
HAL Id: hal-03331911
https://hal.science/hal-03331911v1

Preprint submitted on 2 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MODERATE DEVIATION PRINCIPLES FOR
KERNEL ESTIMATOR OF INVARIANT DENSITY
IN BIFURCATING MARKOV CHAINS MODELS

Siméon Valère Bitseki Penda

To cite this version:
Siméon Valère Bitseki Penda. MODERATE DEVIATION PRINCIPLES FOR KERNEL ESTIMA-
TOR OF INVARIANT DENSITY IN BIFURCATING MARKOV CHAINS MODELS. 2021. �hal-
03331911�

https://hal.science/hal-03331911v1
https://hal.archives-ouvertes.fr


MODERATE DEVIATION PRINCIPLES FOR KERNEL ESTIMATOR OF

INVARIANT DENSITY IN BIFURCATING MARKOV CHAINS MODELS.

S. VALÈRE BITSEKI PENDA

Abstract. Bitseki and Delmas (2021) have studied recently the central limit theorem for kernel

estimator of invariant density in bifurcating Markov chains models. We complete their work by

proving a moderate deviation principle for this estimator. Unlike the work of Bitseki and Gorgui
(2021), it is interesting to see that the distinction of the two regimes disappears and that we are

able to get moderate deviation principle for large values of the ergodic rate. It is also interesting
and surprising to see that for moderate deviation principle, the ergodic rate begins to have an

impact on the choice of the bandwidth for values smaller than in the context of central limit

theorem studied by Bitseki and Delmas (2021).

Keywords: Bifurcating Markov chains, bifurcating auto-regressive process, binary trees, den-
sity estimation.
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1. Introduction

The study of bifurcating Markov chains (BMCs, for short) models has taken a special place
in the literature these last years due to their links with the study of the cell dynamics (see for
e.g. [6, 10, 13, 16, 17]). The first model of BMC, named “symmetric” bifurcating autoregressive
process (BAR, for short) were introduced by Cowan and Staudte [9] in order to understand the
cell division mechanisms of Escherichia Coli (E. Coli, for short). E. Coli is a rod shaped bacterium
which reproduces by dividing in two, thus producing two new cells. One of type 1 which has the
old end of the mother and the other of type 0 which has the new end of the mother. The age of
a cell is thus given by the age of its old pole in the sense of the number of divisions from which
this pole exists. This cell division mechanism raises several questions, among other that of the
symmetry of the division. In order to give a rigorous answer to this question, Guyon [16] has
developed and studied the theory of BMCs. We note that to the best of our knowledge, the term
BMC appears for the first time in the work of [1]. In particular, Guyon has studied an extension of
the model introduced by Cowan and Staudte, named “asymmetric” BAR. In the conclusion of his
study, Guyon concludes that aging has an impact on cell reproduction. We note that an extension
of the model proposed by Guyon, named nonlinear BAR (NBAR, for short) were studied by Bitseki
and Olivier in [6]. Another question of interest related to cell division is estimating the division
rate at which cells divide. This question has been tackled recently in the work of Doumic & al.
[13] and Hoffman & Marguet [17]. In all the previous work, the behaviour and the definition of
parameters of interest are associated with the density of the invariant probability of an auxiliary
Markov chain (see below for a precise definition). The estimation of this invariant density has
recently been the subject of several studies. One can cite [5, 8] where adaptive methods have been
proposed for the estimation of this invariant density. More recently, Bitseki and Delmas [2] have
studied central limit theorem for kernel estimators of this invariant density. Our main objective
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in this paper is to complete the previous study by establishing a moderate deviation principle for
these kernel estimators. Before going any further, let us recall the definition of the main concepts
that we will use and study.

2. The model of bifurcating Markov chain and definition of the estimators

2.1. The regular binary tree associated to BMC models. We denote by N (resp. N∗) the
space of (resp. positive) natural integers. We set T0 = G0 = {∅}, Gk = {0, 1}k and Tk =⋃

0≤r≤k Gr for k ∈ N∗, and T =
⋃
r∈N Gr. The set Gk corresponds to the k-th generation, Tk to

the tree up to the k-th generation, and T the complete binary tree. One can see that the genealogy
of the cells is entirely described by T (each vertex of the tree designates an individual). For i ∈ T,
we denote by |i| the generation of i (|i| = k if and only if i ∈ Gk) and iA = {ij; j ∈ A} for A ⊂ T,
where ij is the concatenation of the two sequences i, j ∈ T, with the convention that ∅i = i∅ = i.
For A ⊂ T, we denote by |A| the number of elements of A. Note that for all n ∈ N, |Gn| = 2n and
|Tn| = 2n+1 − 1.

2.2. The probability kernels associated to BMC models.
For our convenience, we set S = Rd, d ≥ 1 and S is equipped with the Borel sigma-algebra S .
For any q ∈ N∗, we denote by B(Sq) (resp. Bb(S

q), resp. Cb(S
q)) the space of (resp. bounded,

resp. bounded continuous ) R-valued measurable functions defined on Sq. For all q ∈ N∗, we set
S ⊗q = S ⊗ . . .⊗S . Let P be a probability kernel on (S,S ⊗2), that is: P(·, A) is measurable for
all A ∈ S ⊗2, and P(x, ·) is a probability measure on (S2,S ⊗2) for all x ∈ S. For any g ∈ Bb(S

3)
and h ∈ Bb(S

2), we set for x ∈ S:

(1) (Pg)(x) =

∫
S2

g(x, y, z) P(x, dy,dz) and (Ph)(x) =

∫
S2

h(y, z) P(x, dy,dz).

We define (Pg) (resp. (Ph)), or simply Pg for g ∈ B(S3)(resp. Ph for h ∈ B(S2)), as soon as the
corresponding integral (1) is well defined, and we have that Pg and Ph belong to B(S). We denote
by P0, P1 and Q respectively the first and the second marginal of P, and the mean of P0 and P1,
that is, for all x ∈ S and B ∈ S

P0(x,B) = P(x,B × S), P1(x,B) = P(x, S ×B) and Q =
(P0 + P1)

2
.

Now let us give a precise definition of bifurcating Markov chain.

Definition 2.1 (Bifurcating Markov Chains, see [16, 2]).
We say a stochastic process indexed by T, X = (Xi, i ∈ T), is a bifurcating Markov chain (BMC)
on a measurable space (S,S ) with initial probability distribution ν on (S,S ) and probability kernel
P on S ×S ⊗2 if:

- (Initial distribution.) The random variable X∅ is distributed as ν.
- (Branching Markov property.) For any sequence (gi, i ∈ T) of functions belonging to Bb(S

3)
and for all k ≥ 0, we have

E
[ ∏
i∈Gk

gi(Xi, Xi0, Xi1)|σ(Xj ; j ∈ Tk)
]

=
∏
i∈Gk

Pgi(Xi).

Following [16], we introduce an auxiliary Markov chain Y = (Yn, n ∈ N) on (S,S ) with Y0 = X1

and transition probability Q. The chain (Yn, n ∈ N) corresponds to a random lineage taken in the
population. We shall write Ex when X∅ = x (i.e. the initial distribution ν is the Dirac mass at
x ∈ S). We will assume that the Markov chain Y is ergodic and we denote by µ its invariant
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probability measure. Asymptotic and non-asymptotic behaviour of BMCs are strongly related to
the knowledge of µ. In particular, Guyon has proved that if Y is ergodic, then for all f ∈ Cb(S),

|An|−1
∑
u∈An

f(Xu) −−−−→
n→+∞

〈µ, f〉 in probability, where An ∈ {Gn,Tn}.

But in most cases, the invariant probability µ is unknown, so its estimation from the data is of
great interest. For that purpose, we do the following assumption.

Assumption 2.2. The transition kernel P has a density, still denoted by P, with respect to the
Lebesgue measure.

Remark 2.3. Assumption 2.2 implies that the transition kernel Q has a density, still denoted by
Q, with respect to the Lebesgue measure. More precisely, we have Q(x, y) = 2−1

∫
S

(P(x, y, z) +
P(x, z, y))dz. This implies in particular that the invariant probability µ has a density, still denoted
by µ, with respect to the Lebesgue measure (for more details, we refer for e.g. to [14], chap 6).

2.3. Kernel estimator of the invariant density µ. Recall that An ∈ {Gn,Tn} and S = Rd,
d ≥ 1. Assume we observe Xn = (Xu, u ∈ An). Let (hn, n ∈ N) be a sequence of positive numbers
which converges to 0 as n goes to infinity. We will simply write h for hn if there is no ambiguity.
Let the kernel function K : S → R such that

∫
S
K(x)dx = 1. Then, for all x ∈ S, we propose to

estimate µ(x) by

(2) µ̂An
(x) = |An|−1h−d/2n

∑
u∈An

Khn
(x−Xu),

where Khn
(·) = h

−d/2
n K(hn·). These estimators are strongly inspired from [18, 21, 22]. They have

been studied in [13, 8] (non asymptotic studies) and in [2] (central limit theorem).

2.4. Moderate deviation principle and related topics. Our aim is to study moderate devi-
ation principles for the estimators defined in (2). Before we proceed, let us introduce the notion
of moderate deviation principle. We give the definition in a general setting. Let (Zn)n≥0 be a
sequence of random variables with values in S endowed with its Borel σ-field S and let (sn)n≥0

be a positive sequence that converges to +∞. We assume that Zn/sn converges in probability to
0 and that Zn/

√
sn converges in distribution to a centered Gaussian law. Let I : S → R+ be a

lower semicontinuous function, that is for all c > 0 the sub-level set {x ∈ S, I(x) ≤ c} is a closed
set. Such a function I is called rate function and it is called good rate function if all its sub-level
sets are compact sets. Let (bn)n≥0 be a positive sequence such that bn → +∞ and bn/

√
sn → 0 as

n goes to +∞.

Definition 2.4 (Moderate deviation principle, MDP).
We say that Zn/(bn

√
sn) satisfies a moderate deviation principle on S with speed b2n and rate

function I if, for any A ∈ S ,

− inf
x∈Å

I(x) ≤ lim inf
n→+∞

1

b2n
logP

( Zn
bn
√
sn
∈ A

)
≤ lim sup

n→+∞

1

b2n
logP

( Zn
bn
√
sn
∈ A

)
≤ − inf

x∈Ā
I(x),

where Å and Ā denote respectively the interior and the closure of A.

