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We introduce and study an extension of the classical elapsed time equation in the context of neuron populations that are described by the elapsed time since last discharge. In this extension, we incorporate the elapsed time since the penultimate discharge and we obtain a more complex system of integro-differential equations. For this new system, we prove convergence with exponential rate to stationary state by means of Doeblin's theory in the case of weak non-linearities using an appropriate functional setting, inspired by the case of the classical elapsed time equation. Moreover, we present some numerical simulations to observe how different firing rates can give different types of behaviors and to contrast them with theoretical results of both the classical and extended models.

Introduction

In the study and modelling of neural processes, population density models have proved to be a useful approach to understand brain phenomena at different scales. Among these models, we can mention for example the Wilson-Cowan model [START_REF] Hugh | Excitatory and inhibitory interactions in localized populations of model neurons[END_REF] and Amari model [START_REF] Amari | Dynamics of pattern formation in lateral-inhibition type neural fields[END_REF], which describe dynamics of interactions between inhibitory and excitatory neurons, and they have been widely studied in different extensions with many theoretical results and simulations.

Another class of population-based models is the elapsed time model, which has attracted the attention of many researchers. In this model we consider a neural network where neurons are described by their elapsed time since the last discharge as the key variable. After receiving some stimulation, neurons spike and interact with other neurons leading them to spike as well.

The elapsed time model is closely related to the well-known integrate-and-fire model. This system describes the dynamics of the membrane potential and has been studied by several authors such as Carrillo et al. [START_REF] María | Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states[END_REF][START_REF] José | Qualitative properties of solutions for the noisy integrate and fire model in computational neuroscience[END_REF], Perthame et al. [START_REF] Perthame | On a voltage-conductance kinetic system for integrate & fire neural networks[END_REF][START_REF] Perthame | Distributed synaptic weights in a lif neural network and learning rules[END_REF][START_REF] Perthame | Derivation of a voltage density equation from a voltageconductance kinetic model for networks of integrate-and-fire neurons[END_REF] and Zhou et al. [START_REF] Liu | Rigorous justification of the Fokker-Planck equations of neural networks based on an iteration perspective[END_REF] in different variants and approaches. Like the integrate-and-fire model [START_REF] Delarue | Particle systems with a singular mean-field selfexcitation. Application to neuronal networks[END_REF][START_REF] Delarue | Global solvability of a networked integrate-and-fire model of McKean-Vlasov type[END_REF], the elapsed time model is related to the limit of stochastic processes at microscopic scale and the connection with Poisson processes was established in the works of Chevalier et al. [START_REF] Chevallier | Microscopic approach of a time elapsed neural model[END_REF][START_REF] Chevallier | Mean-field limit of generalized hawkes processes[END_REF]. Other important works on spiking neurons include Brunel [START_REF] Brunel | Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons[END_REF], Gerstner et al. [START_REF] Gerstner | Spiking neuron models: Single neurons, populations, plasticity[END_REF], Ly et al. in [START_REF] Ly | Spike train statistics and dynamics with synaptic input from any renewal process: a population density approach[END_REF] and Pham et al. [START_REF] Pham | Activity in sparsely connected excitatory neural networks: effect of connectivity[END_REF] and by Schwalger et al. [START_REF] Pietras | Low-dimensional firing-rate dynamics for populations of renewal-type spiking neurons[END_REF][START_REF] Schwalger | Mind the last spike-firing rate models for mesoscopic populations of spiking neurons[END_REF]. The relation between integrate-and-fire and the elapsed time model was studied in Dumont et al. [START_REF] Dumont | Noisy threshold in neuronal models: connections with the noisy leaky integrate-and-fire model[END_REF][START_REF] Dumont | A theoretical connection between the noisy leaky integrate-and-fire and the escape rate models: the non-autonomous case[END_REF].

From a mathematical and analytical point of view, the elapsed-time model has been studied by several authors using different techniques such as Cañizo et al. in [START_REF] José | Asymptotic behaviour of neuron population models structured by elapsed-time[END_REF], Kang et al. [START_REF] Kang | Dynamics of time elapsed inhomogeneous neuron network model[END_REF], Mischler et al. in [START_REF] Mischler | Relaxation in time elapsed neuron network models in the weak connectivity regime[END_REF][START_REF] Mischler | Weak and strong connectivity regimes for a general time elapsed neuron network model[END_REF] and the pioneering works of Pakdaman et al. in [START_REF] Khashayar Pakdaman | Dynamics of a structured neuron population[END_REF][START_REF] Khashayar Pakdaman | Relaxation and self-sustained oscillations in the time elapsed neuron network model[END_REF][START_REF] Khashayar Pakdaman | Adaptation and fatigue model for neuron networks and large time asymptotics in a nonlinear fragmentation equation[END_REF]. Moreover, different extensions of the elapsed time model have been considered by incorporating new elements such as spatial dependence with connectivity kernel in Salort et al. [START_REF] Torres | An elapsed time model for strongly coupled inhibitory and excitatory neural networks[END_REF], a leaky memory variable in Fonte et al. [START_REF] Fonte | Long time behavior of an age and leaky memorystructured neuronal population equation[END_REF] and a stochastic extension that accounts for finite population size in Schmutz et al. [START_REF] Schmutz | On a finite-size neuronal population equation[END_REF] and Schwalger et al. [START_REF] Schwalger | Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size[END_REF].

The aim of the present work is to extend the classical elapsed time model by taking into account the elapsed time since the penultimate discharge in addition to the last one. This extension is modeled through a multiple time renewal equation, whose study is more complex than that of the classical model. We aim to analyze how the incorporation of a second elapsed time changes dynamics of the classical model and what type of new patterns may arise.

From a biophysical point of view, the main motivation is to represent the dependence on the previous history of spikes in neural dynamics. Examples of models incorporating this approach include the works of Gerstner et al. [START_REF] Gerstner | Neuronal dynamics: From single neurons to networks and models of cognition[END_REF] on the spike-response-model with escape noise, where the sum over the spike history is truncated at the second last spike. Among stochastic models, Chevallier et al. [START_REF] Chevallier | Microscopic approach of a time elapsed neural model[END_REF] consider Wold processes, which are point processes for which the next occurrence of a spike depends on the previous occurrence but also on the previous inter-spike interval. In their work, a connection with Wold processes and multiple-time renewal equations is established by deriving the PDE for the corresponding density. They extended the homogeneous Markovian case, which is study via the forward Kolmogorov's equations, to more general non-Markovian systems with a method called Ogata's thinning algorithm. They also included examples of other stochastic models like Hawkes processes.

