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Abstract

We introduce and study an extension of the classical elapsed time equation in the context of neu-
ron populations that are described by the elapsed time since last discharge. In this extension, we
incorporate the elapsed time since the penultimate discharge and we obtain a more complex system
of integro-differential equations. For this new system, we prove convergence with exponential rate
to stationary state by means of Doeblin’s theory in the case of weak non-linearities using an appro-
priate functional setting, inspired by the case of the classical elapsed time equation. Moreover, we
present some numerical simulations to observe how different firing rates can give different types of
behaviors and to contrast them with theoretical results of both the classical and extended models.

2010 Mathematics Subject Classification. 35B40, 35F20, 35R09, 92B20
Keywords and phrases. Structured equations; Renewal equation; Mathematical neuroscience; Neural
networks; Doeblin theory.

1 Introduction

In the study and modelling of neural processes, population density models have proved to be a
useful approach to understand brain phenomena at different scales. Among these models, we can
mention for example the Wilson-Cowan model [46] and Amari model [1], which describe dynamics
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of interactions between inhibitory and excitatory neurons, and they have been widely studied in
different extensions with many theoretical results and simulations.

Another class of population-based models is the elapsed time model, which has attracted the atten-
tion of many researchers. In this model we consider a neural network where neurons are described
by their elapsed time since the last discharge as the key variable. After receiving some stimulation,
neurons spike and interact with other neurons leading them to spike as well.

The elapsed time model is closely related to the well-known integrate-and-fire model. This system
describes the dynamics of the membrane potential and has been studied by several authors such
as Carrillo et al. [4, 7], Perthame et al. [39, 38, 37] and Zhou et al. [27] in different variants and
approaches. Like the integrate-and-fire model [10, 11], the elapsed time model is related to the limit of
stochastic processes at microscopic scale and the connection with Poisson processes was established
in the works of Chevalier et al. [9, 8]. Other important works on spiking neurons include Brunel [3],
Gerstner et al. [21], Ly et al. in [29] and Pham et al. [40] and by Schwalger et al. [41, 43]. The relation
between integrate-and-fire and the elapsed time model was studied in Dumont et al. [15, 16].

From a mathematical and analytical point of view, the elapsed-time model has been studied by several
authors using different techniques such as Cañizo et al. in [6], Kang et al. [26], Mischler et al. in [32,
31] and the pioneering works of Pakdaman et al. in [33, 34, 35]. Moreover, different extensions of the
elapsed time model have been considered by incorporating new elements such as spatial dependence
with connectivity kernel in Salort et al. [45], a leaky memory variable in Fonte et al. [18] and a
stochastic extension that accounts for finite population size in Schmutz et al. [42] and Schwalger et
al. [44].

The aim of the present work is to extend the classical elapsed time model by taking into account the
elapsed time since the penultimate discharge in addition to the last one. This extension is modeled
through a multiple time renewal equation, whose study is more complex than that of the classical
model. We aim to analyze how the incorporation of a second elapsed time changes dynamics of the
classical model and what type of new patterns may arise.

From a biophysical point of view, the main motivation is to represent the dependence on the previous
history of spikes in neural dynamics. Examples of models incorporating this approach include the
works of Gerstner et al. [22] on the spike-response-model with escape noise, where the sum over the
spike history is truncated at the second last spike. Among stochastic models, Chevallier et al. [9]
consider Wold processes, which are point processes for which the next occurrence of a spike depends
on the previous occurrence but also on the previous inter-spike interval. In their work, a connection
with Wold processes and multiple-time renewal equations is established by deriving the PDE for
the corresponding density. They extended the homogeneous Markovian case, which is study via
the forward Kolmogorov’s equations, to more general non-Markovian systems with a method called
Ogata’s thinning algorithm. They also included examples of other stochastic models like Hawkes
processes.

Furthermore, multiple time renewal equations have been investigated in Fournier et al. [19] in the
linear case, where a non-expanding distance was introduced via a coupling argument. Moreover,
these type of equations have multiple potential applications in other domains such as epidemiology,
where the evolution of individuals under possible secondary infections has been studied. For an
example, see the work of Ferretti et al. [17].