The following two concepts are closely related to the theory of MDP: super-exponential conver-
gence and exponential equivalence. Let (Zn, n ∈ N), (Wn, n ∈ N) be sequences of random variables
and Z a random variable with value in a metric space (S, d).
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Definition 2.5 (Super-exponential convergence). We say that (Zn)n≥0 converges (b2n)- super-

exponentially fast in probability to Z and we note Zn
superexp
=====⇒

b2n

Z if, for all δ > 0,

lim sup
n→+∞

1

b2n
logP

(
d(Zn, Z) > δ

)
= −∞.

Definition 2.6 (Exponential equivalence, see [11], Chap 4). We say that (Zn)n≥0 and (Wn)n≥0

are (b2n)n≥0-exponentially equivalent and we note Zn
superexp∼

b2n

Wn if for any δ > 0,

lim sup
n→+∞

1

b2n
logP

(
d(Zn,Wn) > δ

)
= −∞.

Remark 2.7. Note that for a determininistic sequence that converges to some limit `, it also con-
verges (b2n)-superexponentially fast to ` for any rate bn. We also note that if (Zn)n≥0 and (Wn)n≥0

are (b2n)n≥0-exponentially equivalent and if (Zn)n≥0 satisfies a MDP, then (Wn)n≥0 satisfies the
same MDP (for more details, see for e.g [11], Chap 4).

The following result give a sufficient condition for super-exponential convergence of a sequence
of random variables.

Remark 2.8. We assume that (S, d) is a metric space. Let (Zn)n∈N be a sequence of random
variables with values in S, Z a random variable with values in S. So if d(Zn, Z) is upper-bounded
by a deterministic sequence which converges to 0, then, for all sequence (bn, n ∈ N) converging to

+∞, Zn
superexp
=====⇒

b2n

Z.

The moderate deviation principle has been proved in the i.i.d. setting for kernel density esti-
mator, see for e.g. Gao [15], Mokkadem & al. [20]. We refer also to [19] where Mokkaddem and
Pelletier have constructed confidence bands for probability densities based on moderate deviation
principles. In this paper, we will establish moderate deviation principle for µ̂An

(x) following the
martingale approach developed in [2]. We will need the following assumption.

Assumption 2.9. There exists a positive real number M and α ∈ (0, 1) such that for all f ∈ Bb(S):

(3) |Qnf − 〈µ, f〉| ≤M αn‖f‖∞ for all n ∈ N.

Remark 2.10. Assumption 2.9 is for example satisfy for nonlinear bifurcating autoregressive process
under mild hypotheses on the autoregression functions (see [7] Lemma 9 for more details).

The others assumptions we will need are based on the following bias-variance type decomposition
of the estimator µ̂An(x):

(4) µ̂An
(x)− µ(x) = Bhn

(x) + VAn,hn
(x),

where for h > 0 and A ⊂ T finite:

Bh(x) = h−d/2Kh ? µ(x)− µ(x) and VA,h(x) = |A|−1h−d/2
∑
u∈A

(
Kh(x−Xu)−Kh ? µ(x)

)
,

and for h > 0 and u ∈ T, we set:

Kh ? µ(x) = Eµ[Kh(x−Xu)] =

∫
S

Kh(x− y)µ(y) dy.

To study the variance term VAn,hn
(x), we will introduce a more general sequence of functions (see

Section 3.2).
The following assumptions on the kernel, the bandwidth and the regularity of the unknown

density function are usual. Recall S = Rd with d ≥ 1.
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Assumption 2.11 (Regularity of the kernel function and the bandwidth).

(i) The kernel function K ∈ B(S) satisfies:

‖K ‖∞ < +∞, ‖K ‖1 < +∞, ‖K ‖2 < +∞,
∫
S

K(x) dx = 1 and lim
|x|→+∞

|x|K(x) = 0.

(ii) There exists γ ∈ (0, 1/d) such that the bandwidth (hn, n ∈ N) are defined by hn = 2−nγ .

Assumption 2.12 (Further regularity on the density µ, the kernel function and the bandwidths).
Suppose that there exists an invariant probability measure µ of Q and that Assumptions 2.2 and
2.11 hold. We assume there exists s > 0 such that the following hold:

(i) The density µ belongs to the (isotropic) Hölder class of order (s, . . . , s) ∈ Rd:
The density µ admits partial derivatives with respect to xj, for all j ∈ {1, . . . d}, up to the
order bsc and there exists a finite constant L > 0 such that for all x = (x1, . . . , xd),∈ Rd,
t ∈ R and j ∈ {1, . . . , d}:∣∣∣∣∣∂bscµ∂x

bsc
j

(x−j , t)−
∂bscµ

∂x
bsc
j

(x)

∣∣∣∣∣ ≤ L|xj − t|{s},
where (x−j , t) denotes the vector x where we have replaced the jth coordinate xj by t, with
the convention ∂0µ/∂x0

j = µ.

(ii) The kernel K is of order (bsc, . . . , bsc) ∈ Nd: We have
∫
Rd |x|sK(x) dx < ∞ and∫

R x
k
j K(x) dxj = 0 for all k ∈ {1, . . . , bsc} and j ∈ {1, . . . , d}.

For α > 1/2, we shall also assume the following.

Assumption 2.13. Keeping the same notations as in (ii) of Assumption 2.11, we further assume
that Assumption 2.9 holds with

(5) lim
n→+∞

(21−dγα)n = 0.

Remark 2.14. As consequence of Assumption 2.13 and (ii) of Assumption 2.11, for moderate
deviation principle, the ergodicity rate α begins to have an impact on the choice of the bandwidth
for α > 1/2. This is out of step with the central limit theorem where the ergodicity rate α begins

to have an impact on the choice of the bandwidth for α > 1/
√

2 (see [2] for more details).

In the sequel, we will consider the positive sequence (bn, n ∈ N) such that:

(6) lim
n→+∞

bn = +∞; lim
n→+∞

n3/2 bn√
|Gn|hdn

= 0; lim
n→+∞

bn√
|Gn|h2s+d

n

= +∞,

where s is the regularity parameter given in Assumption 2.12.
The paper is organised as follows. In Section 3.1 we state the main result for the moderate

deviation principles of the estimators µ̂An(x) for x in the set continuity of µ and An ∈ {Tn,Gn}.
In Section 3.2, directly linked to the study of variance term VA,h(x) defined in (4), we study the
moderate deviation principle for general additive functionals of BMCs. Sections 4 and 5 are devoted
to the proofs of results. In Section 6, we recall some useful results.

3. Main result

3.1. Moderate deviation principle for µ̂An
. First, we state a strong consistency result for the

estimators µ̂An
(x) for x in the set of continuity of µ. Its proof is given in Section 4.1.
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Lemma 3.1. Let X be a BMC with kernel P and initial distribution ν such that Assumptions
2.9, 2.11 and 2.12 hold. Furthermore, if α > 1/2 then assume that Assumption 2.13 holds. Let
(bn, n ∈ N) be a positive sequence with satisfies (6). Then, for all x in the set of continuity of µ

and An ∈ {Tn,Gn} we have µ̂An
(x)

superexp
=====⇒

b2n

µ(x).

The main result of this Section is the following theorem which state the moderate deviation
principle for µ̂An

(x)− µ(x) for x in the set of continuity of the function µ.

Theorem 3.2. Under the hypothesis of Lemma 3.1, for all x in the set of continuity of µ and
An ∈ {Tn,Gn}, b−1

n

√
|An|hdn(µ̂An(x) − µ(x)) satisfies a moderate deviation principle on R with

speed b2n and rate function I defined by: I(y) = y2/(2‖K‖22µ(x)) for all y ∈ R, that is, for any
A ⊂ R,

− inf
y∈Å

I(y) ≤ lim inf
n→+∞

1

b2n
logP

(
b−1
n

√
|An|hdn(µ̂An(x)− µ(x)) ∈ A

)
≤ lim sup

n→+∞

1

b2n
logP

(
b−1
n

√
|An|hdn(µ̂An(x)− µ(x)) ∈ A

)
≤ − inf

y∈Ā
I(y),

where Å and Ā denote respectively the interior and the closure of A.

In order to obtain confidence intervals for µ(x), it would be interesting to replace µ(x) in the
expression of the rate function I(·) by an estimator. In that direction, we have the following. Let
A∗n ∈ {Gn,Tn}. Obviously, A∗n and An can be the same. We consider the estimator µ̂A∗n(x) of µ(x)
defined with A∗n instead of An. Let ($n, n ∈ N) be a sequence of real numbers such that $n → 0
as n→ +∞. Then, we have the following result which the proof is given in Section 4.3.

Theorem 3.3. Under the hypothesis of Lemma 3.1, for all x in the set of continuity of µ and
An,A∗n ∈ {Tn,Gn}, b−1

n (‖K‖2
√
µ̂A∗n(x) ∨$n)−1

√
|An|hdn(µ̂An

(x)− µ(x)) satisfies a moderate de-

viation principle on R with speed b2n and rate function I ′ defined by: I ′(y) = y2/2 for all y ∈ R.

In particular, using the contraction principle (see for e.g Dembo and Zeitouni [11], Chap 4), we
have the following corollary of Theorem 3.3.

Corollary 3.4. Under the hypothesis of Theorem 3.3, we have the following convergence for x in
the set of continuity of µ and An,A∗ ∈ {Tn,Gn} :

lim
n→+∞

1

b2n
logP

(
b−1
n

(
‖K‖2

√
µ̂A∗n(x) ∨$n

)−1√
|An|hdn

∣∣∣(µ̂An
(x)− µ(x)

)∣∣∣ > δ
)

= −δ
2

2
∀δ > 0.

Remark 3.5. Corollary 3.4 yields a simple confidence interval for µ(x), of decreasing size

bn/
√
|An|hdn and with level asymptotically close to 1− exp(−(b2n δ

2)/2).