Furthermore, multiple time renewal equations have been investigated in Fournier et al. [START_REF] Fournier | A nonexpanding transport distance for some structured equations[END_REF] in the linear case, where a non-expanding distance was introduced via a coupling argument. Moreover, these type of equations have multiple potential applications in other domains such as epidemiology, where the evolution of individuals under possible secondary infections has been studied. For an example, see the work of Ferretti et al. [START_REF] Ferretti | Quantifying sars-cov-2 transmission suggests epidemic control with digital contact tracing[END_REF].

The extended model is described as follows. Let n = n(t, s, a) the probability density of finding a neuron at time t, such that the elapsed times since its last and penultimate discharge are respectively s and a. Hence, for all t ≥ 0, the domain of definition of n in the elapsed time variables is

D := {(s, a) ∈ R 2 : 0 ≤ s ≤ a}.
In this setting, neural dynamics are modeled through the following nonlinear renewal system

           ∂ t n + ∂ s n + ∂ a n + p(s, a, X(t))n = 0 t > 0, a > s > 0, n(t, s = 0, a) = N (t, a) with N (t, a) := ∞ a p(a, u, X(t))n(t, a, u) du t > 0, a > 0, X(t) = ∞ 0 N (t, a) da t > 0, n(t = 0, s, a) = n 0 (s, a) a > s > 0.
(

) 1 
We assume that the initial data n 0 ∈ L 1 (D) is a probability density so that System (1) formally verifies

n(t, s, a) da ds = n 0 (s, a) da ds = 1, n(t, s, a) ≥ 0 ∀t ≥ 0. (2) 
As in the classical elapsed time model the function p : D × R → R is the firing rate of neurons, which depends on the total activity X(t). Furthermore, for the firing rate function p, we assume that there exist σ, p 0 , p ∞ > 0 such that

p 0 1 {a>s≥σ} ≤ p ≤ p ∞ . (3) 
Thus, we get

0 ≤ X(t) ≤ p ∞ , ∀t ≥ 0. (4) 
We assume for simplicity that p ∈ W 1,∞ (D × R), although most of the theoretical results are also valid for firing rates with simple jump discontinuities and the behavior of solutions does not depend on this regularity assumption as we show in the numerical simulations. Furthermore, we say that the network is inhibitory if p is decreasing with respect to the total activity X and excitatory if p is increasing. If in addition ∂ X p ∞ is small, we say that System (1) is under a weak interconnection regime.

The function N (t, a) represents the flux of discharging neurons, conditioned to the elapsed time since last discharge with value a > 0. The boundary condition of n at s = 0 states that, when a neurone discharges, its last elapsed time resets to the penultimate elapsed time. The function X models the total activity received by the network, and we assume that it is given by the integral of N (t, a) with respect to all the times a > 0.

Finally, we also remark that when p does not depend on a, the probability density

m(t, s) := ∞ s n(t, s, a) da satisfies the equation      ∂ t m + ∂ s m + p(s, X(t))m = 0 t > 0, s > 0, m(t, s = 0) = X(t) = ∞ 0 p(u, X(t))m(t, u) du t > 0, m(t = 0, s) = ∞ s n 0 (s, a) da s > 0. (5) 
In other words, the probability with respect to the last elapsed time is a solution of the classical elapsed time equation. In particular, if we consider firing rates of the form p = ϕ(X(t))1 {s>σ} , with ϕ ∈ W 1,∞ (R) strictly positive and σ > 0, we know from Torres et al. [START_REF] Torres | An elapsed time model for strongly coupled inhibitory and excitatory neural networks[END_REF] that periodic solutions and jump discontinuities may occur. Based on this choice of p, we discuss the impact of taking into account the penultimate discharge time regarding to the emergence of periodic solutions of System (1).

Equation [START_REF] Amari | Dynamics of pattern formation in lateral-inhibition type neural fields[END_REF] represents the probability distribution of neurons in a large (infinite) all-to-all network which can be described as follows. For each neuron, labeled by i = 1, ..., N , the last two spike times S i (t), A i (t) are recorded. They follow a Piecewise Deterministic Markov Process where, between the spike times τ i,j , the 'ages' progress as

Ṡi (t) = 1, Ȧi (t) = 1, τ i,j-1 < t < τ i,j , i = 1, ..., N,
and when a discharge occurs, the penultimate time spike is renewed:

A i (τ + i,j ) = 0, S i (τ + i,j ) = A i (τ - i,j ).
The τ i,j are chosen randomly according to a Poisson distribution of parameter p(S i (t), A i (t), X δ (t)), where the network activity is computed as

X δ (t) = 1 N i,j ω δ (t -τ i,j ),
whith ω δ a smoothing kernel of parameter δ which takes into account the transmission delay. In the limit N → ∞ and δ → 0, one expects the neurons become independent, driven by the average discharge rate E[X δ (t)] ≈ p(s, a, X(t)n(t, s, a) ds da.

In the study of age-structured models, the entropy method has been a useful tool for proving convergence to the steady state. The main idea consists in finding a Lyapunov functional H[n] and a dissipation functional D H [n] such that the solutions of the system satisfy

d dt H[n] = -D H [n] ≤ 0.
Thus if we can find a Poincaré inequality of the type λH[n] ≤ D H [n] for some λ > 0, we can deduce the exponential decay of H[n] by using the classical Gronwall inequality, which eventually allows to deduce convergence to the steady state in some convenient norm. This method was developed in the works of [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF][START_REF] Perthame | Transport equations in biology[END_REF] with extensions to measure initial data in [START_REF] Gwiazda | Generalized entropy method for the renewal equation with measure data[END_REF], and it has been applied to different types of models. However, when such inequalities are not available the study of asymptotic behavior becomes more complex.

Another important approach, that we use in this paper, is Doeblin's theory, which was first introduced in the context of Markov chains [START_REF] Doeblin | Sur deux problèmes de m. kolmogoroff concernant les chaînes dénombrables[END_REF][START_REF] Doeblin | Éléments d'une théorie générale des chaînes simples constantes de markoff[END_REF] and later developed in the work of Harris [START_REF] Harris | The existence of stationary measures for certain markov processes proceedings of the third berkeley symposium on mathematical statistics and probability 1954-1955 2 univ[END_REF] which has inspired several works such as Bansaye et al. [START_REF] Bansaye | Ergodic behavior of non-conservative semigroups via generalized doeblin's conditions[END_REF], Cañizo et al. [START_REF] José | Spectral gap for the growth-fragmentation equation via harris's theorem[END_REF] and Hairer & Mattingly [START_REF] Hairer | Yet another look at harris' ergodic theorem for markov chains[END_REF]. It ensures that exponential convergence in L 1 to the stationary state follows from the existence of a probability measure ν, a time t 0 , and 0 < α, such that for all initial data which is a probability measure, the solution at time t 0 is bounded from bellow by αν. Several works in PDE, also consider this approach, see for example the works of Gabriel et al. [START_REF] Gabriel | Measure solutions to the conservative renewal equation[END_REF], B. Perthame et al. [START_REF] Perthame | Derivation of a voltage density equation from a voltageconductance kinetic model for networks of integrate-and-fire neurons[END_REF], Dumont et al. [START_REF] Dumont | The mean-field equation of a leaky integrate-and-fire neural network: measure solutions and steady states[END_REF]. In particular, this theory has already been an alternative to the classical entropy methods to prove exponential convergence to the steady state for a large class of time elapsed model since the last discharge (see Cañizo et al. [START_REF] José | Asymptotic behaviour of neuron population models structured by elapsed-time[END_REF]).