The extended model is described as follows. Let n = n(t, s, a) the probability density of finding a
neuron at time t, such that the elapsed times since its last and penultimate discharge are respectively s

2



and a. Hence, for all t ≥ 0, the domain of definition of n in the elapsed time variables is

D := {(s, a) ∈ R2 : 0 ≤ s ≤ a}.

In this setting, neural dynamics are modeled through the following nonlinear renewal system
∂tn+ ∂sn+ ∂an+ p(s, a,X(t))n = 0 t > 0, a > s > 0,

n(t, s = 0, a) = N(t, a) with N(t, a) :=
∫∞
a
p(a, u,X(t))n(t, a, u) du t > 0, a > 0,

X(t) =
∫∞

0
N(t, a) da t > 0,

n(t = 0, s, a) = n0(s, a) a > s > 0.

(1)

We assume that the initial data n0 ∈ L1(D) is a probability density so that System (1) formally verifies∫∫
n(t, s, a) da ds =

∫∫
n0(s, a) da ds = 1, n(t, s, a) ≥ 0 ∀t ≥ 0. (2)

As in the classical elapsed time model the function p : D ×R→ R is the firing rate of neurons, which
depends on the total activity X(t). Furthermore, for the firing rate function p, we assume that there
exist σ, p0, p∞ > 0 such that

p01{a>s≥σ} ≤ p ≤ p∞. (3)

Thus, we get
0 ≤ X(t) ≤ p∞, ∀t ≥ 0. (4)

We assume for simplicity that p ∈ W 1,∞(D × R), although most of the theoretical results are also
valid for firing rates with simple jump discontinuities and the behavior of solutions does not depend
on this regularity assumption as we show in the numerical simulations. Furthermore, we say that
the network is inhibitory if p is decreasing with respect to the total activity X and excitatory if p is
increasing. If in addition ‖∂Xp‖∞ is small, we say that System (1) is under a weak interconnection
regime.

The function N(t, a) represents the flux of discharging neurons, conditioned to the elapsed time since
last discharge with value a > 0. The boundary condition of n at s = 0 states that, when a neurone
discharges, its last elapsed time resets to the penultimate elapsed time. The function X models the
total activity received by the network, and we assume that it is given by the integral of N(t, a) with
respect to all the times a > 0.

Finally, we also remark that when p does not depend on a, the probability density

m(t, s) :=

∫ ∞
s

n(t, s, a) da

satisfies the equation
∂tm+ ∂sm+ p(s,X(t))m = 0 t > 0, s > 0,

m(t, s = 0) = X(t) =
∫∞

0
p(u,X(t))m(t, u) du t > 0,

m(t = 0, s) =
∫∞
s
n0(s, a) da s > 0.

(5)
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In other words, the probability with respect to the last elapsed time is a solution of the classical
elapsed time equation. In particular, if we consider firing rates of the form

p = ϕ(X(t))1{s>σ},

with ϕ ∈W 1,∞(R) strictly positive and σ > 0, we know from Torres et al. [45] that periodic solutions
and jump discontinuities may occur. Based on this choice of p, we discuss the impact of taking into ac-
count the penultimate discharge time regarding to the emergence of periodic solutions of System (1).

Equation (1) represents the probability distribution of neurons in a large (infinite) all-to-all network
which can be described as follows. For each neuron, labeled by i = 1, ..., N , the last two spike times
Si(t), Ai(t) are recorded. They follow a Piecewise Deterministic Markov Process where, between the
spike times τi,j , the ’ages’ progress as

Ṡi(t) = 1, Ȧi(t) = 1, τi,j−1 < t < τi,j , i = 1, ..., N,

and when a discharge occurs, the penultimate time spike is renewed:

Ai(τ
+
i,j) = 0, Si(τ

+
i,j) = Ai(τ

−
i,j).