Using the structure of the asymptotic variance σ2 in (7), we can prove the following multidi-
mensional result which the proof is given in Section 4.4

Corollary 3.6. Under the hypothesis of Theorem 3.2, we have, for x in the set of continuity of µ

and for all k ≥ 0, b−1
n

(
|Gn|1/2h1/2

n

(
µ̂Gn

(x)−µ(x)
)
, . . . , |Gn−k|1/2h1/2

n−k
(
µ̂Gn−k

(x)−µ(x)
))t

satisfies

a moderate deviation principle on Rk+1 with speed b2n and good rate function Jx : Rk+1 → R defined
by

Jx(z) =
(
2 ‖K‖22 µ(x)

)−1
ztΓ−1z , z ∈ Rk+1,

with Γ = diag(20, . . . , 2k), where diag(·) denotes the diagonal matrix and zt stands for the transpose
of vector z.
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Remark 3.7. We deduce from Corollary 3.6 that the estimators |Gn−`|1/2hd/2n−`(µ̂Gn−`
(x) − µ(x))

are asymptotically independent in the sense of moderate deviation for ` ∈ {0, . . . , k} and for any
k ∈ N.

3.2. Moderate deviation principle for additive functionals of BMCs.
In order to study the variance term VAn,hn(x), we give here a moderate deviation principle for

a general additive functionals of BMCs. For that purpose, we introduce the following assumption.

Assumption 3.8. For n ∈ N, let fn = (f`,n, n ≥ ` ≥ 0) be a sequence of functions defined on S
such that f`,n = 0 if ` > n and there exists γ ∈ (0, 1/d) such that:

(i) sup0≤`≤n{2−dγn/2‖f`,n‖∞; 2dγn/2‖Qf`,n‖∞; ‖Q(f2
`,n)‖∞; 2dγn‖P(f`,n⊗2)‖∞} < +∞.

(ii) sup0≤`≤n{2dγn/2〈µ, |f`,n|〉; 〈µ, f2
`,n〉} < +∞.

(iii) The following limit exists and is finite:

(7) σ2 = lim
n→+∞

n∑
`=0

2−` ‖f`,n ‖2L2(µ) < +∞.

We will use the following notations. For a finite set A ⊂ T and a function f ∈ B(S), we set:

MA(f) =
∑
i∈A

f(Xi).

In this paper, we are interested in the cases A = Gn and A = Tn, that is the n-th generation and
the first n generation of the tree. Recall µ the invariant probability of Q, transition probability of
the auxiliary Markov chain (Yn, n ∈ N). For f ∈ L1(µ), we set:

f̃ = f − 〈µ, f〉.
Recall the sequence fn defined in Assumption 3.8. For n ∈ N, we set:

(8) Nn,∅(fn) = |Gn|−1/2
n∑
`=0

MGn−`
(f̃`,n).

The notation Nn,∅ means that we consider the average from the root ∅ to the n-th generation.

Remark 3.9. The definition of Nn,∅(fn) in (8) is mainly motivated by the decomposition (4). It
will allow us to threat the variance term of the estimator µ̂An

(x) defined in (2). Instead, for n ∈ N,
we set fxn (·) = Khn(x − ·). Then, we consider the sequences of functions (f id

`,n, n ≥ ` ≥ 0) and

(f0
`,n, n ≥ ` ≥ 0) defined by:

(9) f id
`,n = fxn and f0

`,n = fxn1{`=0}.

It is not difficult to check that under Assumption 2.11, the sequence (f id
`,n, n ≥ ` ≥ 0) and

(f0
`,n, n ≥ ` ≥ 0) defined in (9) satisfy Assumption 3.8. In particular, let x be in the set of

continuity of µ. Thanks to Lemma 6.3, we have:

(10) lim
n→+∞

‖fxn ‖
2
L2(µ) = lim

n→+∞
〈µ, (fxn )2〉 = µ(x) ‖K ‖22 .

If An = Gn, it suffices to consider the sequence fn = (f`,n, 0 ≤ ` ≤ n) with f`,n = f0
`,n and

in that case, using (10), the asymptotic variance defined in (7) is given by σ2 = ‖K‖22 µ(x). If
An = Tn, it suffices to consider the sequence fn = (f`,n, 0 ≤ ` ≤ n) with f`,n = f id`,n and in that

case, using (10), the asymptotic variance defined in (7) is given by σ2 = 2‖K‖22 µ(x).

For our convenience, we assume that the quantity γ which appears in Assumptions 2.11 and 3.8
is the same. The main result of this section is the following.
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Theorem 3.10. Let X be a BMC with kernel P and initial distribution ν such that Assumptions
2.9, 2.11 and 3.8 hold. Furthermore, if α > 1/2 then assume that Assumption 2.13 holds. Let
(bn, n ∈ N) be a positive sequence with satisfies (6). Then b−1

n Nn,∅(fn) satisfies a moderate deviation
principle on R with speed b2n and rate function I defined by: I(x) = x2/(2σ2) for all x ∈ R, with
the finite variance σ2 defined in (7).

Remark 3.11. In particular, using the contraction principle (see for e.g Dembo and Zeitouni [11],
Chap 4), Theorem 3.10 implies that

lim
n→+∞

1

b2n
logP

(∣∣b−1
n Nn,∅(fn)

∣∣ > δ
)

= −I(δ) ∀δ > 0.

Remark 3.12. Unlike the results of Bitseki and Gorgui [4], one can note that the different regimes
disappear in Theorem 3.10. Moreover, we are able here to give the fluctuations if 2α2 > 1 which
is not the case in [4].

4. Proof of Lemma 3.1, Theorems 3.2 and 3.3 and Corollary 3.6

We will denote by C any unimportant finite constant which may vary from line to line (in
particular C does not depend on n ∈ N).

4.1. Proof of Lemma 3.1. We begin the proof with An = Tn. Recall the decomposition (4) with
Tn instead of A. Using Lemma 6.3, we have limn→+∞ |Bhn

(x)| = 0. From Remark 2.7, this implies

that Bhn(x)
superexp
=====⇒

b2n

0. Next, we set fn(·) = Khn(x− ·) in such a way that we have

|Tn|−1hd−/2n

∑
u∈Tn

(
Kh(x−Xu)−Kh ? µ(x)

)
= |Tn|−1hd−/2n

n∑
`=0

MG`
(f̃n).

Following line by line the proof of (32) (where we take f`,n = fn for all ` ≤ n), we get

P
(
|Tn|−1hd−/2n

∣∣∣ n∑
`=0

MG`
(f̃n)

∣∣∣ > δ
)
≤ 2 exp

( 3δ

c1 + c2δ

)
exp

(
− 3δ2|Tn|hdn

c1 + c2δ

)
.

Taking the log, dividing by b2n and letting n goes to the infinity in the latter inequality, we get

|Tn|−1hd−/2n

∑
u∈Tn

(
Kh(x−Xu)−Kh ? µ(x)

)
superexp
=====⇒

b2n

0.

It then follows from the decomposition (4) that µ̂Tn
(x)

superexp
=====⇒

b2n

µ(x). We similarly get the result

for An = Gn and this ends the proof of the lemma.

4.2. Proof of Theorem 3.2. We begin the proof with An = Tn. We have the following decom-
position:

b−1
n

√
|Tn|hdn

(
µ̂Tn(x)− µ(x)

)
=

√
|Gn|
|Tn|

b−1
n Nn,∅(fn) +

√
|Tn|hdn
bn

Bhn(x),

where fn = (f`,n, n ≥ ` ≥ 0) with the functions f`,n = f id
`,n defined in (9) for n ≥ ` ≥ 0 and

f`,n = 0 otherwise; Nn,∅(fn) is defined in (8) and the bias term Bhn
(x) is defined in (4). Thanks to

Theorem 3.10 applied to the sequence (f id`,n, n ≥ ` ≥ 0) and using that limn→+∞ |Gn|/|Tn| = 1/2,

we get that
√
|Gn||Tn|−1b−1

n Nn,∅(fn) satisfies a moderate deviation principle in R with speed b2n
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and rate function I defined by: I(y) = y2/(2‖K‖22 µ(x)) for all y ∈ R. To complete the proof of
Theorem 3.2, it suffices to prove that

(11) lim
n→+∞

√
|Tn|hdn
bn

Bhn(x) = 0.

Next, using that

µ(x− hny)− µ(x) =

d∑
j=1

(µ(x1 − hny1, . . . , xj − hnyj , xj+1, . . . , xd)

− µ(x1 − hny1, . . . , xj−1 − hnyj−1, xj , xj+1, . . . , xd)),

the Taylor expansion and Assumption 2.12, we get that, for some finite constant C > 0,

|Tn|1/2hd/2n Bhn(x) =
√
|Tn|hdn

∣∣∣ ∫
Rd

h−dn K(h−1
n (x− y))µ(y)dy − µ(x)

∣∣∣
=
√
|Tn|hdn

∣∣∣ ∫
Rd

K(y)(µ(x− hny)− µ(x)) dy
∣∣∣

≤ C
√
|Tn|hdn

d∑
j=1

∫
Rd

K(y)
(hn|yj |)s

bsc!
dy

≤ C
√
|Tn|h2s+d

n .

Now, (11) follows using the latter inequality and (6). This ends the proof of Theorem 3.2 for
An = Tn. The proof is similar for An = Gn using f`,n = f0

`,n.

4.3. Proof of Theorem 3.3. . We begin the proof with An = Tn. We have the following
decomposition:

(12)
b−1
n

√
|Tn|hdn(µ̂Tn

(x)− µ(x))

‖K‖2
√
µ̂A∗n(x) ∨$n

= T1(n) + T2(n)

where

T1(n) = (‖K‖2
√
µ(x)bn)−1

√
|Tn|hdn

(
µ̂Tn

(x)− µ(x)
)

;

T2(n) =
( 1

‖K‖2
√
µ̂A∗n(x) ∨$n

− 1

‖K‖2
√
µ(x)

)
b−1
n

√
|Tn|hdn

(
µ̂Tn

(x)− µ(x)
)
.

First, we prove that

(13) T2(n)
superexp
=====⇒

b2n

0.