The article is organized as follows. In Section 2 we prove that System (1) is well-posed in a suitable space for weak non-linearities. Starting with the asymptotic analysis for the linear case, we prove in Section 3 the existence of a stationary state and exponential convergence via Doeblin's theory. For the non-linear problem in the case of weak interconnections, we show in Section 4 the uniqueness of the steady state and in Section 5 we prove the exponential convergence via a perturbation argument.

Finally in Section 6 we present some examples of numerical simulations for different initial data and class of firing rates.

Well-posedness for weak non-linearities

We prove that System (1) is well-posed in the weak interconnection regime. To do so, we start by studying an auxiliary linear problem where the total activity is fixed and then we proceed to prove well-posedness of System (1) via the Picard fixed point contraction theorem.

This requires some function analytic definitions. For a Banach space X we denote C b ([0, ∞), X ) as the Banach space given by

C b ([0, ∞), X ) := {f : [0, ∞) → X | f is continuous and bounded}.
In this setting we look for weak solutions satisfying

n ∈ C b ([0, ∞), L 1 (D)), so that N ∈ C b ([0, ∞), L 1 (0, ∞)) and X ∈ C b [0, ∞).

The linear problem

Given X ∈ C b [0, ∞), we consider the following linear problem

     ∂ t n + ∂ s n + ∂ a n + p(s, a, X(t))n = 0 t > 0, a > s > 0, n(t, s = 0, a) = N (t, a) := ∞ a p(a, u, X(t))n(t, a, u) du t > 0, a > 0, n(t = 0, s, a) = n 0 (s, a) ≥ 0 a > s > 0. (6) 
Even though the boundary condition holds only for t > 0, we may define N (t, a) at t = 0 by the same formula

N (t, a) = ∞ 0 p(a, u, X(t))n(t, a, u) du,
for almost all a > 0, ∀t ≥ 0, which implies that n may have discontinuities along the set {(t, s, a) ∈ [0, ∞) × D : t = s} as a consequence of the method of characteristics (7) explained below.

Lemma 1. Assume that n 0 ∈ L 1 (D) is a probability density and p ∈ W 1,∞ (D × R) satisfies (3). Then for a given X ∈ C b [0, ∞), Equation (6) has a unique weak solution n ∈ C b ([0, ∞), L 1 (D)) with N ∈ C b ([0, ∞), L 1 (0, ∞)).
Moreover n is non-negative and verifies the property (2).

In particular this lemma proves the property (2) for the non-linear System (1).

Proof. From the method of characteristics, we start by noticing that a solution of the linear System (6) satisfies the following fixed point equation

n(t, s, a) = Ψ[n](t, s, a) := n 0 (s -t, a -t)e -t 0 p(t +s-t,t +a-t,X(t ))dt 1 {a>s>t} + N (t -s, a -s)e -s 0 p(s ,s +a-s,X(s +t-s))ds 1 {t,a>s} . (7) 
Let T > 0 and

X T := {n ∈ C b ([0, T ], L 1 (D)), n(0) = n 0 }, it readily follows that Ψ maps X T → X T .
We prove by the Picard contraction theorem that Ψ has a unique fixed point in X T for T > 0 small enough, i.e., there exists a unique weak solution of ( 6) defined on

[0, T ]. Consider n 1 , n 2 ∈ X T , we compute |Ψ[n 1 ] -Ψ[n 2 ]|(t, s, a) ds da ≤ t 0 ∞ s |N 1 -N 2 |(t -s, a -s) da ds ≤ T sup t∈[0,T ] ∞ 0 |N 1 -N 2 |(t, a) da ≤ T p ∞ sup t∈[0,T ] n 1 (t, s, a) -n 2 (t, s, a) L 1 (D) , (8) 
thus for T < 1 p∞ , we have proved that Ψ is a contraction and there exists a unique n ∈ X T such that Ψ[n] = n. Since the choice of T is independent of n 0 , we can reiterate this argument to get a unique solution of ( 6), which is defined for all t ≥ 0.

From Formula (7) we can extend the notion of a weak solution for Equation [START_REF] José | Asymptotic behaviour of neuron population models structured by elapsed-time[END_REF] for an initial data n 0 ∈ (M(D), • M 1 ), the space of finite regular measures on D endowed with the total variation norm (see section 3 for the definition). Therefore we can use the same argument to prove existence and uniqueness of a weak solution

n ∈ C b ([0, ∞), M(D)) with N ∈ C b ([0, ∞), M(0, ∞)) and X ∈ C b [0, ∞).
Next, we prove the mass conservation property. For all t ≥ 0, consider S t : M(D) → M(D) the semi-group given by

S t [f ](s, a) = f (s -t, a -t)1 {a>s>t} ,
whose infinitesimal generator is the operator Lf = -∂ s f -∂ a f . From Duhamel's formula, the solution of the fixed point problem (7) also verifies the following equality

n(t, s, a) = S t [n 0 ](s, a) + t 0 S t-τ [δ {s=0} (s, a)N (τ, a)] dτ - t 0 S t-τ [p(s, a, X(τ ))n(τ, s, a)] dτ, (9) 
where δ {s=0} (s, a) is the measure along the line {(0, a) : a ≥ 0}. This formula is translated as

n(t, s, x) = n 0 (s -t, a -t)1 {a>s>t} + N (t -s, a -s)1 {t,a>s} - t 0 p(s -t + τ, a -t + τ, X(τ ))n(τ, s -t + τ, a -t + τ )1 {a>s>t-τ } dτ, (10) 
and we get the mass conservation property by integrating with respect to (s, a) on the domain D.

Finally, since n 0 is non-negative then Ψ preserves positivity, so by uniqueness of the fixed point, the corresponding solution n is also non-negative.

The non-linear problem

Like the classical elapsed-time model, studying well-posedness for a general firing rate is a difficult problem. Indeed, examples of multiple solutions for a same initial data has been observed in Torres et al. [START_REF] Torres | An elapsed time model for strongly coupled inhibitory and excitatory neural networks[END_REF] and some ill-posed examples have been remarked on Cañizo et al. [START_REF] José | Asymptotic behaviour of neuron population models structured by elapsed-time[END_REF].