The τi,j are chosen randomly according to a Poisson distribution of parameter p(Si(t), Ai(t), Xδ(t)),
where the network activity is computed as

Xδ(t) =
1

N

∑
i,j

ωδ(t− τi,j),

whith ωδ a smoothing kernel of parameter δ which takes into account the transmission delay. In the
limit N → ∞ and δ → 0, one expects the neurons become independent, driven by the average dis-
charge rate E[Xδ(t)] ≈

∫∫
p(s, a,X(t)n(t, s, a) ds da.

In the study of age-structured models, the entropy method has been a useful tool for proving con-
vergence to the steady state. The main idea consists in finding a Lyapunov functional H[n] and a
dissipation functional DH[n] such that the solutions of the system satisfy

d

dt
H[n] = −DH[n] ≤ 0.

Thus if we can find a Poincaré inequality of the type λH[n] ≤ DH[n] for some λ > 0, we can deduce
the exponential decay of H[n] by using the classical Gronwall inequality, which eventually allows to
deduce convergence to the steady state in some convenient norm. This method was developed in the
works of [30, 36] with extensions to measure initial data in [23], and it has been applied to different
types of models. However, when such inequalities are not available the study of asymptotic behavior
becomes more complex.

Another important approach, that we use in this paper, is Doeblin’s theory, which was first intro-
duced in the context of Markov chains [13, 12] and later developed in the work of Harris [25] which
has inspired several works such as Bansaye et al. [2], Cañizo et al. [5] and Hairer & Mattingly [24].
It ensures that exponential convergence in L1 to the stationary state follows from the existence of
a probability measure ν, a time t0, and 0 < α, such that for all initial data which is a probability
measure, the solution at time t0 is bounded from bellow by αν. Several works in PDE, also consider
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this approach, see for example the works of Gabriel et al. [20], B. Perthame et al. [37], Dumont et
al. [14]. In particular, this theory has already been an alternative to the classical entropy methods to
prove exponential convergence to the steady state for a large class of time elapsed model since the
last discharge (see Cañizo et al. [6]).

The article is organized as follows. In Section 2 we prove that System (1) is well-posed in a suitable
space for weak non-linearities. Starting with the asymptotic analysis for the linear case, we prove in
Section 3 the existence of a stationary state and exponential convergence via Doeblin’s theory. For
the non-linear problem in the case of weak interconnections, we show in Section 4 the uniqueness of
the steady state and in Section 5 we prove the exponential convergence via a perturbation argument.
Finally in Section 6 we present some examples of numerical simulations for different initial data and
class of firing rates.

2 Well-posedness for weak non-linearities

We prove that System (1) is well-posed in the weak interconnection regime. To do so, we start by
studying an auxiliary linear problem where the total activity is fixed and then we proceed to prove
well-posedness of System (1) via the Picard fixed point contraction theorem.

This requires some function analytic definitions. For a Banach space X we denote Cb([0,∞),X ) as the
Banach space given by

Cb([0,∞),X ) := {f : [0,∞)→ X | f is continuous and bounded}.

In this setting we look for weak solutions satisfying n ∈ Cb([0,∞), L1(D)), so thatN ∈ Cb([0,∞), L1(0,∞))
and X ∈ Cb[0,∞).

2.1 The linear problem

Given X ∈ Cb[0,∞), we consider the following linear problem
∂tn+ ∂sn+ ∂an+ p(s, a,X(t))n = 0 t > 0, a > s > 0,

n(t, s = 0, a) = N(t, a) :=
∫∞
a
p(a, u,X(t))n(t, a, u) du t > 0, a > 0,

n(t = 0, s, a) = n0(s, a) ≥ 0 a > s > 0.

(6)

Even though the boundary condition holds only for t > 0, we may define N(t, a) at t = 0 by the same
formula

N(t, a) =

∫ ∞
0

p(a, u,X(t))n(t, a, u) du, for almost all a > 0,∀t ≥ 0,

which implies that n may have discontinuities along the set {(t, s, a) ∈ [0,∞) × D : t = s} as a
consequence of the method of characteristics (7) explained below.