Let δ > 0. For all r > 0, we have

P
(
|T2(n)| > δ

)
≤ P

(∣∣b−1
n

√
|Tn|hdn

(
µ̂Tn(x)− µ(x)

)∣∣ > δ/r
)

+ P
(∣∣ 1

‖K‖2
√
µ̂A∗n(x) ∨$n

− 1

‖K‖2
√
µ(x)

∣∣ > r
)
.
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This implies that (see for e.g [11], Lemma 1.2.15)

(14)

lim sup
n→+∞

1

b2n
logP

(
|T2(n)| > δ

)
≤ max

{
lim sup
n→+∞

1

b2n
logP

(∣∣b−1
n

√
|Tn|hdn

(
µ̂Tn

(x)− µ(x)
)∣∣ > δ/r

)
;

lim sup
n→+∞

1

b2n
logP

(∣∣ 1

‖K‖2
√
µ̂A∗n(x) ∨$n

− 1

‖K‖2
√
µ(x)

∣∣ > r
)}
.

Using Theorem 3.2 and the contraction principle, we have

(15) lim sup
n→+∞

1

b2n
logP

(∣∣b−1
n

√
|Tn|hdn

(
µ̂Tn

(x)− µ(x)
)∣∣ > δ/r

)
= − δ2

2‖K‖2µ(x)r2
.

Following the step 1 of the proof of Theorem 6 in [7] and using Lemma 3.1, we can prove that

‖K‖22 µ̂A∗n(x) ∨$2
n

superexp
=====⇒

b2n

‖K‖22 µ(x).

Using Lemma B.2 in [3], the latter convergence implies that

(16)
1

‖K‖2
√
µ̂A∗n(x) ∨$n

superexp
=====⇒

b2n

1

‖K‖2
√
µ(x)

.

Using (14), (15) and (16), we get

lim sup
n→+∞

1

b2n
logP

(
|T2(n)| > δ

)
≤ − δ2

2‖K‖2µ(x)r2
.

Since r can be taken arbitrarily close to 0, we get (13) and using (12), this implies that

(17)
b−1
n

√
|Tn|hdn(µ̂Tn(x)− µ(x))

‖K‖2
√
µ̂A∗n(x) ∨$n

superexp∼
b2n

T1(n).

Using Theorem 3.2 and the contraction principle, we get that T1(n) satisfies a moderate deviation
principle on R with speed b2n and rate function I ′ defined by: I ′(y) = y2/2 for all y ∈ R. Using
(17) and Remark 2.7, we get the result of Theorem 3.3.

4.4. Proof of Corollary 3.6. Let a = (a0, . . . , ak)t ∈ Rk+1. Let n > k. We consider the sequence
fn = (f`,n, n ≥ ` ≥ 0) defined by f`,n = 2`/2 a`Khn−`

(x − ·) for all ` ∈ {0, . . . , k} and f`,n = 0
otherwise. We easily check that fn satisfies Assumptions 3.8. In particular, the asymptotic variance

defined in (7) is given by σ2 =
(∑k

`=0 2`a2
`

)
‖K‖22 µ(x). Observe that the linear combinaison Mn(a),

with coefficients a = (a0, . . . , ak)t ∈ Rk+1, of the estimators |Gn−`|1/2hd/2n−`(µ̂Gn−`
(x) − µ(x)),

` ∈ {0, . . . , k} has the following decomposition:

(18) Mn(a) = Nn,∅(fn) +

k∑
`=0

a`
(
|Gn−`|hdn−`

)1/2
Bhn−`

(x),

where Nn,∅(fn) is defined in (8) and the Bhn−`
(x), ` ∈ {0, . . . , k}, are defined in (4). Applying

Theorem 3.10, we get that b−1
n Nn,∅(fn) satisfies a moderate deviation principle on R with speed

b2n and rate function Ix,a : R→ R defined by

(19) Ix,a(y) =
y2

2
(∑k

`=0 2`a2
`

)
‖K‖22 µ(x)

, y ∈ R.
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Using (11), we have that

lim
n→+∞

1

bn

k∑
`=0

a`
(
|Gn−`|hdn−`

)1/2
Bhn−`

(x) = 0.

Using Remark 2.7, this implies that

(20)
1

bn

k∑
`=0

a`
(
|Gn−`|hdn−`

)1/2
Bhn−`

(x)
superexp
=====⇒

b2n

0.

Using (18) and (20) we get that b−1
n Mn(a) and b−1

n Nn,∅(fn) satisfy the same moderate deviation
principle. We then conclude that b−1

n Mn(a) satisfies a moderate deviation principle on R with
speed b2n and rate function Ix,a defined in (19). Since this is true for all vector a ∈ Rk+1, that is

for all the linear combinaisons of the estimators |Gn−`|1/2hd/2n−`(µ̂Gn−`
(x) − µ(x)), ` ∈ {0, . . . , k},

we get the result of Corollary 3.6.

5. Proof of Theorem 3.10

We begin with some notations. We will denote by C any unimportant finite constant which may
vary from line to line (in particular C does not depend on n ∈ N nor on the considered sequence
of functions fn = (f`,n, n ≥ ` ≥ 0)). Let (pn, n ∈ N) be a non-decreasing sequence of elements of
N∗ such that

lim
n→+∞

p3
n b

2
n |Gn−pn |−1 = 0.

When there is no ambiguity, we write p for pn.

Let i, j ∈ T. We write i 4 j if j ∈ iT. We denote by i ∧ j the most recent common ancestor of
i and j, which is defined as the only u ∈ T such that if v ∈ T and v 4 i, v 4 j then v 4 u. We
also define the lexicographic order i ≤ j if either i 4 j or v0 4 i and v1 4 j for v = i ∧ j. Let
X = (Xi, i ∈ T) be a BMC with kernel P and initial measure ν. For i ∈ T, we define the σ-field:

Fi = {Xu;u ∈ T such that u ≤ i}.

By construction, the σ-fields (Fi; i ∈ T) are nested as Fi ⊂ Fj for i ≤ j.

We define for n ∈ N, i ∈ Gn−pn and fn the martingale increments:

(21) ∆n,i(fn) = Nn,i(fn)− E [Nn,i(fn)|Fi] and ∆n(fn) =
∑

i∈Gn−pn

∆n,i(fn),

where

(22) Nn,i(fn) = |Gn|−1/2

p∑
`=0

MiGp−`
(f̃`,n) and iGp−` = {ij, j ∈ Gp−`}.

We have: ∑
i∈Gn−pn

Nn,i(fn) = |Gn|−1/2

pn∑
`=0

MGn−`
(f̃`,n) = |Gn|−1/2

n∑
k=n−pn

MGk
(f̃n−k,n).

Using the branching Markov property, we get for i ∈ Gn−pn :

(23) E [Nn,i(fn)|Fi] = E [Nn,i(fn)|Xi] = |Gn|−1/2

pn∑
`=0

EXi

[
MGpn−`

(f̃`,n)
]
.
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We have the following decomposition:

(24) Nn,∅(fn) = ∆n(fn) +R0(n) +R1(n),

where ∆n(f) is defined in (21) and:

R0(n) = |Gn|−1/2

n−pn−1∑
k=0

MGk
(f̃n−k,n) and R1(n) =

∑
i∈Gn−pn

E [Nn,i(fn)|Fi] .

From (24), our goals will be achieved if we prove the following:

b−1
n R0(n)

superexp
=====⇒

b2n

0;(25)

b−1
n R1(n)

superexp
=====⇒

b2n

0;(26)

b−1
n ∆n(f) satisfies a MDP on S with speed b2n and rate function I.(27)

Note that (25) and (26) mean that R0(n) and R1(n) are negligible in the sense of moderate devia-
tions in such a way that using (24) and Remark 2.7, Nn,∅(f) and ∆n(f) satisfy the same moderate
deviation principle. To prove (27), the main method we will use is the moderate deviations for
martingale (see [12] for more details).

In the sequel, the sequence (2−γn, n ∈ N) which appears in Assumption 3.8 will be denoted

(hn, n ∈ N) in such a way that we have 2−dγn/2 = h
d/2
n . We have the following result.

Lemma 5.1. Under the assumptions of Theorem 3.10, we have b−1
n R0(n)

superexp
=====⇒

b2n

0.

Proof. Let δ > 0. Using the Chernoff bound, we have, for all λ > 0,

(28) P
(
b−1
n R0(n) > δ

)
≤ exp

(
− λbn|Gn|1/2δ

)
E
[

exp
(
λ

n−p−1∑
`=0

MG`
(f̃n−`,n)

)]
.

For all k ∈ {1, . . . , n− p} and for u ∈ T, we set

gp,k =

k−1∑
r=0

2rQrf̃p+k−r,n and Zp,k(u) = gp,k(Xu0) + gp,k(Xu1)− 2Qgp,k(Xu).

Then, using recursively the fact that∑
u∈G`

f(Xu) =
∑

u∈G`−1

(f(Xu0) + f(Xu1)− 2Qf(Xu)) +
∑

u∈G`−1

2Qf(Xu),

for all ` ≥ 1 and for some function f , we get

E
[

exp
(
λ

n−p−1∑
`=0

MG`
(f̃n−`,n)

)]
= E

[
exp

(
λgp,n−p(X∅)

) n−p−1∏
k=1

exp
(
λ

∑
u∈Gn−p−k−1

Zp,k(u)
)]
.

For all m ∈ {1, . . . , n− p− 1}, we set

Im = E
[

exp(λgp,n−p(X∅))

n−p−1∏
k=m

exp(λ
∑

u∈Gn−p−k−1

Zp,k(u))
]
.
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Using the branching Markov property, we get the following decomposition:

Im = E
[

exp(λgp,n−p(X∅)) Jm
n−p−1∏
k=m+1

exp(λ
∑

u∈Gn−p−k−1

Zp,k(u))
]
,

with

Jm =
∏

u∈Gn−p−m−1

EXu

[
exp(λZp,m(u))

]
.

For all u ∈ Gn−p−m−1, we will upper bound the quantity EXu [exp(λZp,m(u))] and then Jm. We
claim that:

(29) |Zp,m(u)| ≤ M = C h−d/2n ;

(30) EXu
[Zp,m(u)2] ≤ σ2

m = C + C hdn

(m−1∑
r=0

(2α)r−1
)2

1{m>1}.