As in the linear problem, and with the assumptions below, we may define the quantities

N (0, a) = ∞ 0 p(a, u, X(0)) n 0 (a, u) du
with X(0) the solution of

X(0) = ∞ 0 ∞ a p(a, u, X(0)) n 0 (a, u) du da. ( 11 
)
But again, the boundary condition is not imposed at t = 0 and in general X(0) = ∞ 0 n 0 (0, a) da. By using the results of the linear problem, we are now ready to prove that System (1) is well-posed in the case of weak interconnection.

Theorem 1 (Well-posedness for weak interconnections). Assume that

n 0 ∈ L 1 (D) is a probability density and that p ∈ W 1,∞ (D × R) satisfies (3). Then for ∂ X p ∞ < 1, (12) 
System (1) has a unique solution with n ∈ C b ([0, ∞), L 1 (D)), N ∈ C b ([0, ∞), L 1 (0, ∞)) and X ∈ C b [0, ∞).
Moreover n verifies Condition (2) for all t > 0.

Proof. Consider T > 0. We fix a function X ∈ C b [0, ∞) and define the functions

n ∈ C b ([0, ∞), L 1 (D)) and N ∈ C b ([0, ∞), L 1 (0, ∞))
which are solutions of System (6) by Lemma 1. Furthermore, the solution of this linear equation satisfies [START_REF] Bansaye | Ergodic behavior of non-conservative semigroups via generalized doeblin's conditions[END_REF].

So we have a solution of System (1) defined on [0, T ] if X satisfies for all 0 ≤ t ≤ T and x ∈ Ω, the following fixed point condition

X(t) = T [X](t) := ∞ 0 N [X](t, a) da. (13) 
We prove that T defines for all T > 0 an operator that maps X T → X T with X T := C b ([0, T ]). First, we observe the following estimate

N (t, a) da ≤ p ∞ , ∀t ∈ [0, T ], (14) 
and it is immediate that T [X] ∈ X T .

We now prove that for T small enough, T is a contraction. Let X 1 , X 2 ∈ X T with their respective solutions (n 1 , N 1 ), (n 2 , N 2 ) of System [START_REF] José | Asymptotic behaviour of neuron population models structured by elapsed-time[END_REF]. For the difference between N 1 and N 2 we have

|N 1 -N 2 |(t, a) da ≤ |p(a, u, X 1 ) n 1 (t, a, u) -p(a, u, X 2 ) n 2 (t, a, u)| du da ≤ |p(a, u, X 1 ) -p(a, u, X 2 )| n 1 du da + p(a, u, X 2 )|n 1 -n 2 |(t, a, u) du da ≤ ∂ X p ∞ X 1 -X 2 ∞ + p ∞ n 1 -n 2 L 1 (D) . (15) 
To estimate the difference between n 1 and n 2 , we combine this inequality with [START_REF] Delarue | Particle systems with a singular mean-field selfexcitation. Application to neuronal networks[END_REF] and get

n 1 -n 2 L 1 (D) ≤ 2T ∂ X p ∞ X 1 -X 2 ∞ + 2T p ∞ n 1 -n 2 L 1 (D) .
Then, for T < 1 2p∞ , we obtain

n 1 -n 2 L 1 (D) ≤ 2T ∂ X p ∞ 1 -2T p ∞ X 1 -X 2 ∞ . (16) 
Finally, by using again estimate [START_REF] Dumont | Noisy threshold in neuronal models: connections with the noisy leaky integrate-and-fire model[END_REF], the operator T satisfies

T [X 1 ] -T [X 2 ] ∞ ≤ ∂ X p ∞ 1 + 2T p ∞ 1 -2T p ∞ X 1 -X 2 ∞ . (17) 
Therefore, for ∂ X p ∞ < 1 and T small enough, T is a contraction.

From Picard's fixed point we get a unique X ∈ X T such that T [X] = X, and this implies the existence of a unique solution of (1) defined on [0, T ]. Since estimate ( 14) is uniform in T , we can iterate this argument to get a unique solution of (1) defined for all t > 0.

Furthermore, we conclude from this construction that the non-linear System (1) satisfies (2) like the linear System (6).

Asymptotic behavior for the linear case

In order to study the behavior of System (1), we start by studying the case when X ≥ 0 is a fixed constant. Thus we consider the linear problem given by

     ∂ t n + ∂ s n + ∂ a n + p(s, a, X)n = 0 t > 0, a > s > 0, n(t, s = 0, a) = N (t, a) := ∞ a p(a, u, X)n(t, a, u) du t > 0, a > 0, n(t = 0, s, a) = n 0 (s, a) a > s > 0. (18) 
To determine the behavior of System (18), we consider (n X , N X ) as the solution of the steady state problem given by

∂ s n + ∂ a n + p(s, a, X)n = 0 a > s > 0, n(s = 0, a) = N (a) := ∞ a p(a, u, X)n(a, u) du a > 0, (19) 
In the classical elapsed time model the generalized relative entropy inequality for the linear problem is a well-known property of this class of age-structured models. For a reference on this method, see Perthame et al. [START_REF] Perthame | Transport equations in biology[END_REF][START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF] and for some applications in the non-linear elapsed time model see for instance [START_REF] Khashayar Pakdaman | Dynamics of a structured neuron population[END_REF][START_REF] Kang | Dynamics of time elapsed inhomogeneous neuron network model[END_REF]. Following these ideas, we can prove this property for the linear System [START_REF] Fonte | Long time behavior of an age and leaky memorystructured neuronal population equation[END_REF].

Proposition 1 (Generalized relative entropy). Assume there exists a steady state solution of the linear System (18) with n X , N X > 0. Then for all convex functions H : [0, ∞) → [0, ∞) with H(0) = 0, the solution n of the linear System (18) satisfies

d dt n X (s, a)H n(t, s, a) n X (s, a) da ds = -D H [n(t, s, a)] ≤ 0 ∀t ≥ 0, D H [n(t, s, a)] = p(s, a, X)n X (s, a)H n(t, s, a) n X (s, a) da ds -N X (a)H N (t, a) N X (a) da, (20) 
and in particular the steady state is unique.

Proof. In order to prove the relative entropy property, we follow the arguments in [START_REF] María | Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states[END_REF]. We start by noticing the following identities

∂ s n = n X ∂ s n n X + n n X ∂ s n X , ∂ a n = n X ∂ a n n X + n n X ∂ a n X , (21) 
and for simplicity we reformulate Equation ( 18) as follows

     ∂ t n + ∂ s n + ∂ a n + p(s, a, X)n = δ {s=0} (s, a)N (t, a) t > 0, a > s > 0, n(t, s = 0, a) = 0 t > 0, a > 0, n(t = 0, s, a) = n 0 (s, a) a > s > 0, (22) 
where δ {s=0} (s, a) is the measure along the line {(0, a) : a ≥ 0}. In the same way, we reformulate the corresponding steady state problem [START_REF] Fournier | A nonexpanding transport distance for some structured equations[END_REF].