Lemma 1. Assume that n0 ∈ L1(D) is a probability density and p ∈ W 1,∞(D × R) satisfies (3). Then
for a given X ∈ Cb[0,∞), Equation (6) has a unique weak solution n ∈ Cb([0,∞), L1(D)) with N ∈
Cb([0,∞), L1(0,∞)). Moreover n is non-negative and verifies the property (2).
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In particular this lemma proves the property (2) for the non-linear System (1).

Proof. From the method of characteristics, we start by noticing that a solution of the linear System (6)
satisfies the following fixed point equation

n(t, s, a) = Ψ[n](t, s, a) := n0(s− t, a− t)e−
∫ t
0
p(t′+s−t,t′+a−t,X(t′))dt′1{a>s>t}

+N(t− s, a− s)e−
∫ s
0
p(s′,s′+a−s,X(s′+t−s))ds′1{t,a>s}.

(7)

Let T > 0 and XT := {n ∈ Cb([0, T ], L1(D)), n(0) = n0}, it readily follows that Ψ maps XT → XT .
We prove by the Picard contraction theorem that Ψ has a unique fixed point in XT for T > 0 small
enough, i.e., there exists a unique weak solution of (6) defined on [0, T ]. Consider n1, n2 ∈ XT , we
compute ∫∫

|Ψ[n1]−Ψ[n2]|(t, s, a) ds da ≤
∫ t

0

∫ ∞
s

|N1 −N2|(t− s, a− s) da ds

≤ T sup
t∈[0,T ]

∫ ∞
0

|N1 −N2|(t, a) da

≤ T p∞ sup
t∈[0,T ]

‖n1(t, s, a)− n2(t, s, a)‖L1(D),

(8)

thus for T < 1
p∞

, we have proved that Ψ is a contraction and there exists a unique n ∈ XT such that
Ψ[n] = n. Since the choice of T is independent of n0, we can reiterate this argument to get a unique
solution of (6), which is defined for all t ≥ 0.

From Formula (7) we can extend the notion of a weak solution for Equation (6) for an initial data
n0 ∈ (M(D), ‖ · ‖M1), the space of finite regular measures on D endowed with the total variation
norm (see section 3 for the definition). Therefore we can use the same argument to prove existence and
uniqueness of a weak solution n ∈ Cb([0,∞),M(D)) with N ∈ Cb([0,∞),M(0,∞)) and X ∈ Cb[0,∞).

Next, we prove the mass conservation property. For all t ≥ 0, consider St : M(D) → M(D) the
semi-group given by

St[f ](s, a) = f(s− t, a− t)1{a>s>t},

whose infinitesimal generator is the operatorLf = −∂sf−∂af . From Duhamel’s formula, the solution
of the fixed point problem (7) also verifies the following equality

n(t, s, a) = St[n0](s, a) +

∫ t

0

St−τ [δ{s=0}(s, a)N(τ, a)] dτ −
∫ t

0

St−τ [p(s, a,X(τ))n(τ, s, a)] dτ, (9)

where δ{s=0}(s, a) is the measure along the line {(0, a) : a ≥ 0}. This formula is translated as

n(t, s, x) = n0(s− t, a− t)1{a>s>t} +N(t− s, a− s)1{t,a>s}

−
∫ t

0

p(s− t+ τ, a− t+ τ,X(τ))n(τ, s− t+ τ, a− t+ τ)1{a>s>t−τ} dτ,
(10)

and we get the mass conservation property by integrating with respect to (s, a) on the domain D.

Finally, since n0 is non-negative then Ψ preserves positivity, so by uniqueness of the fixed point, the
corresponding solution n is also non-negative.
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2.2 The non-linear problem

Like the classical elapsed-time model, studying well-posedness for a general firing rate is a difficult
problem. Indeed, examples of multiple solutions for a same initial data has been observed in Torres
et al. [45] and some ill-posed examples have been remarked on Cañizo et al. [6].