For that purpose, we plan to use the bound

(31) E
[

exp(λZ)
]
≤ exp

( λ2σ2

2(1− λM/3)

)
valid for any λ ∈ (0, 3/M), any random variable Z such that |Z| ≤ M , E[Z] = 0 and E[Z2] ≤ σ2.

For all u ∈ Gn−p−m−1 and for all λ ∈ (0, Ch
−d/2
n /3) we get, using (29)-(31),

EXu

[
exp(λZp,m(u))

]
≤ exp

( λ2σ2
m

2(1− λM/3)

)
.

For all m ∈ {1, . . . , n− p− 1}, the latter inequality implies that

Jm ≤ exp
(λ2σ2

m|Gn−p−m−1|
2(1− λM/3)

)
and Im ≤ exp

(λ2σ2
m|Gn−p−m−1|

2(1− λM/3)

)
Im+1.

Recall that I1 = E
[

exp
(
λ
∑n−p−1
`=0 MG`

(f̃n−`,n)
)]
. By recurrence, we get

E
[

exp
(
λ

n−p−1∑
`=0

MG`
(f̃n−`,n)

)]
= I1 ≤ exp

(λ2
∑n−p−1
m=1 σ2

m|Gn−p−m−1|
2(1− λM/3)

)
E
[

exp
(
λgp,n−p(X∅)

)]
.

Using (i) and (ii) of Assumption 3.8 and (3), we have

|gp,n−p| ≤ |f̃n,n|+
n−p−1∑
r=1

2r|Qr−1(Qf̃n−r,n)| ≤ Ch−d/2n + Chd/2n

n−p−1∑
r=1

(2α)r−1.

This implies that

E
[

exp
(
λ

n−p−1∑
`=0

MG`
(f̃n−`,n)

)]
≤ exp

(λ2
∑n−p−1
m=1 σ2

m|Gn−p−m−1|
2(1− λM/3)

)
× exp

(
λC h−d/2n + λC hd/2n

n−p−2∑
r=0

(2α)r
)
.

Distinguishing the cases 2α ≤ 1, 1/2 < 2α ≤
√

2 and 2α >
√

2 and using (5) for 2α > 1, we get

E
[

exp
(
λ

n−p−1∑
`=0

MG`
(f̃n−`,n)

)]
≤ exp

( c1λ
2|Gn−p|

2(1− c2λh−d/2n /3)

)
exp

(
c3λh

−d/2
n

)
,
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where c1, c2 and c3 are some positive constants. The latter inequality and (28) imply that

P
(
b−1
n R0(n) > δ

)
≤ exp

(
− λbn|Gn|1/2δ +

c1λ
2|Gn−p|

2(1− c2λh−d/2n /3)

)
exp

(
c3λh

−d/2
n

)
.

Taking1

λ =
3 bn |Gn|1/2 δ

2 c2 bn |Gn|1/2 h−d/2n δ + 3 c1 |Gn−p|
,

we are led to

P
(
b−1
n R0(n) > δ

)
≤ C exp

(
− 3 δ2 b2n |Gn|

2(c2 δ bn |Gn|1/2 h−d/2n + 3 c1 |Gn−p|)

)
.

Since we can do the same thing for −fn instead of fn, we get that

(32) P
(
b−1
n |R0(n)| > δ

)
≤ 2C exp

(
− 3 δ2 b2n |Gn|

2(c2 δ bn |Gn|1/2 h−d/2n + 3 c1 |Gn−p|)

)
.

Finally, in the latter inequality, taking the log, dividing by b2n and letting n goes to infinity, we get
the result of Lemma 5.1. Now, to end the proof, we will prove (29) and (30).

Proof of (29). Using Assumption 2.9, (i) and (ii) of Assumption 3.8 and Assumption 2.13, we get

|Zp,m(u)| ≤ C ‖f̃p+1,n‖∞ + C(1 + 2α)(

m−1∑
r=1

(2α)r−1‖Qfp+m−r,n‖∞)1{m>1}

≤ C h−d/2n + C hd/2n

m−1∑
r=0

(2α)r ≤ C h−d/2n .

Proof of (30). Using the branching Markov property for the second inequality, Assumption 2.9 for
the fourth inequality and (i) and (ii) of Assumption 3.8 for the last inequality, we get

EXu [Zp,m(u)2] ≤ EXu [(gp,m(Xu0) + gp,m(Xu1))2] ≤ CQ(g2
p,m)(Xu)

≤ CQ(f̃2
p+1,n)(Xu) + CQ

((m−1∑
r=1

2rQr−1(Qf̃p+m−r,n)
)2)

(Xu) 1{m>1}

≤ C‖Qf̃2
p+1,n‖∞ +

(m−1∑
r=1

(2α)r−1‖Qfp+m−r,n‖∞
)2

1{m>1}

≤ C + C hdn

(m−1∑
r=0

(2α)r
)2

1{m>1}.

�

Next, we have the following result.

Lemma 5.2. Under the assumptions of Theorem 3.10, we have b−1
n R1(n)

superexp
=====⇒

b2n

0.

1In fact, we use the following. For α, β, γ > 0 and h(x) = −αx + βx2

2(1−γx) we have h(x∗) = −α2

2(β+αγ)
for the

choice x∗ = α
2αγ+β

∈ (0, 1/γ).
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Proof. We have, using (23) and (49),

(33) R1(n) = |Gn|−1/2MGn−p
(gp,n) where gp,n =

p∑
`=0

2p−`Qp−`f̃`,n.

We follow the same arguments that in the proof of Lemma 5.1. For all m ∈ {1, . . . , n− p} and for
all u ∈ T, we set

Zp,m(u) = 2m−1Qm−1gp(Xu0) + 2m−1Qm−1gp(Xu1)− 2mQmgp(Xu).

We also consider the following quantities for m ∈ {1, . . . , n− p} and λ > 0:

Im = E
[

exp
(
λ2n−pQn−pgp,n(X∅)

) n−p∏
k=m

exp
(
λ

∑
u∈Gn−p−k

Zp,k(u)
)]

and

Jm =
∏

u∈Gn−p−m

EXu

[
exp

(
λZp,m(u)

)]
.

Note that using the branching Markov property, we have

(34) Im = E
[

exp
(
λ2n−pQn−pgp,n(X∅)

) n−p∏
k=m+1

exp
(
λ

∑
u∈Gn−p−k

Zp,k(u)
)
Jm
]
.

As for (29)-(30), for all m ∈ {1, . . . , n− p} and u ∈ Gn−p−m, one can prove that
(35)

|Zp,m(u)| ≤M = Ch−d/2 and EXu

[
Zp,m(u)2

]
≤ σ2

m = C1{m=1} + Chdn

( p∑
`=0

(2α)p+m−`−2
)2

.

Using (31) and (35), we have, for all u ∈ Gn−p−m and for all λ ∈ (0, Ch−d/2/3),

EXu

[
exp(λZp,m(u))

]
≤ exp

( λ2σ2
m

2(1− λM/3)

)
.

The latter inequality and (34) imply that

Im ≤ exp
(λ2σ2

m|Gn−p−m|
2(1− λM/3)

)
Im+1.

By recurrence, this implies that

(36) I1 ≤ exp
(λ2

∑n−p
m=1 σ

2
m|Gn−p−m|

2(1− λM/3)

)
E
[

exp
(
λ2n−pQn−pgp,n(X∅)

)]
.

Using (i) and (ii) of Assumption 3.8 and Assumption 2.9, we get

(37) |gp,n| ≤ Chd/2n

p∑
`=0

(2α)n−`.
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From (36), (37) and according to the value of α, we have, for some positive constants c1, c2 and
c3 (recall the definition of M and σ2

m given in (35)):

I1 ≤ C exp
( λ2c1|Gn−p|

2(1− λc2h−d/2n /3)

)
if 2α ≤ 1;

I1 ≤ exp
(
λc3(2α)nhd/2n

)
exp

(λ2c1|Gn−p|(1 + (2α)2phdn)

2(1− λc2h−d/2n /3)

)
if 1 < 2α ≤

√
2;

I1 ≤ exp
(
λc3(2α)nhd/2n

)
exp

(λ2c1|Gn−p|(1 + (2α)2phdn + 2p(2α2)nhdn)

2(1− λc2h−d/2n /3)

)
if 2α >

√
2.

Recall that I1 = E[exp(λMGn−p(gp,n))]. Using the Chernoff bound and (33), we have for all

λ ∈ (0, Ch
−d/2
n /3) and for all δ > 0,

P
(
b−1
n R1(n) > δ

)
≤ exp

(
− λbn|Gn|1/2δ

)
I1.

Taking

λ =


3bn|Gn|1/2δ

2c2bn|Gn|1/2h−d/2
n δ+ 3c1|Gn−p|

if 2α ≤ 1

3bn|Gn|1/2δ
2c2bn|Gn|1/2h−d/2

n δ+ 3c1|Gn−p|(1+(2α)2phd
n)

if 1 < 2α ≤
√

2

3bn|Gn|1/2δ
2c2bn|Gn|1/2h−d/2

n δ+ 3c1|Gn−p|(1+(2α)2phd
n+2p(2α2)nhd

n)
if 1 < 2α ≤

√
2,

and since we can do the same things for −fn instead of fn, we get,
if 2α ≤ 1 :

P
(
b−1
n |R1(n)| > δ

)
≤ C exp

(
− 3b2n|Gn|δ2

2(c2bn|Gn|1/2h−d/2n δ + 3c1|Gn−p|)

)
;

if 1 < 2α ≤
√

2 :

P
(
b−1
n |R1(n)| > δ

)
≤ 2 exp

( c3(2α)nh
d/2
n bn|Gn|1/2

2c2bn|Gn|1/2h−d/2n δ + 3c1|Gn−p|(1 + (2α)2phdn)

)
× exp

(
− 3b2n|Gn|δ2

2(c2bn|Gn|1/2h−d/2n δ + 3c1|Gn−p|(1 + (2α)2phdn))

)
;

if 2α >
√

2 :

P
(
b−1
n |R1(n)| > δ

)
≤ 2 exp

( c3(2α)nh
d/2
n bn|Gn|1/2

2c2bn|Gn|1/2h−d/2n δ + 3c1|Gn−p|(1 + (2α)2phdn + 2p(2α2)nhdn)

)
× exp

(
− 3b2n|Gn|δ2

2(c2bn|Gn|1/2h−d/2n δ + 3c1|Gn−p|(1 + (2α)2phdn + 2p(2α2)nhdn))

)
.

