MODERATE DEVIATION PRINCIPLES FOR KERNEL ESTIMATOR OF INVARIANT DENSITY IN BIFURCATING MARKOV CHAINS MODELS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

MODERATE DEVIATION PRINCIPLES FOR KERNEL ESTIMATOR OF INVARIANT DENSITY IN BIFURCATING MARKOV CHAINS MODELS

Résumé

Bitseki and Delmas (2021) have studied recently the central limit theorem for kernel estimator of invariant density in bifurcating Markov chains models. We complete their work by proving a moderate deviation principle for this estimator. Unlike the work of Bitseki and Gorgui (2021), it is interesting to see that the distinction of the two regimes disappears and that we are able to get moderate deviation principle for large values of the ergodic rate. It is also interesting and surprising to see that for moderate deviation principle, the ergodic rate begins to have an impact on the choice of the bandwidth for values smaller than in the context of central limit theorem studied by Bitseki and Delmas (2021).
Fichier principal
Vignette du fichier
bitseki2021.pdf (450.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03331911 , version 1 (02-09-2021)

Identifiants

  • HAL Id : hal-03331911 , version 1

Citer

Siméon Valère Bitseki Penda. MODERATE DEVIATION PRINCIPLES FOR KERNEL ESTIMATOR OF INVARIANT DENSITY IN BIFURCATING MARKOV CHAINS MODELS. 2021. ⟨hal-03331911⟩
28 Consultations
38 Téléchargements

Partager

More