A multiple time renewal equation for neural assemblies with elapsed time model - Archive ouverte HAL
Article Dans Une Revue Nonlinearity Année : 2022

A multiple time renewal equation for neural assemblies with elapsed time model

Résumé

We introduce and study an extension of the classical elapsed time equation in the context of neuron populations that are described by the elapsed time since last discharge. In this extension we incorporate the elapsed since the penultimate discharge and we obtain a more complex system of integro-differential equations. For this new system we prove convergence to stationary state by means of Doeblin's theory in the case of weak non-linearities in an appropriate functional setting, inspired by the case of the classical elapsed time equation. Moreover, we present some numerical simulations to observe how different firing rates can give different types of behaviors and to contrast them with theoretical results of both classical and extended models.
Fichier principal
Vignette du fichier
Article.pdf (1.13 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03324280 , version 1 (23-08-2021)
hal-03324280 , version 2 (14-09-2021)
hal-03324280 , version 3 (14-04-2022)

Identifiants

Citer

Nicolás Torres, Benoît Perthame, Delphine Salort. A multiple time renewal equation for neural assemblies with elapsed time model. Nonlinearity, 2022, ⟨10.1088/1361-6544/ac8714⟩. ⟨hal-03324280v3⟩
323 Consultations
161 Téléchargements

Altmetric

Partager

More