Finally, applying the log to each of these last three inequalities, dividing by b2n, letting n goes to
infinity and using (6) and Assumption 2.13, we get the result of Lemma 5.2. �

From (24), Lemmas 5.1 and 5.2, we have

(38) b−1
n Nn,∅(fn)

superexp∼
b2n

b−1
n ∆n(fn).

As a consequence, using Remark 2.7, b−1
n Nn,∅(fn) and b−1

n ∆n(fn) satisfy the same moderate devi-
ation principle.



MDP FOR KERNEL DENSITY ESTIMATOR OF BMC 17

We now study the martingale part ∆n(fn) of the decomposition (24). The bracket V (n) of
∆n(fn) is defined by:

V (n) =
∑

i∈Gn−pn

E
[
∆n,i(fn)2|Fi

]
.

Using (22) and (21), we write:

(39) V (n) = |Gn|−1
∑

i∈Gn−pn

EXi

( pn∑
`=0

MGpn−`
(f̃`,n)

)2
−R2(n) = V1(n) + 2V2(n)−R2(n),

with:

V1(n) = |Gn|−1
∑

i∈Gn−pn

pn∑
`=0

EXi

[
MGpn−`

(f̃`,n)2
]
,

V2(n) = |Gn|−1
∑

i∈Gn−pn

∑
0≤`<k≤pn

EXi

[
MGpn−`

(f̃`,n)MGpn−k
(f̃k,n)

]
,

R2(n) =
∑

i∈Gn−pn

E [Nn,i(fn)|Xi]
2
.

We have the following result.

Lemma 5.3. Under the Assumptions of Theorem 3.10, we have R2(n)
superexp
=====⇒

b2n

0.

Proof. Using the branching Markov property, we have

R2(n) = |Gn|−1MGn−p
(gp) with gp =

( p∑
`=0

2p−`Qp−`f̃`,n

)2

.

Using Assumption 2.9 and (i) and (ii) of Assumption 3.8, we get

‖gp‖∞ ≤ C‖f̃p,n‖2∞ + C‖(
p−1∑
`=0

2p−`Qp−`f̃`,n)2‖∞

≤ Ch−dn + C
( p−1∑
`=0

(2α)p−`hd/2n

)2

≤ Ch−dn 1{2α≤1} + C(h−dn + hdn(2α)2p)1{2α>1}.

This implies that

(40) R2(n) ≤ C|Gn|−1h−dn 1{2α≤1} + C(|Gn|−1h−dn + (2α2)phdn|Gn−p|−1) 1{2α>1}.

Recall that hn = 2−nγ with γ ∈ (0, 1/d). Using Assumption 2.13, we conclude from (40) that R2(n)
is bounded by a deterministic sequence which converge to 0. As a consequence, using Remark 2.8,
we get the result of Lemma 5.3. �

Recall σ2 given in (7). We have the following result.

Lemma 5.4. Under the Assumptions of Theorem 3.10, we have V1(n)
superexp
=====⇒

b2n

σ2.
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Proof. We have the following decomposition which is a consequence of (50):

V1(n) = V3(n) + V4(n),

with

V3(n) = |Gn|−1
∑

i∈Gn−p

p∑
`=0

2p−` Qp−`(f̃2
`,n)(Xi),

V4(n) = |Gn|−1
∑

i∈Gn−p

p−1∑
`=0

p−`−1∑
k=0

2p−`+k Qp−1−(`+k)
(
P
(
Qkf̃`,n⊗2

))
(Xi).

Now, the result of Lemma 5.4 is a direct consequence of the following:

V3(n)
superexp
=====⇒

b2n

σ2;(41)

V4(n)
superexp
=====⇒

b2n

0.(42)

To end the proof, we will now prove (41) and (42).

Proof of (41). Set

gp,n =

p∑
`=0

2−`Qp−`(f̃2
`,n − 〈µ, f̃2

`,n〉) and H
[n]
3 (fn) =

p∑
`=0

2−`〈µ, f̃2
`,n〉.

Following the same arguments that in the proof of Lemmas 5.1 and 5.2, we get after studious
calculations:
if 2α ≤ 1,

P
(
|V3(n)−H [n]

3 | > δ
)

= P
(
|Gn−p|−1|MGn−p

(gp,n)| > δ
)

≤ C exp
( Cp δ

Cδh−dn + 3(p22−p + 2−ph−dn )

)
exp

(
− 3δ2|Gn|

2(Cδh−dn + 3(p22−p + 2−ph−dn ))

)
;

if 1 < 2α ≤
√

2,

P
(
|V3(n)−H [n]

3 | > δ
)

= P
(
|Gn−p|−1|MGn−p(gp,n)| > δ

)
≤ exp

( c3(2α)nhdnδ

c2δ + 3c1((2α2)phdn + 2−p)

)
exp

(
− 3δ2|Gn|hdn

2(c2δ + 3c1((2α2)phdn + 2−p))

)
;

if 2α >
√

2,

P
(
|V3(n)−H [n]

3 | > δ
)

= P
(
|Gn−p|−1|MGn−p(gp,n)| > δ

)
≤ exp

( c3(2α)nhdnδ

c2δ + 3c1((2α2)nhdn + 2−p)

)
exp

(
− 3δ2|Gn|hdn

2(c2δ + 3c1((2α2)nhdn + 2−p))

)
;

Taking the log, dividing by b2n, letting n goes to the infinity and using (6) and Assumption 2.13,
we get

lim sup
n→+∞

1

b2n
logP

(
|V3(n)−H [n]

3 | > δ
)

= −∞.

Next, using (iii) of Assumption 3.8, we get limn→+∞H
[n]
3 (fn) = σ2. This ends the proof of (41)

since (H
[n]
3 (fn)) is a deterministic sequence.
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Proof of (42). We set

h
(n)
`,k = 2k−` Qp−1−(`+k)

(
P
(
Qkf̃`,n ⊗2

))
and H4,n =

p−1∑
`=0

p−`−1∑
k=0

h
(n)
`,k

in such a that V4(n) = |Gn−p|−1MGn−p(H4,n). Using, (3) and (i) and (ii) of Assumption 3.8, we
get

|h(n)
`,k | ≤ 2k−`P(|Qkf̃`,n|⊗2) ≤ C2k−`hdnα

2k.

This implies that |H4,n| ≤ cn and then that |V4(n)| ≤ cn, where the sequence (cn, n ∈ N) is defined
by

cn = Chdn1{2α2≤1} + Chdn(2α2)p1{2α2>1}

Using (5) and the fact that (hn, n ∈ N) converges to 0, we get that the sequence (cn, n ∈ N)
converges to 0. Thus, we have that V4(n) is bounded by a deterministic sequence which converges
to 0. Then (42) follows using Remark 2.8. �

Lemma 5.5. Under the Assumptions of Theorem 3.10, we have V2(n)
superexp
=====⇒

b2n

0.

Proof. Using (51), we get:

V2(n) = V5(n) + V6(n),

with

V5(n) = |Gn|−1
∑

i∈Gn−p

∑
0≤`<k≤p

2p−`Qp−k
(
f̃k,nQ

k−`f̃`,n
)
(Xi),

V6(n) = |Gn|−1
∑

i∈Gn−p

∑
0≤`<k<p

p−k−1∑
r=0

2p−`+r Qp−1−(r+k)
(
P
(
Qrf̃k,n ⊗sym Qk−`+rf̃`,n

))
(Xi).

First, we set

h
(n)
k,`,r = 2r−` Qp−1−(r+k)

(
P
(
Qrf̃k,n ⊗sym Qk−`+rf̃`,n

))
and H6,n =

∑
0≤`<k<p

p−k−1∑
r=0

h
(n)
k,`,r

in such a way that V6(n) = |Gn−p|−1MGn−p(H6,n). Using, (3) and (i) and (ii) of Assumption 3.8,
we get

|h(n)
k,`,r| ≤ Ch

d
n(2α2)rαk−`.

This implies that |H6,n| ≤ cn and then that V6(n) ≤ cn, where the sequence (cn, n ∈ N) is defined
by

cn = Chdn1{2α2≤1} + C(2α2)phdn1{2α2>1}.

Since the sequence (cn, n ∈ N) is deterministic and converges to 0, it follows, using Remark 2.8,
that

V6(n)
superexp
=====⇒

b2n

0.

Next, for the term V5(n), we have for all k > `:∣∣2−`Qp−k(f̃k,nQk−`f̃`,n)∣∣ ≤ 2−`Qp−k
(
|f̃k,n||Qk−`f̃`,n|

)
≤ C2−`hd/2n αk−`Qp−k(|f̃k,n|)

≤ Cαp(2α)−`1{k=p} + Chdn(2α)−`αk1{k≤p−1},
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where we used (3) for the second inequality and (i) and (ii) of Assumption 3.8 for the second and
the last inequality. Using the latter inequality in V5(n), we get

|V5(n)| ≤ C
(
2−p1{2α<1} + αp1{2α≥1} + hdn

)
.

We thus have that V5(n) is bounded by a deterministic sequence which converges to 0. It then
follows from Remark 2.8 that

V5(n)
superexp
=====⇒

b2n

0.

From the foregoing, we get the result of Lemma since V2(n) = V5(n) + V6(n). �

As a direct consequence of (39) and the Lemmas 5.3, 5.4 and 5.5, we have the following result.

Lemma 5.6. Under the Assumptions of Theorem 3.10, we have V (n)
superexp
=====⇒

b2n

σ2.

We now study the 4th-order exponential moment condition. We stress that this condition imply
in particular the exponential Lindeberg condition (condition (C3) in Proposition 6.1). We have
the following result.

