Distributed moving horizon state estimation for sensor networks with low computation capabilities - Archive ouverte HAL
Article Dans Une Revue System Theory, Control and Computing Journal Année : 2021

Distributed moving horizon state estimation for sensor networks with low computation capabilities

Résumé

This paper focuses on distributed state estimation for sensor network observing a discrete-time linear system. The provided solution is based on a Distributed Moving Horizon Estimation (DMHE) algorithm with consensus-based arrival cost and a pre-estimating Luenberger observer in the formulation of the local problem solved by each sensor. This leads to reduce the computation load, while preserving the accuracy of the estimation. Moreover, observability properties of local sensors are used for tuning the weights related to consensus information fusion built on an observability rank-based condition, in order to improve the convergence of the estimation error. Results obtained by Monte Carlo simulations are provided to compare the performance with existing approaches, in terms of accuracy of the estimations and computation time.
Fichier principal
Vignette du fichier
STCCJ_HAL.pdf (503.3 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03325770 , version 1 (25-08-2021)

Identifiants

Citer

Antonello Venturino, Cristina Stoica Maniu, Sylvain Bertrand, Teodoro Alamo, Eduardo F Camacho. Distributed moving horizon state estimation for sensor networks with low computation capabilities. System Theory, Control and Computing Journal, 2021, 1 (1), pp.81-87. ⟨10.52846/stccj.2021.1.1.14⟩. ⟨hal-03325770⟩
126 Consultations
94 Téléchargements

Altmetric

Partager

More