As in the linear problem, and with the assumptions below, we may define the quantities

N(0, a) =

∫ ∞
0

p(a, u,X(0))n0(a, u) du

with X(0) the solution of

X(0) =

∫ ∞
0

∫ ∞
a

p(a, u,X(0))n0(a, u) du da. (11)

But again, the boundary condition is not imposed at t = 0 and in general X(0) 6=
∫∞

0
n0(0, a) da.

By using the results of the linear problem, we are now ready to prove that System (1) is well-posed in
the case of weak interconnection.

Theorem 1 (Well-posedness for weak interconnections). Assume that n0 ∈ L1(D) is a probability density
and that p ∈W 1,∞(D ×R) satisfies (3). Then for

‖∂Xp‖∞ < 1, (12)

System (1) has a unique solution with n ∈ Cb([0,∞), L1(D)), N ∈ Cb([0,∞), L1(0,∞)) and X ∈ Cb[0,∞).
Moreover n verifies Condition (2) for all t > 0.

Proof. Consider T > 0. We fix a function X ∈ Cb[0,∞) and define the functions n ∈ Cb([0,∞), L1(D))
and N ∈ Cb([0,∞), L1(0,∞)) which are solutions of System (6) by Lemma 1. Furthermore, the solu-
tion of this linear equation satisfies (2).

So we have a solution of System (1) defined on [0, T ] if X satisfies for all 0 ≤ t ≤ T and x ∈ Ω, the
following fixed point condition

X(t) = T [X](t) :=

∫ ∞
0

N [X](t, a) da. (13)

We prove that T defines for all T > 0 an operator that maps XT → XT with XT := Cb([0, T ]). First, we
observe the following estimate ∣∣∣∣∫ N(t, a) da

∣∣∣∣ ≤ p∞, ∀t ∈ [0, T ], (14)

and it is immediate that T [X] ∈ XT .

We now prove that for T small enough, T is a contraction. Let X1, X2 ∈ XT with their respective
solutions (n1, N1), (n2, N2) of System (6). For the difference between N1 and N2 we have∫
|N1 −N2|(t, a) da ≤

∫∫
|p(a, u,X1)n1(t, a, u)− p(a, u,X2)n2(t, a, u)| du da

≤
∫∫
|p(a, u,X1)− p(a, u,X2)|n1 du da+

∫∫
p(a, u,X2)|n1 − n2|(t, a, u) du da

≤ ‖∂Xp‖∞ ‖X1 −X2‖∞ + p∞‖n1 − n2‖L1(D).

(15)
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To estimate the difference between n1 and n2, we combine this inequality with (10) and get

‖n1 − n2‖L1(D) ≤ 2T ‖∂Xp‖∞ ‖X1 −X2‖∞ + 2Tp∞‖n1 − n2‖L1(D).

Then, for T < 1
2p∞

, we obtain

‖n1 − n2‖L1(D) ≤
2T‖∂Xp‖∞
1− 2Tp∞

‖X1 −X2‖∞. (16)

Finally, by using again estimate (15), the operator T satisfies

‖T [X1]− T [X2]‖∞ ≤ ‖∂Xp‖∞
(

1 +
2Tp∞

1− 2Tp∞

)
‖X1 −X2‖∞. (17)

Therefore, for ‖∂Xp‖∞ < 1 and T small enough, T is a contraction.

From Picard’s fixed point we get a unique X ∈ XT such that T [X] = X , and this implies the existence
of a unique solution of (1) defined on [0, T ]. Since estimate (14) is uniform in T , we can iterate this
argument to get a unique solution of (1) defined for all t > 0.

Furthermore, we conclude from this construction that the non-linear System (1) satisfies (2) like the
linear System (6).

3 Asymptotic behavior for the linear case

In order to study the behavior of System (1), we start by studying the case when X ≥ 0 is a fixed
constant. Thus we consider the linear problem given by

∂tn+ ∂sn+ ∂an+ p(s, a,X)n = 0 t > 0, a > s > 0,

n(t, s = 0, a) = N(t, a) :=
∫∞
a
p(a, u,X)n(t, a, u) du t > 0, a > 0,

n(t = 0, s, a) = n0(s, a) a > s > 0.

