on [46]. We recall that p is a fixed
parameter and p > d+ 2.

Theorem 23. For all R > 0, there exists C > 0 such that for all u0 ∈W p,2−2/p(Td),
for all b ∈ Lp(Q;Rd), for all c ∈ Lp(Q), for all h ∈ Lp(Q), satisfying

‖u0‖W p,2−2/p(Td) ≤ R, ‖b‖Lp(Q;Rd) ≤ R, ‖c‖Lp(Q) ≤ R, ‖h‖Lp(Q) ≤ R,

equation (33) has a unique solution u in W 2,1,p(Q). Moreover, ‖u‖W 2,1,p(Q) ≤ C.

Theorem 24. For q ∈ (1,∞), the trace at time t = 0 of elements of W 2,1,q(Q)
belongs to W q,2−2/q(Ω).

Theorem 25. There exists C > 0 such that for all u0 ∈ W 2−2/p,p(Td) and for
all h ∈ Lp(Q), the unique solution u to (33) (with b = 0 and c = 0) satisfies the
following estimate:

‖u‖W 2,1,p(Q) ≤ C
(
‖u0‖W 2−2/p,p(Td) + ‖h‖Lp(Q)

)
.

Lemma 26. There exists δ ∈ (0, 1) and C > 0 such that for all u ∈W 2,1,p(Q),

‖u‖Cδ(Q) + ‖∇u‖Cδ(Q;Rd) ≤ C‖u‖W 2,1,p(Q).

Theorem 27. For all β ∈ (0, 1), for all R > 0, there exist α ∈ (0, 1) and C > 0
such that for all u0 ∈ C2+β(Td), b ∈ Cβ,β/2(Q;Rd), c ∈ Cβ,β/2(Q) and h ∈ Cβ,β/2(Q)
satisfying

‖u0‖C2+β(Td) ≤ R, ‖b‖Cβ,β/2(Q;Rd) ≤ R, ‖c‖Cβ,β/2(Q) ≤ R, and ‖h‖Cβ,β/2(Q) ≤ R,

the solution to (33) lies in C2+α,1+α/2(Q) and satisfies ‖u‖C2+α,1+α/2(Q) ≤ C.
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C Maximum principle

In this appendix we establish a maximum principle for the Fokker-Planck equation.
We study the parabolic equation (33) with h = 0,

∂tm− σ∆m+ 〈b,∇m〉+ cm = 0, (x, t) ∈ Q,
m(x, 0) = m0(x), x ∈ Td. (34)

We assume thatm0 satisfies Assumption (A9) and define the mapping m̄ : L∞(Q;Rd)×
L∞(Q)→W 2,1,p(Q) which associates to any (b, c) the solution to (34). By Theorem
23 the mapping m̄ is well-defined.

Lemma 28. The mapping m̄ is continuous.

Proof. Consider the mapping ϕ : W 2,1,p(Q)×L∞(Q;Rd)×L∞(Q)→W p,2−2/p(Td)×
Lp(Q) defined by

ϕ[m, b, c] = (m(0, ·)−m0(·), ∂tm− σ∆m+ 〈b,∇m〉+ cm).

We define
ϕ0[m] = m(0, ·), ϕ2[m, b] = 〈b,∇m〉,
ϕ1[m] = ∂tm− σ∆m, ϕ3[m, c] = cm,

so that ϕ[m, b, c] = (ϕ0[m]−m0(·), ϕ1[m] +ϕ2[m, b] +ϕ3[m, c]). By Theorem 23 and
Theorem 24, there exists a constant C > 0 such that

‖ϕ0[m]‖W p,2−2/p(Td) ≤ C‖m‖W 2,1,p(Q), ‖ϕ2[m, b]‖Lp(Q) ≤ ‖b‖L∞(Q)‖m‖W 2,1,p(Q),

‖ϕ1[m]‖Lp(Q) ≤ C‖m‖W 2,1,p(Q), ‖ϕ3[m, c]‖Lp(Q) ≤ ‖c‖L∞(Q)‖m‖W 2,1,p(Q).

Thus ϕ0 and ϕ1 (resp. ϕ2 and ϕ3) are C∞ as bounded linear (resp. bi-linear) appli-
cations. It follows that ϕ is C∞. Let (m, b, c) ∈ W 2,1,p(Q)× Lp(Q;Rd)× Lp(Q) be
such that ϕ[m, b, c] = 0. For any direction z ∈W 2,1,p(Q), we have

Dmϕ[m, b, c]z = (z(0, ·), ∂tz − σ∆z + 〈b,∇z〉+ cz).

For any (h0, h1) ∈W p,2−2/p(Td)× Lp(Q), the equation

∂tz − σ∆z + 〈b,∇z〉+ cz = h1, (x, t) ∈ Q,
z(x, 0) = h0, x ∈ Td,

has a unique solution z ∈W 2,1,p(Q), by Theorem 23. Then Dmϕ[m, b, c] is bijective
and thus invertible. The conclusion follows by the implicit function theorem.