Lemma 5.7. Under the Assumptions of Theorem 3.10, we have

lim sup
n→+∞

1

b2n
logP

(
b2n

∑
i∈Gn−p

E[∆n,i(fn)4|Fi] > δ
)

= −∞ ∀δ > 0.

Proof. For all i ∈ Gn−p, we have

(43) E
[
∆n,i(fn)4|Fi

]
≤ 16(p+ 1)32−2n

p∑
`=0

EXi

[
MGp−`

(f̃`,n)4
]
,

where we have used the definition of ∆n,i(fn), the inequality (
∑r
k=0 ak)4 ≤ (r + 1)3

∑r
k=0 a

4
k and

the branching Markov property. Using (43), we get

(44) b2n
∑

i∈Gn−p

E[∆n,i(fn)4|Fi] ≤ Cb2np32−2n

p∑
`=0

∑
i∈Gn−p

hn,`(Xi),

where hn,`(x) = Ex[MGp−`
(f̃`,n)4]. We will now prove that the right hand side of (44) converges

superexponentially to 0 at the speed b2n, that is

lim sup
n→+∞

1

b2n
logP

(
Cb2np

32−2n
∣∣∣ p∑
`=0

∑
i∈Gn−p

hn,`(Xi)
∣∣∣ > δ

)
= −∞.

For that purpose, we will treat the case ` = p, ` = p− 1 and finally the case ` ∈ {0, . . . , p− 2}.
First, we treat the case ` = p. Set gp,n = f̃4

p,n. We have

(45) b2np
32−2n

∑
i∈Gn−p

hn,p(Xi) = b2np
32−2n

∑
i∈Gn−p

g̃p,n(Xi) + b2np
32−2n |Gn−p|〈µ, gp,n〉.

Since b2np
32−2n|Gn−p|〈µ, gp,n〉 ≤ p32−p b2n (|Gn|hdn)−1 → 0 as n → 0, it suffices to prove that the

first term of the right hand side in (45) converges superexponentially to 0 at the speed b2n, that is,
for all δ > 0,

(46) lim sup
n→+∞

1

b2n
logP

(
b2np

32−2n |
∑

i∈Gn−p

g̃p,n(Xi)| > δ
)

= −∞.
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As in the proof of Lemma 5.2, we can prove that

P
(
b2np

32−2n |
∑

i∈Gn−p

g̃p,n(Xi)| > δ
)
≤ C exp

(
− δ2|Gn|2h2d

n

Cp3b2n(δ + Cp3b2n(|Gn+p|hdn)−1)

)
.

Taking the log and dividing by b2n, we get (46).

Next, for ` ∈ {0, . . . , p−1}, we plan to prove that the quantity b2np
32−2n

∑p−1
`=0

∑
i∈Gn−p

hn,`(Xi)

is bounded by a deterministic sequence which converges to 0. First, for ` = p − 1, using the
branching Markov property, (i) and (ii) of Assumption 3.8, we have, for all i ∈ Gn−p,

hn,p−1(Xi) = EXi [MG1(f̃p−1,n)4] ≤ CQ(f̃4
p−1,n) ≤ Ch−dn .

Using (6), this implies that

b2n p
3 2−2n

∑
i∈Gn−p

hn,p−1(Xi) ≤ C b2n 2−p p3(|Gn|hdn)−1 → 0 as n→ +∞.

Now we consider the case ` ∈ {0, . . . , p− 2}. From Lemma 6.4 with f replaced by f̃`,n and ν by
the Dirac mass at Xi (δXi

), we have

(47) b2n p
3 2−2n

p−2∑
`=0

∑
i∈Gn−p

hn,`(Xi) ≤ b2n |Gn|−2 p3

p−2∑
`=0

∑
i∈Gn−p

9∑
j=1

|ψj,p−`|(Xi).

For all j ∈ {1, . . . , 9}, we will upper bound each term of the right hand side in (47) by a deterministic
sequence which converges to 0.

Upper bound of b2n|Gn|−2p3
∑p
`=0

∑
i∈Gn−p

|ψ1,p−`|(Xi). Using (i) of Assumption 3.8, we have

|ψ1,p−`| ≤ C2p−`Qp−`(f4
`,n) ≤ C2p−`h−dn .

Using (6), this implies that

b2n|Gn|−2p3

p∑
`=0

∑
i∈Gn−p

|ψ1,p−`|(Xi) ≤ Cb2np3(|Gn|hdn)−1 → 0 as n→ +∞.

Upper bound of b2n|Gn|−3p3
∑p
`=0

∑
i∈Gn−p

|ψ2,p−`|(Xi). Using Assumption 2.9 and (i) and (ii)

of Assumption 3.8 for the second inequality, we get

|ψ2,p−`| ≤ C22(p−`)
p−`−1∑
k=0

2−kQkP(|Qp−k−1−`(f̃3
`,n)| ⊗sym |Qp−`−k−2(Qf̃`,n)|)

≤ C22(p−`)
p−`−1∑
k=0

2−kαp−`−k ≤ C2p−`
(
1{2α<1} + (p− `)1{2α=1} + (2α)p−`1{2α>1}

)
.

Using (6) and (5), this implies that

b2n|Gn|−2p3

p∑
`=0

∑
i∈Gn−p

|ψ2,p−`|(Xi) ≤ Cb2n|Gn|−1
(
p41{2α≤1} + (2α)p1{2α>1}

)
→ 0 as n→ +∞.
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Upper bound of b2n|Gn|−2p3
∑p
`=0

∑
i∈Gn−p

|ψ3,p−`|(Xi). Using (i) and (ii) of Assumption 3.8

for the second inequality, we get

|ψ3,p−`| ≤ 22(p−`)
p−`−1∑
k=0

2−kQkP(Qp−`−k−1(f̃2
`,n)⊗2) ≤ C22(p−`)

p−`−1∑
k=0

2−k ≤ C22(p−`).

Using (6), this implies that

b2n|Gn|−2p3

p∑
`=0

∑
i∈Gn−p

|ψ3,p−`|(Xi) ≤ C b2n p3 2−n+p → 0 as n→ +∞.

Upper bound of b2n|Gn|−2p3
∑p
`=0

∑
i∈Gn−p

|ψ4,p−`|(Xi). Using Assumption (2.9) and (i) and

(ii) of Assumption 3.8 for the second inequality, we get

|ψ4,p−`| ≤ C24(p−`)P
(
P
(
|Qp−`−2f̃`,n| ⊗2

)
⊗2
)
≤ C24(p−`)α4(p−`−2)h2d

n .

Using (6) and (5), this implies that

b2n|Gn|−2p3

p∑
`=0

∑
i∈Gn−p

|ψ4,p−`|(Xi)

≤ C (b2n p
4 2−n−ph2d

n 1{2α2≤1} + b2np
32−n+p(2α2)2ph2d

n 1{2α2>1})→ 0 as n→ +∞.

Upper bound of b2n|Gn|−3p3
∑p
`=0

∑
i∈Gn−p

|ψ5,p−`|(Xi). Using Assumption (2.9) and (i) and

(ii) of Assumption 3.8 for the second inequality, we get

|ψ5,p−`| ≤ C 24(p−`)
p−`−1∑
k=2

k−1∑
r=0

2−2k−rQrP
(
Qk−r−1

(
P
(
|Qp−`−k−1f̃`,n| ⊗2

))
⊗2
)

≤ C 24(p−`)
p−`−1∑
k=2

k−1∑
r=0

2−2k−rh2d
n α

4(p−`−k)

≤ C h2d
n 22(p−`)(1{2α2<1} + (p− `)1{2α2=1} + (2α2)2(p−`)1{2α2>1}

)
.

Using (6) and (5), this implies that

b2n|Gn|−2p3

p∑
`=0

∑
i∈Gn−p

|ψ5,p−`|(Xi)

≤ C (b2n p
4 2−n+ph2d

n 1{2α2≤1} + b2np
32−n+p(2α2)2ph2d

n 1{2α2>1})→ 0 as n→ +∞.

Upper bound of b2n|Gn|−2p3
∑p
`=0

∑
i∈Gn−p

|ψ6,p−`|(Xi). Using Assumption (2.9) and (i) and

(ii) of Assumption 3.8 for the second inequality, we get

|ψ6,n| ≤ C 23(p−`)
p−`−1∑
k=1

k−1∑
r=0

2−k−rQrP
(
Qk−r−1P

(
|Qp−`−k−1f̃`,n| ⊗2

)
⊗sym Qp−`−r−1(f̃2

`,n)
)

≤ C 23(p−`)
p−`−1∑
k=1

k−1∑
r=0

2−k−rhdnα
2(p−`−k)

≤ C hdn 22(p−`)(1{2α2<1} + (p− `) 1{2α2=1} + (2α2)p−`1{2α2>1}
)
.
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Using (6) and (5), this implies that

b2n|Gn|−2p3

p∑
`=0

∑
i∈Gn−p

|ψ6,p−`|(Xi)

≤ C (b2n p
4 2−n+phdn1{2α2≤1} + b2np

32−n+p(2α2)2phdn1{2α2>1})→ 0 as n→ +∞.

Upper bound of b2n|Gn|−2p3
∑p
`=0

∑
i∈Gn−p

|ψ7,p−`|(Xi). In the same way as for ψ6,p−`, we have

b2n|Gn|−2p3

p∑
`=0

∑
i∈Gn−p

|ψ7,p−`|(Xi)

≤ C (b2n p
4 2−nhdn1{2α≤1} + b2np

32−n+p(2α2)2phdn1{2α>1})→ 0 as n→ +∞.

Upper bound of b2n|Gn|−2p3
∑p
`=0

∑
i∈Gn−p

|ψ8,p−`|(Xi). Using Assumption (2.9) and (i) and

(ii) of Assumption 3.8 for the second inequality, we get

|ψ8,p−`| ≤ C 24(p−`)
p−`−1∑
k=2

k−1∑
r=1

r−1∑
j=0

2−k−r−jQjP
(
Qr−j−1P

(
|Qp−`−1−rf̃`,n| ⊗2

)
⊗sym Qk−j−1P

(
|Qp−`−1−kf̃`,n| ⊗2

))
≤ C 24(p−`)

p−`−1∑
k=2

k−1∑
r=1

r−1∑
j=0

2−k−r−jh2d
n α

4(p−`)−2r−2k

≤ C h2d
n 22(p−`)(1{2α2<1} + (p− `)2 1{2α2=1} + (2α2)2(p−`) 1{2α2>1}

)
.