(18)

To determine the behavior of System (18), we consider (nX , NX) as the solution of the steady state
problem given by

{
∂sn+ ∂an+ p(s, a,X)n = 0 a > s > 0,

n(s = 0, a) = N(a) :=
∫∞
a
p(a, u,X)n(a, u) du a > 0,

(19)

In the classical elapsed time model the generalized relative entropy inequality for the linear problem
is a well-known property of this class of age-structured models. For a reference on this method,
see Perthame et al. [36, 30] and for some applications in the non-linear elapsed time model see for
instance [33, 26]. Following these ideas, we can prove this property for the linear System (18).

Proposition 1 (Generalized relative entropy). Assume there exists a steady state solution of the linear
System (18) with nX , NX > 0. Then for all convex functions H : [0,∞) → [0,∞) with H(0) = 0, the

8



solution n of the linear System (18) satisfies

d

dt

∫∫
nX(s, a)H

(
n(t, s, a)

nX(s, a)

)
da ds = −DH [n(t, s, a)] ≤ 0 ∀t ≥ 0,

DH [n(t, s, a)] =

∫∫
p(s, a,X)nX(s, a)H

(
n(t, s, a)

nX(s, a)

)
da ds−

∫
NX(a)H

(
N(t, a)

NX(a)

)
da,

(20)

and in particular the steady state is unique.

Proof. In order to prove the relative entropy property, we follow the arguments in [4]. We start by
noticing the following identities

∂sn = nX∂s

(
n

nX

)
+

n

nX
∂snX , ∂an = nX∂a

(
n

nX

)
+

n

nX
∂anX , (21)

and for simplicity we reformulate Equation (18) as follows


∂tn+ ∂sn+ ∂an+ p(s, a,X)n = δ{s=0}(s, a)N(t, a) t > 0, a > s > 0,

n(t, s = 0, a) = 0 t > 0, a > 0,

n(t = 0, s, a) = n0(s, a) a > s > 0,

(22)

where δ{s=0}(s, a) is the measure along the line {(0, a) : a ≥ 0}. In the same way, we reformulate the
corresponding steady state problem (19).{

∂snX + ∂anX + p(s, a,X)nX = δ{s=0}(s, a)NX(a) a > s > 0,

nX(s = 0, a) = 0 a > 0.
(23)

Hence by using the identities (21) along with Equations (22) and (23), we get the following equation
for n

nX

∂t

(
n

nX

)
+ ∂s

(
n

nX

)
+ ∂a

(
n

nX

)
= δ{s=0}(s, a)

NX
nX

(
N

NX
− n

nX

)
and if we multiply this equality by H ′

(
n
nX

)
, we get

∂tH

(
n

nX

)
+ ∂sH

(
n

nX

)
+ ∂aH

(
n

nX

)
= δ{s=0}(s, a)

NX
nX

(
N

NX
− n

nX

)
H ′
(
n

nX

)
.

Therefore, by multiplying the latter equality by nX and using Equation (23), we have the correspond-
ing equation for u = nXH

(
n
nX

)
∂tu+ ∂su+ ∂au+ p(s, a,X)u = δ{s=0}(s, a)NX

[(
N

NX
− n

nX

)
H ′
(
n

nX

)
+H

(
n

nX

)]
. (24)

Finally, by noticing the following limit

lim
s→0

n(t, s, a)

nX(s, a)
=
N(t, a)

NX(a)
, for a.e. t, a > 0,
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we conclude the generalized relative entropy property (20) by integrating Equation (24) with respect
to (s, a) on the domain D. Moreover, we observe that DH [·] is non-negative by applying Jensen’s
inequality with the probability measure dµ = p(a, y)nX(a,y)

NX(a) dy for each a > 0. In particular when H is
strictly convex and DH [n] = 0, we deduce that n

nX
is constant and subsequently we get n = nX , since

both n, nX are probability densities. Therefore, the steady state is unique.