Lemma 29. Let v ∈ W 1,0,∞(Q;Rd) and let m = m̄[v,∇ · v] ∈ W 2,1,p(Q) be the
solution to (34) with (b, c) = (v,∇·v). Assume that m0(x) ≥ ε0 > 0 for any x ∈ Td.
Then

m(x, t) ≥ ε0 exp
(
− T‖∇ · v‖L∞(Q)

)
, ∀(x, t) ∈ Q. (35)

Proof. We first prove the result when v ∈ C1+α,α/2(Q;Rd), for some α ∈ (0, 1). By
Theorem 27, m ∈ C2,1(Q). Let κ > ‖∇ · v‖L∞(Q). We define

y(x, t) = e−κt
(
m(x, t)− ε0e

−κt) ,

25



for all (x, t) ∈ Q. By a direct computation we have

∂ty(x, t) = −y(x, t)(κ−∇ · v(x, t)) + ∆y(x, t) + 〈v(x, t),∇y(x, t)〉
+ε0e

−2κt (κ+∇ · v(x, t)) . (36)

Next we show that y(x, t) ≥ 0 for all (x, t) ∈ Q. Let (x0, t0) ∈ arg min(x,t)∈Q y(x, t).
Let us assume, by a way of contradiction, that y(x0, t0) < 0. Since y(0, x) ≥ 0 for
any x ∈ Td, we have that t0 > 0 and thus ∂ty(x0, t0) ≤ 0. Since x0 ∈ Td, we have
that ∇y(x0, t0) = 0. Moreover, since m is twice differentiable with respect to its
second variable, we have that ∆y(x0, t0) ≥ 0. Then it follows from (36) that

∂ty(x0, t0) ≥ −y(x0, t0)(κ−∇ · v(x0, t0)) + ε0e
−2κt0 (κ+∇ · v(x0, t0)) .

The right-hand side is positive since κ > ‖∇·v‖L∞(Q). This contradicts the inequality
∂ty(x0, t0) ≤ 0 and proves that y(x, t) ≥ 0, for any (x, t) ∈ Q. It follows then from
the definition of y that m(x, t) ≥ ε0e

−κt, for any (x, t) ∈ Q. Passing to the limit
when κ→ yields (35).

We now consider the general case when v ∈ W 1,0,∞(Q;Rd) and proceed by
density. Let (ρk)k∈N be a sequence of regularizing kernels in C∞(Q). We define
vk = ρk ∗ v ∈ C∞(Q;Rd), where ∗ is the convolution product. We next define
mk = m̄[vk,∇ · vk] for any k ∈ N. Applying (35) to mk, we obtain that

mk(x, t) ≥ ε0 exp
(
− T‖∇ · vk‖L∞(Q)

)
, ∀(x, t) ∈ Q.

Since vk (resp. ∇vk) uniformly converges to v (resp. ∇v) and since m̄ is continuous
for the uniform topology, we deduce that mk converges to m in W 2,1,p(Q) and finally
that mk uniformly converges to m, by Lemma 26. This allows us to pass to the limit
in the above inequality, which concludes the proof of the lemma.

D Existence of a classical solution to the Hamilton-
Jacobi-Bellman equation

In this appendix we prove Lemma 3, that is, we establish the existence of a solution
to the Hamilton-Jacobi-Bellman equation

−∂tu−∆u+H[∇u+A?P ] = γ, (x, t) ∈ Q,
u(x, T ) = g(x), x ∈ Td, (37)

in C2,1(Q). By classical, we mean that (37) can be understood in a pointwise manner.
We recall that g ∈ C2+α(Td) and that (γ, P ) ∈ Uβ (defined in (3)). Moreover, the
constant R > 0 is such that

‖γ‖L∞(Q) + ‖∇γ‖L∞(Q;Rd) + ‖P‖L∞(0,T ;Rk) ≤ R. (38)

The proof of the lemma relies on a fixed point approach. To this purpose, we
introduce the mapping T : W 2,1,p(Q) × [0, 1] → W 2,1,p(Q) which associates to any
u ∈W 2,1,p(Q) the classical solution T [u, τ ] to the linear parabolic equation

−∂tũ−∆ũ+ τH[∇u+A?P ] = τγ (x, t) ∈ Q,
ũ(x, T ) = τg(x) x ∈ Td.

For any (u, τ) ∈ W 2,1,p(Q) × [0, 1], we have τ
(
γ −H[∇u + A?P ]

)
∈ L∞(Q), thus

T [u, τ ] lies in W 2,1,p(Q), by Theorem 23, proving that T is well-defined.
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Lemma 30. The mapping T : W 2,1,p(Q) × [0, 1] → W 2,1,p(Q) is continuous and
compact. In addition, for all K > 0, there exists α ∈ (0, 1) and C > 0 depending on
K, γ, and P such that ‖u‖W 2,1,p(Q) ≤ K implies ‖T [u, τ ]‖C2+α,1+α/2(Q) ≤ C.