∂ s n X + ∂ a n X + p(s, a, X)n X = δ {s=0} (s, a)N X (a) a > s > 0, n X (s = 0, a) = 0 a > 0. ( 23 
)
Hence by using the identities (21) along with Equations ( 22) and ( 23), we get the following equation

for n n X ∂ t n n X + ∂ s n n X + ∂ a n n X = δ {s=0} (s, a) N X n X N N X - n n X
and if we multiply this equality by

H n n X , we get ∂ t H n n X + ∂ s H n n X + ∂ a H n n X = δ {s=0} (s, a) N X n X N N X - n n X H n n X .
Therefore, by multiplying the latter equality by n X and using Equation ( 23), we have the correspond-

ing equation for u = n X H n n X ∂ t u + ∂ s u + ∂ a u + p(s, a, X)u = δ {s=0} (s, a)N X N N X - n n X H n n X + H n n X . (24) 
Finally, by noticing the following limit

lim s→0 n(t, s, a) n X (s, a) = N (t, a) N X (a)
, for a.e. t, a > 0, we conclude the generalized relative entropy property (20) by integrating Equation ( 24) with respect to (s, a) on the domain D. Moreover, we observe that D H [•] is non-negative by applying Jensen's inequality with the probability measure dµ = p(a, y) n X (a,y) N X (a) dy for each a > 0. In particular when H is strictly convex and D H [n] = 0, we deduce that n n X is constant and subsequently we get n = n X , since both n, n X are probability densities. Therefore, the steady state is unique.

If we consider the entropy method to prove exponential convergence for the linear Equation ( 18) in L 1 (D), we have the following equality for

H(•) = | • | d dt |n -n X | da ds = p(n -n X ) da ds - p|n -n X | da ds ≤ 0.
We observe that for the right-hand side it is not evident to find a L 1 Poincaré inequality involving the entropy in order to conclude exponential convergence, unlike the classical elapsed time model where this approach has proved to be useful (see for example Perthame [START_REF] Perthame | Transport equations in biology[END_REF]).

Furthermore, in Proposition (1) we assumed that n X and N X are strictly positive, which is not necessarily true. Unlike the classical elapsed time model, there exist solutions where n X and N X vanish for some values of (s, a). For example, consider p(s, a, X) = 1 {s>1} which satisfies the bounds (3).

From the method of characteristics we get the following equality n X (s, a) = N X (a -s)e -(s-1)+ , a > s, so that form the boundary condition at s = 0, we observe that N X satisfies

N X (a) = 1 {a>1} e -(a-1) ∞ 0 N X (u) du,
which implies that N X (a) vanishes for a < 1 and subsequently n X (s, a) vanishes for a -s < 1.

Due to the limitations of the entropy method approach we will make use of Doeblin's theory, which will be the key ingredient in proving convergence to steady state. In this context we start by recalling the useful concepts in order to apply Doeblin's theorem. Consider (M(X ), • M 1 ) the space of finite signed measures on the space X with the norm of the total variation

µ M 1 := µ + (X ) + µ -(X ), (25) 
where µ = µ + -µ -is the Hahn-Jordan decomposition of the measure µ into its positive and negative parts. For simplicity of the computations, we will treat measures as if they were L 1 functions and we simply write the L 1 -norm instead of M 1 -norm.

We now recall the definition of a Markov semigroup and Doeblin's condition.

Definition 1 (Markov semi-group). Let (X , A) be a measure space and P t : M(X ) → M(X ) be a linear semi-group. We say that P t is a Markov semi-group if P t µ ≥ 0 for all µ ≥ 0 and X dP t µ = X dµ for all µ ∈ M(X ). In other words, (P t ) preserves the subset of probability measures P(X ).

Definition 2 (Doeblin's condition). Let P t : M(X ) → M(X ) be a Markov semi-group. We say that (P t ) satisfies Doeblin's condition if there exist t 0 > 0, α ∈ (0, 1) and ν ∈ P(X ) such that P t0 µ ≥ αν ∀µ ∈ P(X ).

Under this functional setting, we are now ready to state Doeblin's theorem as follows.

Theorem 2 (Doeblin's Theorem). Let P t : M(X ) → M(X ) be a Markov semi-group that satisfies Doeblin's condition. Then the semigroup has a unique equilibrium µ * ∈ P(X ). Moreover, for all µ ∈ M(X ) we have

P t µ -µ µ * M 1 ≤ 1 1 -α e -λt µ -µ µ * M 1 ∀t ≥ 0, with µ = X dµ and λ = -ln(1-α) t0 > 0.
For a proof of Doeblin's Theorem, see for example [START_REF] Gabriel | Measure solutions to the conservative renewal equation[END_REF].

From Lemma 1, the solution of the linear problem ( 18) determines a Markov semi-group acting on L 1 (D). By means of Doeblin's theory, the solutions of linear Equation ( 18) converge exponentially to a unique steady state, as we assert in the following theorem.

Theorem 3. Let n 0 ∈ L 1 (D) be a probability density and assume that p smooth satisfies Assumption (3).

Then for a fixed X > 0, there exists a unique stationary solution n X (s, a) ∈ L 1 (D) of the linear Equation (18) satisfying n X (s, a) da ds = 1. Moreover, the corresponding solution of Equation [START_REF] Fonte | Long time behavior of an age and leaky memorystructured neuronal population equation[END_REF] satisfies

n(t) -n X L 1 s,a ≤ 1 1 -α e -λt n 0 -n X L 1 s,a ∀t ≥ 0, with α = 1 2 p 2 0 σ 2 e -3p∞σ and λ = -log(1-α) 3σ > 0.
In order to obtain the result, we show that after some time the solution of the linear problem is uniformly bounded from below for all probability densities. Thus from Doeblin's theorem we get the exponential convergence to equilibrium.

Lemma 2. Assume (2) and (3). Let n(t, s, a) be a solution of [START_REF] Fonte | Long time behavior of an age and leaky memorystructured neuronal population equation[END_REF], then there exist t 0 > 0, α ∈ (0, 1) and a probability density ν ∈ L 1 such that n(t 0 , s, a) ≥ αν(s, a).

Proof. The main idea of the proof is to control the mass transported along the lines of direction (1, 1). Firstly, we observe the transport of the initial data n 0 . From Assumption (3) and the characteristics Formula (7) the following inequality holds

∞ t ∞ s n(t, s, a) da ds ≥ e -p∞t , ∀t ≥ σ. ( 26 
)
Secondly, we see the mass that returns at s = 0. From ( 26) we get for all t ≥ σ

∞ t n(t, s = 0, a) da = ∞ t N (t, a) da ≥ p 0 ∞ t ∞ a n(t, a, u) du da ≥ p 0 e -p∞t . (27) 
This means that we reduced by one dimension the problem of finding the uniform lower bound. For t ≥ σ the mass of the region {(s, a) : a > s > t} concentrates in the line {(0, a) : a ≥ t}, as we see in Figure 1.

s a t ≥ σ
Figure 1: First reduction of dimension. For a t ≥ σ, all points in D are transported to the red region, which has a total mass of at least e -p∞t . Then a mass of at least p 0 e -p∞t returns to the green line.