If we consider the entropy method to prove exponential convergence for the linear Equation (18) in
L1(D), we have the following equality for H(·) = | · |

d

dt

∫∫
|n− nX | da ds =

∫ ∣∣∣∣∫ p(n− nX) da

∣∣∣∣ ds− ∫∫ p|n− nX | da ds ≤ 0.

We observe that for the right-hand side it is not evident to find a L1 Poincaré inequality involving the
entropy in order to conclude exponential convergence, unlike the classical elapsed time model where
this approach has proved to be useful (see for example Perthame [36]).

Furthermore, in Proposition (1) we assumed that nX and NX are strictly positive, which is not nec-
essarily true. Unlike the classical elapsed time model, there exist solutions where nX and NX vanish
for some values of (s, a). For example, consider p(s, a,X) = 1{s>1} which satisfies the bounds (3).
From the method of characteristics we get the following equality

nX(s, a) = NX(a− s)e−(s−1)+ , a > s,

so that form the boundary condition at s = 0, we observe that NX satisfies

NX(a) = 1{a>1}e
−(a−1)

∫ ∞
0

NX(u) du,

which implies that NX(a) vanishes for a < 1 and subsequently nX(s, a) vanishes for a− s < 1.

Due to the limitations of the entropy method approach we will make use of Doeblin’s theory, which
will be the key ingredient in proving convergence to steady state. In this context we start by recalling
the useful concepts in order to apply Doeblin’s theorem. Consider (M(X ), ‖ · ‖M1) the space of finite
signed measures on the space X with the norm of the total variation

‖µ‖M1 := µ+(X ) + µ−(X ), (25)

where µ = µ+−µ− is the Hahn–Jordan decomposition of the measure µ into its positive and negative
parts. For simplicity of the computations, we will treat measures as if they were L1 functions and we
simply write the L1-norm instead of M1-norm.

We now recall the definition of a Markov semigroup and Doeblin’s condition.

Definition 1 (Markov semi-group). Let (X ,A) be a measure space and Pt : M(X ) → M(X ) be a linear
semi-group. We say that Pt is a Markov semi-group if Ptµ ≥ 0 for all µ ≥ 0 and

∫
X dPtµ =

∫
X dµ for all

µ ∈M(X ). In other words, (Pt) preserves the subset of probability measures P(X ).

Definition 2 (Doeblin’s condition). Let Pt : M(X ) → M(X ) be a Markov semi-group. We say that (Pt)
satisfies Doeblin’s condition if there exist t0 > 0, α ∈ (0, 1) and ν ∈ P(X ) such that

Pt0µ ≥ αν ∀µ ∈ P(X ).

10



Under this functional setting, we are now ready to state Doeblin’s theorem as follows.

Theorem 2 (Doeblin’s Theorem). Let Pt : M(X )→M(X ) be a Markov semi-group that satisfies Doeblin’s
condition. Then the semigroup has a unique equilibrium µ∗ ∈ P(X ). Moreover, for all µ ∈M(X ) we have

‖Ptµ− 〈µ〉µ∗‖M1 ≤ 1

1− α
e−λt‖µ− 〈µ〉µ∗‖M1 ∀t ≥ 0,

with 〈µ〉 =
∫
X dµ and λ = − ln(1−α)

t0
> 0.

For a proof of Doeblin’s Theorem, see for example [20].

From Lemma 1, the solution of the linear problem (18) determines a Markov semi-group acting on
L1(D). By means of Doeblin’s theory, the solutions of linear Equation (18) converge exponentially to
a unique steady state, as we assert in the following theorem.

Theorem 3. Let n0 ∈ L1(D) be a probability density and assume that p smooth satisfies Assumption (3).
Then for a fixed X > 0, there exists a unique stationary solution nX(s, a) ∈ L1(D) of the linear Equation (18)
satisfying

∫∫
nX(s, a) da ds = 1. Moreover, the corresponding solution of Equation (18) satisfies

‖n(t)− nX‖L1
s,a
≤ 1

1− α
e−λt‖n0 − nX‖L1

s,a
∀t ≥ 0,

with α = 1
2p

2
0σ

2e−3p∞σ and λ = − log(1−α)
3σ > 0.