Proof. Step 1: Continuity of T . Let (uk, τk) ∈ W 2,1,p(Q) × [0, 1] be a sequence
converging to (u, τ) ∈W 2,1,p(Q)× [0, 1]. Then ∇uk → ∇u in L∞(Q;Rd) by Lemma
26. Then τk(γ−H[∇uk+A?P ])→ τ(γ−H[∇u+A?P ]) in L∞(Q;Rd) by continuity
of the Hamiltonian (see Lemma 21). Finally the continuity of T follows by Theorem
25.
Step 2: Compactness of T . Let K > 0 and let (u, τ) ∈W 2,1,p(Q)× [0, 1] be such that
‖u‖W 2,1,p(Q) + |τ | < K. Combining Lemma 26 and Lemma 21 there exist α ∈ (0, 1)
and C > 0 such that ‖τ(γ−H[∇u+A?P ])‖Cα(Q) < C. Then applying Theorem 27,
there exist α ∈ (0, 1) and C > 0 such that ‖T [u, τ ]‖C2+α,1+α/2(Q) < C. By the Arzela-

Ascoli Theorem the centered ball of C2+α,1+α/2(Q) of radius C > 0 is a relatively
compact subset of W 2,1,p(Q). As a consequence T [u, τ ] is a compact mapping and
the conclusion follows.

Theorem 31. (Leray-Schauder) Let X be a Banach space and let T : X×[0, 1]→ X
be a continuous and compact mapping. Assume that T (x, 0) = 0 for all x ∈ X and
assume there exists C > 0 such that ‖x‖X < C for all (x, τ) ∈ X × [0, 1] such that
T (x, τ) = x. Then, there exists x ∈ X such that T (x, 1) = x.

Proof. See [32, Theorem 11.6].

Proof of Lemma 3. Step 1: Existence of a classical solution. We have that T [u, 0] =
0 for all u ∈ W 2,1,p(Q). Now let (u, τ) ∈ W 2,1,p(Q) × [0, 1] such that T [u, τ ] = u.
From Lemma 30, the mapping T is continuous and compact, in addition u is a
classical solution and thus the viscosity solution to the Hamilton-Jacobi-Bellman
equation

−∂tu−∆u+ τH[∇u+A?P ] = τγ (x, t) ∈ Q,
u(x, T ) = τg(x) x ∈ Td,

and can be interpreted as the value function associated to the following stochastic
control problem

inf
ν∈L2

F(0,T ;Rd)
τE
[∫ T

0
L(Xτ

s , s, νs) + 〈A?[P ](Xτ
s , s), νs〉+ γ(Xτ

s , s)ds+ g(Xτ
T )

]
,

where (Xτ
s )s∈[t,T ] is the solution to dXs = τνsds +

√
2dBs, X0 = Y . Following [9,

Proposition 1, Step 2], there exists a constant C > 0, depending only on R, such
that ‖u‖L∞(Q) + ‖∇u‖L∞(Q;Rd) ≤ C. Assumption (38) yields that ‖H[∇u+A?P ]−
γ‖L∞(Q) ≤ C. Then u is the solution to a parabolic PDE with bounded coefficients
and thus ‖u‖W 2,1,p(Q) ≤ C, by Theorem 23. Again, C only depends on R. By the
Leray-Schauder Theorem 31, there exists a classical solution to (37).
Step 2: Uniqueness. Let u1 and u2 be two classical solutions to (37). Then u1 and
u2 are viscosity solutions to (37). Since the viscosity solution is unique, u1 = u2.
Step 3: ‖u‖W 2,1,p(Q) + ‖∇u‖W 2,1,p(Q) ≤ C. We have already obtained a bound
on ‖u‖W 2,1,p(Q) in Step 1. It remains to show that ‖∇u‖W 2,1,p(Q) ≤ C. Let i ∈
{1, . . . , d}. We have that ui := ∂xiu is the solution to the following equation

−∂tui −∆ui + ∂xiH[∇u+A?P ] +Hp[∇u+A?P ] · (∇ui + ∂xiA
?P ) = ∂xiγ,

ui(T ) = ∂xig,

27



for any (x, t) ∈ Q. By Lemma 21, ∂xiH and Hp are continuous, thus

‖∂xiH[∇u+A?P ]‖L∞(Q) ≤ C, ‖Hp[∇u+A?P ]‖L∞(Q;Rd) ≤ C,

since ‖∇u‖Cα(Q;Rd) ≤ C and ‖A?P‖L∞(Q;Rd) ≤ C. By Assumption (A6), ∂xia is
continuous, therefore ‖∂xiA?P‖L∞(Q;Rd) ≤ C. We further have ‖∇γk‖L∞(Q;Rd) ≤ C

and ‖∂xig‖L∞(Td) ≤ C, by Assumption (A9). It follows that uik is the solution of a

parabolic PDE with bounded coefficients, thus by Theorem 23, ‖ui‖W 2,1,p(Q) ≤ C
and the Step 3 is proved which concludes the proof.
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tionnaire. Comptes Rendus Mathématique, 343(9):619–625, 2006. 1

[48] Jean-Michel Lasry and Pierre-Louis Lions. Jeux à champ moyen. ii–horizon fini
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