Thirdly, in order to control the point values of n(t, s, a), we regard the values of N (t, a). Observe that from Formula (7) we have

n(t, s, a) ≥ N (t -s, a -s)e -s 0 p(s ,s +a-s,X)ds 1 {t,a>s} ≥ N (t -s, a -s)e -p∞s 1 {t,a>s} , (28) 
thus for a ≥ σ and t -a > σ, we obtain by using again Assumption (3) that

N (t, a) ≥ p 0 ∞ a n(t, a, u) du ≥ p 0 e -p∞a ∞ a N (t -a, u -a) du = p 0 e -p∞a ∞ 0 N (t -a, u) du ≥ p 0 e -p∞a ∞ t-a N (t -a, u) du ≥ p 2 0 e -p∞t . (29) 
This means we reduced the problem of finding the uniform lower bound by one dimension again, as we see in Figure 2.

Finally, once we have estimated N (t, a) from below, we come back to estimate [START_REF] Luçon | Periodicity and longtime diffusion for mean field systems in R d[END_REF] to conclude that for a -s ≥ σ and t -a > σ we have

n(t, a, s) ≥ N (t -s, a -s)e -p∞s 1 {t,a>s} ≥ p 2 0 e -p∞t 1 {t-a,a-s>σ} , (30) 
so that we can choose t = 3σ and conclude that n(3σ, a, s) ≥ p 2 0 e -3p∞σ 1 {2σ>a>s+σ} .

Therefore we get the desired result with t 0 = 3σ, α = 1 2 σ 2 p 2 0 e -3p∞σ ∈ (0, 1) and ν given by whose support is contained in orange region of Figure 3.

ν(s, a) = 2 σ 2 1 {2σ>a>s+σ} ,
From Lemma 2 the hypothesis of Doeblin's theorem are verified and Theorem 3 readily follows.

Concerning the conditioned activity N in System [START_REF] Fournier | A nonexpanding transport distance for some structured equations[END_REF], we conclude from Theorem 3 that for X fixed, there is a unique stationary N X ∈ L 1 (0, ∞) determined by the method of characteristics through the formula

n X (s, a) = N X (a -s) exp - s 0 p(s , a -s + s , X) ds , a > s. (31) 
By replacing this expression in the boundary condition at s = 0, we obtain the following integral equation for N X (a)

N X (a) = T X [N X ](a), (32) 
with

T X : L 1 (0, ∞) → L 1 (0, ∞) given by T X [N ](a) := ∞ 0 p(a, u + a, X) exp - a 0 p(s , u + s , X) ds N (u) du = - ∂ ∂a ∞ 0 exp - a 0 p(s , u + s , X) ds N (u) du.
Moreover, by integrating Equation ( 31) we get

∞ 0 ∞ 0 N X (a) exp - s 0 p(s , a + s , X) ds da ds = 1. (33) 
Therefore we conclude that finding a function N ∈ L 1 (0, ∞) satisfying Equation [START_REF] Mischler | Relaxation in time elapsed neuron network models in the weak connectivity regime[END_REF] and Condition ( 33) is equivalent to finding a steady state n X (s, a) in Equation [START_REF] Fournier | A nonexpanding transport distance for some structured equations[END_REF]. The integral Equation (32) will play an important role in the analysis of the non-linear System (1), thus we prove the following two lemmas on the operator T X that will be useful in the sequel.

Lemma 3. Assume that p Lipschitz satisfies Assumption (3). For each X > 0 the operator T X is compact and it satisfies that dim ker(I -T X ) = 1, which is generated by a non-negative function, and

ran(I -T X ) = f ∈ L 1 (0, ∞) : ∞ 0 f (x) dx = 0 .
Proof. The first step is to prove that T X is a compact operator. This means we have to prove that the set

A = {T X [f ] : ||f || 1 ≤ 1} is relatively compact in L 1 . First observe that T X [f ] 1 ≤ p ∞ for all f with ||f || 1 ≤ 1, so A is bounded. Second, we prove that ∞ r |T X [f ](a)|da → 0 uniformly when r → ∞. Indeed for r > σ we have ∞ r |T X [f ](a)|da ≤ p ∞ ∞ r ∞ 0 |f (u)|e -a 0 p(s ,u+s ,X) ds du da ≤ p ∞ ∞ r ∞ σ |f (u)|e -p0(a-σ) du da ≤ p ∞ e p0σ ∞ σ |f (u)|du ∞ r e -p0a da ≤ p ∞ e p0σ e -p0r p 0 → 0.
Now we prove the equicontinuity property. Observe that

d da T X [f ](a) = ∞ 0 (∂ s p + ∂ a p)(a, u + a, X)e -a 0 p(s ,u+s ,X) ds f (u)du - ∞ 0 p(a, u + a, X) 2 e -a 0 p(s ,u+s ,X) ds f (u)du,

Steady states

Consider n * = n * (s, a) with support in the set {s ≤ a}. We are interested in the stationary solutions of the non-linear System (1) given by

           ∂ s n + ∂ a n + p(s, a, X)n = 0 a > s > 0, n(s = 0, a) = N (a) := ∞ 0 p(a, u, X)n(a, u) du a > 0, X = ∞ 0 N (a) da, n(s, a) da ds = 1, n(s, a) ≥ 0. (34) 
We define N X as the respective conditional activity in terms of X. In order to have a steady state of the non-linear Problem (1), we must find X > 0 such that

X = Φ(X) := ∞ 0 N X (a) da. (35) 
In the general case this equation has always a solution since the right-hand side is uniformly bounded thanks to estimate (4) and N X (a) depends continuously on X. By using the properties of the operator T X , we prove that under the weak interconnections regime the non-linear System (1) has a unique steady state.

Theorem 4. Assume (2) and that p smooth satisfies Assumption (3). Then for ∂ X p ∞ small enough, System

(1) has a unique steady state (n * , N * , X * ).

Proof. The goal is to prove that Φ is a contraction in order to obtain a unique fixed point. In order to estimate ∂ X N we make use of the implicit function theorem. By differentiating Equation [START_REF] Khashayar Pakdaman | Dynamics of a structured neuron population[END_REF] we get ∂ X (N X )e -s 0 p(s ,a+s ,X) ds da ds = N X e -s 0 p(s ,a+s ,X) ds s 0 ∂ X p(s , u + s , X) ds da ds.