Using (6) and (5), this implies that

b2n|Gn|−2p3

p∑
`=0

∑
i∈Gn−p

|ψ8,p−`|(Xi)

≤ C (b2n p
5 2−n+ph2d

n 1{2α2≤1} + b2np
32−n+p(2α2)2ph2d

n 1{2α2>1})→ 0 as n→ +∞.

Upper bound of b2n|Gn|−2p3
∑p
`=0

∑
i∈Gn−p

|ψ9,p−`|(Xi). In the same way as for ψ8,p−`, we have

b2n|Gn|−2p3

p∑
`=0

∑
i∈Gn−p

|ψ9,p−`|(Xi)

≤ C (b2n p
5 2−n+ph2d

n 1{2α2≤1} + b2np
32−n+p(2α2)2ph2d

n 1{2α2>1})→ 0 as n→ +∞.

Putting together all the upper bounds for ` ∈ {0, . . . , p − 1} and using (43) and (47), we deduce

that b2n p
3 2−2n

∑p−1
`=0

∑
i∈Gn−p

hn,`(Xi) is bounded by a deterministic sequence which converges to

0. As a consequence, it follows, using Remark 2.8, that

lim sup
n→+∞

1

b2n
logP

(
b2n p

3 2−2n

p−1∑
`=0

∑
i∈Gn−p

hn,`(Xi) > δ
)

= −∞.

Finally, using (43), (44), (46), we get

lim sup
n→+∞

1

b2n
logP

( ∑
i∈Gn−p

E[∆n,i(fn)4|Fi] >
δ

b2n

)
= −∞ ∀δ > 0.
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For Chen-Ledoux type condition, we have the following result.

Lemma 5.8. Under the assumptions of Theorem 3.10, we have

lim sup
n→+∞

1

b2n
log
(
|Gn| sup

i∈Gn−p

PFi

(
|∆n,i(fn)| > bn

))
= −∞.

Proof. For all i ∈ Gn−p, using (21) we have

(48) PFi

(
|∆n,i(f)| > bn

√
n
)
≤ PFi

(
|Nn,i(f)| > bn

√
n/2

)
+ PFi

(
|EXi

[Nn,i(f)] | > bn
√
n/2

)
,

with Nn,i(f) defined in (22). Following the proof of (32), we get

PFi

(
|Nn,i(f)| >

bn
√
n

2

)
= PXi

(
|
p∑
`=0

MGp−`
(f̃`, n)| >

bn
√
|Gn|

2

)
≤ C exp

(
− b2n|Gn|

2(Cbn|Gn|1/2h−d/2n + 6C|Gp|)

)
.

Next, for

λ =
bn
√
|Gn|

2(c2h
−d/2
n bn

√
n+ 3c1|Gp|)

,

we have

PFi

(
EXi [Nn,i(f)] >

bn
√
n

2

)
= PXi

( p∑
`=0

2p−`Qp−`(f̃`)(Xi) >
bn
√
n|Gn|
2

)
≤ exp

(
−
λbn
√
n|Gn|

2

)
EXi

[
exp

(
λ

p∑
`=0

2p−`Qp−`(f̃`)(Xi)
)]

≤ C exp
(
− b2n|Gn|

2(Cbn|Gn|1/2h−d/2n + 6C|Gp|)

)
,

where we used (49) and the branching Markov property for the first equality, Chernoff bound for
the first inequality and (3) for the last inequality. Doing the same thing for −f instead of f, we get

PFi

(
|EXi

[Nn,i(f)] | >
bn
√
n

2

)
≤ 2C exp

(
− b2n|Gn|

2(Cbn|Gn|1/2h−d/2n + 6C|Gp|)

)
.

From the foregoing, we get, using (48),

|Gn| sup
i∈Gn−p

PFi

(
|∆n,i(f)| > bn

√
n
)
≤ C |Gn| exp

(
− b2n|Gn|

2(Cbn|Gn|1/2h−d/2n + 6C|Gp|)

)
.

Finally, taking the log and dividing by b2n in the latter inequality, we get the result of Lemma
5.8. �

We can now use Proposition 6.1 to deduce from Lemmas 5.6, 5.7 and 5.8 that ∆n(fn) satisfies
a moderate deviation principle with speed b2n and rate function I defined by: I(x) = x2/(2σ2) for
all x ∈ R, with the finite variance σ2 defined in (7). Using (38) and Remark 2.7, we then deduce
Theorem 3.10.



MDP FOR KERNEL DENSITY ESTIMATOR OF BMC 25

6. Appendix

We recall here a simplified version of Theorem 1 in [12]. We consider the real martingale
(Mn, n ∈ N) with respect to the filtration (Hn, n ∈ N) and we denote (〈M〉n, n ∈ N) its bracket.

Proposition 6.1. Let (bn) a sequence satisfying

bn is increasing, bn −→ +∞, bn√
n
−→ 0,

such that c(n) :=
√
n/bn is non-decreasing, and define the reciprocal function c−1(t) by

c−1(t) := inf{n ∈ N : c(n) ≥ t}.
Under the following conditions:

(C1) there exists Q ∈ R∗+ such that for all δ > 0,

lim sup
n→+∞

1

b2n
log

(
P
(∣∣∣∣ 〈M〉nn

−Q
∣∣∣∣ > δ

))
= −∞,

(C2) lim sup
n→+∞

1

b2n
log

(
n ess sup

1≤k≤c−1(bn+1)

P(|Mk −Mk−1| > bn
√
n
∣∣∣Hk−1)

)
= −∞,

(C3) for all a > 0 and for all δ > 0,

lim sup
n→+∞

1

b2n
log

(
P

(
1

n

n∑
k=1

E
(
|Mk −Mk−1|21{|Mk−Mk−1|≥a

√
n

bn
}

∣∣∣Hk−1

)
> δ

))
= −∞,

(Mn/(bn
√
n))n∈N satisfies the MDP on R with the speed b2n/n and rate function I(x) =

x2

2Q
.

We have the following many-to-one formulas. Ideas of the proofs can be found in [16] and [3].

Lemma 6.2. Let f, g ∈ B(S), x ∈ S and n ≥ m ≥ 0. Assuming that all the quantities below are
well defined, we have:

Ex [MGn
(f)] = |Gn|Qnf(x) = 2n Qnf(x),(49)

Ex
[
MGn(f)2

]
= 2n Qn(f2)(x) +

n−1∑
k=0

2n+k Qn−k−1
(
P
(
Qkf ⊗ Qkf

))
(x),(50)

Ex [MGn
(f)MGm

(g)] = 2nQm
(
gQn−mf

)
(x)(51)

+

m−1∑
k=0

2n+k Qm−k−1
(
P
(
Qkg ⊗sym Qn−m+kf

))
(x).

We recall the following result due to Bochner (see [21, Theorem 1A] which can be easily extended
to any dimension d ≥ 1).

Lemma 6.3. Let (hn, n ∈ N) be a sequence of positive numbers converging to 0 as n goes to
infinity. Let g : Rd → R be a measurable function such that

∫
Rd |g(x)|dx < +∞. Let f : Rd → R

be a measurable function such that ‖f ‖∞ < +∞,
∫
Rd |f(y)| dy < +∞ and lim|x|→+∞ |x|f(x) = 0.

Define

gn(x) = h−dn

∫
Rd

f(h−1
n (x− y))g(y)dy.

Then, we have at every point x of continuity of g,

lim
n→+∞

gn(x) = g(x)

∫
R
f(y)dy.
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We also give some bounds on Ex
[
MGn

(f)4
]
, see the proof of Theorem 2.1 in [3]. We will use

the notation:

g⊗2 = g ⊗ g.

Lemma 6.4. There exists a finite constant C such that for all f ∈ B(S),n ∈ N and ν a probability
measure on S, assuming that all the quantities below are well defined, there exist functions ψj,n
for 1 ≤ j ≤ 9 such that:

Eν
[
MGn

(f)4
]

=

9∑
j=1

〈ν, ψj,n〉,

and, with hk = Qk−1(f) and (notice that either |ψj | or |〈ν, ψj〉| is bounded), writing νg = 〈ν, g〉:

|ψ1,n| ≤ C 2nQn(f4),

|νψ2,n| ≤ C 22n
n−1∑
k=0

2−k|νQkP
(
Qn−k−1(f3)⊗sym hn−k

)
|,

|ψ3,n| ≤ C22n
n−1∑
k=0

2−k QkP
(
Qn−k−1(f2)⊗2

)
,

|ψ4,n| ≤ C 24n P
(
|P(hn−1⊗2)⊗2 |

)
,

|ψ5,n| ≤ C 24n
n−1∑
k=2

k−1∑
r=0

2−2k−rQrP
(
Qk−r−1|P(hn−k⊗2)|⊗2

)
,

|ψ6,n| ≤ C 23n
n−1∑
k=1

k−1∑
r=0

2−k−rQr|P
(
Qk−r−1P

(
hn−k⊗2

)
⊗sym Qn−r−1(f2)

)
|,

|νψ7,n| ≤ C 23n
n−1∑
k=1

k−1∑
r=0

2−k−r|νQrP
(
Qk−r−1P

(
hn−k ⊗sym Qn−k−1(f2)

)
⊗sym hn−r

)
|,

|ψ8,n| ≤ C 24n
n−1∑
k=2

k−1∑
r=1

r−1∑
j=0

2−k−r−jQjP
(
|Qr−j−1P

(
hn−r⊗2

)
| ⊗sym |Qk−j−1P

(
hn−k⊗2

)
|
)
,

|ψ9,n| ≤ C 24n
n−1∑
k=2

k−1∑
r=1

r−1∑
j=0

2−k−r−jQj |P
(
Qr−j−1|P

(
hn−r ⊗sym Qk−r−1P

(
hn−k⊗2

))
⊗sym hn−j

)
|.
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