(36) Furthermore, if we differentiate with respect to X the Equation (32), we get

∂ X N X (a) = ∞ 0 -∂ a e -a 0 p(s ,u+s ,X) ds ∂ X N X (u) du + ∞ 0 -∂ a ∂ X e -a 0 p(s ,u+s ,X) ds N X (u) du, i.e. ∂ X N X (a) satisfies the equation (I -T X )[∂ X N ](a) = ∞ 0 p(a, u + a, X)e -a 0 p(s ,u+s ,X) ds N X (u) du - ∞ 0 p(a, u + a, X) a 0 ∂ X p(s , u + s , X
) ds e -a 0 p(s ,u+s ,X) ds N X (u) du.

(37)

By using the implicit function theorem and the Condition [START_REF] Perthame | Transport equations in biology[END_REF] we can define an inverse of I -T X which depends continuously on X. Observe that (I -T X ) -1 is uniformly bounded on X in the operator norm, since X is uniformly bounded. Thus, for the function Φ we get

|Φ (X)| = ∂ X N X (a) da ≤ (I -T X ) -1 ∂ X p ∞ (1 + p ∞ a)e -a 0 p(s ,u+s ,X) ds N X (u)da du ≤ C ∂ X p ∞ (1 + p ∞ a)e -p0a N X (u) da du ≤ C ∂ X p ∞ p ∞ (1 + p ∞ a)e -p0a da ,
so that for ∂ X p ∞ small enough Φ is a contraction and we conclude the result.

Convergence to equilibrium

After studying the linear case, we are now ready to prove convergence to the steady state under the weak interconnection regime, i.e. ∂ X p ∞ small enough, by a perturbation argument.

Theorem 5 (Convergence to equilibrium). Assume that n 0 ∈ L 1 (D) satisfies Assumption (2) and that p Lipschitz satisfies Assumption (3). For ∂ X p ∞ small enough, let (n * , N * , X * ) be the corresponding stationary state of System (1). Then there exist C, λ > 0 such that the solution n of System (1) satisfies

n(t) -n * L 1 s,a ≤ Ce -λt n 0 -n * L 1
s,a , ∀t ≥ 0.

Moreover N (t) -N * L 1 and |X(t) -X * | converge exponentially to 0 when t → ∞.

Proof. Observe that n satisfies the evolution equation

∂ t n = L X [n] := -∂ s n -∂ a n -p(s, a, X(t))n + δ {s=0} (s, a) ∞ 0 p(a, u, X(t))n(t, a, u) du,
where δ {s=0} (s, a) is the measure along the line {(0, a) : a ≥ 0}. We can rewrite the evolution equation as

∂ t n = L X * [n] + (L X [n] -L X * [n]) = L X * [n] + h. (38) 
with h(t, s, a) given by h = p(s, a, X * )-p(s, a, X(t) n(t, s, a)+δ {s=0} (s, a)

∞ 0 p(a, u, X(t))-p(a, u, X * ) n(t, a, u) du. [START_REF] Perthame | On a voltage-conductance kinetic system for integrate & fire neural networks[END_REF] Let P t : L 1 (D) → L 1 (D) be the linear semi-group associated to operator L X * . As in the proof of Lemma 1, P t is extended to space (M(D), • M 1 ) in order to be able to evaluate at the measure h. Since P t n * = n * for all t ≥ 0, we get that n satisfies

n -n * = P t (n 0 -n * ) + t 0 P t-τ h(τ, s, a) dτ, (40) 
so we need find an estimate for the function h. Observe that we have the following inequalities:

h(t) L 1 s,a ≤ 2 ∂ X p ∞ |X(t) -X * |, |X(t) -X * | ≤ N (t) -N * 1 , N (t) -N * 1 ≤ ∂p ∂X ∞ |X(t) -X * | + p ∞ n(t) -n * L 1
s,a , and since ∂ X p ∞ < 1 we get

h(t) L 1 s,a ≤ 2p∞ ∂ X p ∞ 1-∂ X p ∞ n(t) -n * L 1 s,a , |X(t) -X * | ≤ p∞ 1-∂ X p ∞ n(t) -n * L 1 s,a , N (t) -N * 1 ≤ p ∞ ∂ X p ∞ 1-∂ X p ∞ + 1 n(t) -n * L 1 s,a ,
thus by taking norm in Equality [START_REF] Pham | Activity in sparsely connected excitatory neural networks: effect of connectivity[END_REF] and applying Doeblin's Theorem we obtain

n(t) -n * L 1 s,a ≤ P t (n 0 n * ) L 1 s,a + t 0 P t-τ h(τ ) L 1 s,a dτ ≤ e -λt 1 -α n 0 -n * L 1 s,a + 1 1 -α t 0 e -λ(t-τ ) h(τ ) L 1 s,a dτ ≤ e -λt 1 -α n 0 -n * L 1 s,a + C t 0 e -λ(t-τ ) n(τ ) -n * L 1 s,a dτ, with C := 1 1-α 2p∞ ∂ X p ∞ 1-∂ X p ∞ .
By using Gronwall's inequality with respect to the function e λt n(t) -

n * L 1 s,a we conclude n(t) -n * L 1 s,a ≤ e -(λ-C)t 1 -α n 0 -n * L 1
s,a , so that for ∂ X p ∞ small enough we have C < λ and we deduce the exponential convergence of n(t, •, •), N (t, •) and X(t) when t → ∞.

Numerical simulations

In order to illustrate the theoretical long time results and other possible behaviors of System (1), we present numerical simulations for different firing rates and initial data. The numerical illustrations below are obtained by solving the equation ( 1) with a classical first-order upwind scheme, while the initial activity X(0) is computed by solving numerically the fixed-point equation [START_REF] Delarue | Global solvability of a networked integrate-and-fire model of McKean-Vlasov type[END_REF].

We focus in displaying the discharging flux N (t, a) and the total activity X(t) since these two elements determine the general behavior of system (1).

Example 1: Convergence to equilibrium

For our first example, we consider a firing rate given by p = ϕ(X -e -s -e -a )1 {s>1} , ϕ(u) = 1.5 1 + e -u , which corresponds to an excitatory case, modulated by a sigmoid function ϕ with an absolute refractory period σ = 1. By taking as initial data n 0 (s, a) = e -a , we observe in Figure 4 that the solution (a) Discharging Flux N (t, a). converges to the steady state for both discharging flux N and the total activity X, following the results of Theorem 5. As consequence of the refractory period in the firing rate, we observe in Figure 4a that steady states vanishes for a < 1.

From Example 1.1, we can compute a numerical approximation of the stationary flux N * and the respective total activity X * . In this setting, consider now as initial data the stationary density conditioned to a spike immediately before s = 0, i.e. n 0 (s, a) = e -a δ 0 (s) which corresponds to a synchronization of all neurons at t = 0. The theoretical results on wellposedness in Section 2 allows us to consider probability measures as initial data and we approximate the Dirac mass as δ 0 (s) ≈ 1 ∆s 1 {s∈[0,∆s]} , ∆s small enough.

As in Example 1.1, we observe in Figure 5 that the solution converges to the steady state and it stabilizes at similar times. This numerical result is compatible with Theorem (5) extended for initial data in the space of measures (M(D), • M 1 ). Moreover, as effect of the refractory period and the fact that initial data is supported on the line {s = 0} of the domain D, the total activity vanishes for small times and then it becomes increasing when the time approaches to t = 1.

We continue with some numerical examples beyond the scope of the theory of weak interconnections, in order to explore the possible behaviors of a strongly interconnected regime.

Example 2: Jump discontinuities

We now consider a compactly supported initial data n 0 (s, a) = 2 • 1 {2>a>s+1} , with a firing rate given by p = 1 {s>e -X } + 1 {a-s>e -X } , which corresponds to an excitatory case since p is increasing with respect to X. Like the previous examples, the solution converges to the steady state, but the total activity X shows three jump discontinuities as we see in Figure 6. The multiple jump discontinuities are consequence of the contribution of the term depending on the difference between the two elapsed times. Furthermore, converging solutions with a single jump discontinuity were already observed in Torres et al. [START_REF] Torres | An elapsed time model for strongly coupled inhibitory and excitatory neural networks[END_REF] for the classical elapsed time model. The phenomenon of multiple jumps discontinuities in Figure 6 is an extension for the case of Equation (1). Concerning the strongly inhibitory case, it remains pending to prove uniqueness of the steady state for the non-linear Equation [START_REF] Amari | Dynamics of pattern formation in lateral-inhibition type neural fields[END_REF]. Whilst in the classical elapsed time model this problem is reduced to solving a simple equation, for the model with two elapsed times we have to prove uniqueness for the integral Equation [START_REF] Khashayar Pakdaman | Adaptation and fatigue model for neuron networks and large time asymptotics in a nonlinear fragmentation equation[END_REF], which is not straightforward to deal with. Moreover, we conjecture in the general case that the speed of convergence to a steady state must be exponential like it is expected for the classical elapsed equation.

With respect to the existence of periodic solutions, an interesting problem is to find or construct nontrivial examples relying on dynamics for two elapsed times. The only examples we have found so far are adaptations of solutions of the classical elapsed time equation that were obtained in Torres et al. [START_REF] Torres | An elapsed time model for strongly coupled inhibitory and excitatory neural networks[END_REF] and these types of solutions presents jump discontinuities, making them difficult to analyze. Furthermore, it would be interesting to find some class of firing rates for the System (1) leading to delay differential equation with two discrete delays. Following the ideas in Torres et al. [START_REF] Torres | An elapsed time model for strongly coupled inhibitory and excitatory neural networks[END_REF] for the classical elapsed time model and differential equations with a single delay, we expect to construct specific periodic solutions for the multiple-time renewal equation.
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 5 Figure 5: Example 1.2. Case n 0 (s, a) = e -a δ 0 (s) and p = ϕ(X -e -s -e -a )1 {s>1} .
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 62 Figure 6: Example 2. Case n 0 (s, a) = 2 • 1 {2>a>s+1} and p = 1 {s>e -X } + 1 {a-s>e -X } .
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 8 Figure 8: Example 3.2. Case n 0 (s, a) = 1 2 e -(a-1) 1 {a>max(s,1)} and p = ϕ(X)1 {s>1} + 1 {a-s>X} .
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Therefore by the Kolmogorov-Frechet theorem we conclude that A is relatively compact so the operator T X is.

Furthermore, since n X is the unique steady state of Equation ( 18) that is a probability density, from the linearity we deduce that any other function in ker(I -T X ) is a multiple of N X and thus dim ker(I -T X ) = 1.

Next, we proceed to determine ran(I -T X ). Observe that adjoint operator

and from Fredholm's alternative we get dim ker(I -T * X ) = dim ker(I -T X ) = 1. Since T * X [g] ≡ 0 for any constant function, we deduce that ker(I -T * X ) is the subspace of constant functions. Finally from orthogonality conditions we conclude that ran

A direct consequence of Lemma 3 is the following result Lemma 4. Assume that p is smooth respect to variable X, then N X (a) is also smooth with respect to X.

Proof. Define the

N (a)e -a 0 p(s ,u+s ,X) ds da ds -1 , so that for each X we have F (N X (a), X) = 0. Observe that D N F is given by

)e -a 0 p(s ,u+s ,X) ds da ds

Thus by Lemma 3 this operator is an isomorphism and from the implicit function theorem we conclude that N X (a) depends smoothly on X.

Remark 1. The lower bound condition (3) on the firing rate p is important to verify the existence of a steady state for System (1) and Doeblin's condition. For example, when we consider a fixed X > 0 and p(s, a, X) = 1 {a-s>X} , then there are no steady states of the linear Equation [START_REF] Fonte | Long time behavior of an age and leaky memorystructured neuronal population equation[END_REF], besides the zero solution. Indeed, from Equation [START_REF] Mischler | Relaxation in time elapsed neuron network models in the weak connectivity regime[END_REF] we deduce that the discharging flux N should satisfy

thus N X is an exponential function and by integrating with respect to a we get

Since N is non-negative, we conclude N vanishes on (0, X), implying that N ≡ 0.

Example 3: Periodic solutions and stabilization

Next, we choose initial data n 0 (s, a) = 1 2 e -(a-1) 1 {a>max(s,1)} and the firing rate is given by

which corresponds to an excitatory case since ϕ (u) > 0. Since p does not depend on a, we take advantage by solving the classical elapsed time Equation ( 5) after integrating with respect to a, as we remarked in the introduction.

(a) Discharging Flux N (t, a). For these data, both the discharging flux N and the total activity X are asymptotic to a periodic pattern as we see in Figure 7. Similar examples on periodic solutions were found in Torres et al. [START_REF] Torres | An elapsed time model for strongly coupled inhibitory and excitatory neural networks[END_REF] in the classical elapsed time model for the same type of firing rates. For periodic solutions of Fokker-Planck type models, see [START_REF] Luçon | Periodicity and longtime diffusion for mean field systems in R d[END_REF] and the references therein.

However, when we incorporate the effects of the difference between the elapsed times, the periodic regime changes. For the same initial data and

we observe in Figure 8 that the solution of System (1) converges to the steady state. Like the classical model, we can find examples of continuous solutions of System (1) converging to the steady state under a general strongly interconnected regime.

Perspectives

By means of Doeblin's theory applied to linear Equation (18) than the classical elapsed time model, we managed to understand the dynamics of System (1) for weak non-linearities by adapting the ideas