In order to obtain the result, we show that after some time the solution of the linear problem is
uniformly bounded from below for all probability densities. Thus from Doeblin’s theorem we get the
exponential convergence to equilibrium.

Lemma 2. Assume (2) and (3). Let n(t, s, a) be a solution of (18), then there exist t0 > 0, α ∈ (0, 1) and a
probability density ν ∈ L1 such that

n(t0, s, a) ≥ αν(s, a).

Proof. The main idea of the proof is to control the mass transported along the lines of direction (1, 1).
Firstly, we observe the transport of the initial data n0. From Assumption (3) and the characteristics
Formula (7) the following inequality holds∫ ∞

t

∫ ∞
s

n(t, s, a) da ds ≥ e−p∞t, ∀t ≥ σ. (26)

Secondly, we see the mass that returns at s = 0. From (26) we get for all t ≥ σ∫ ∞
t

n(t, s = 0, a) da =

∫ ∞
t

N(t, a) da ≥ p0

∫ ∞
t

∫ ∞
a

n(t, a, u) du da ≥ p0e
−p∞t. (27)

This means that we reduced by one dimension the problem of finding the uniform lower bound. For
t ≥ σ the mass of the region {(s, a) : a > s > t} concentrates in the line {(0, a) : a ≥ t}, as we see in
Figure 1.

11



s

a

t ≥ σ

Figure 1: First reduction of dimension. For a t ≥ σ, all points in D are transported to the red region,
which has a total mass of at least e−p∞t. Then a mass of at least p0e

−p∞t returns to the green line.

Thirdly, in order to control the point values of n(t, s, a), we regard the values of N(t, a). Observe that
from Formula (7) we have

n(t, s, a) ≥ N(t− s, a− s)e−
∫ s
0
p(s′,s′+a−s,X)ds′1{t,a>s}

≥ N(t− s, a− s)e−p∞s1{t,a>s},
(28)

thus for a ≥ σ and t− a > σ, we obtain by using again Assumption (3) that

N(t, a) ≥ p0

∫ ∞
a

n(t, a, u) du

≥ p0e
−p∞a

∫ ∞
a

N(t− a, u− a) du = p0e
−p∞a

∫ ∞
0

N(t− a, u) du

≥ p0e
−p∞a

∫ ∞
t−a

N(t− a, u) du ≥ p2
0e
−p∞t.

(29)

This means we reduced the problem of finding the uniform lower bound by one dimension again, as
we see in Figure 2.

Finally, once we have estimated N(t, a) from below, we come back to estimate (28) to conclude that
for a− s ≥ σ and t− a > σ we have

n(t, a, s) ≥ N(t− s, a− s)e−p∞s1{t,a>s}
≥ p2

0e
−p∞t1{t−a,a−s>σ},

(30)

so that we can choose t = 3σ and conclude that

n(3σ, a, s) ≥ p2
0e
−3p∞σ1{2σ>a>s+σ}.

Therefore we get the desired result with t0 = 3σ, α = 1
2σ

2p2
0e
−3p∞σ ∈ (0, 1) and ν given by

ν(s, a) =
2

σ2
1{2σ>a>s+σ},
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s

a

σ

Figure 2: Second reduction of dimension. For t ∈ [σ, 2σ] the green lines are transported to the region
where s ≥ σ and their mass is of at least p0e

−2p∞σ . Then the mass of each green line is concentrated
in the orange points, whose values are at least p2

0e
−2p∞σ .

s

a

σ

Figure 3: Finally for t ∈ [2σ, 3σ] the orange dots are transported to region where s ≥ σ, which allows
to construct a minorization function for Doeblin’s Theorem.

whose support is contained in orange region of Figure 3.

From Lemma 2 the hypothesis of Doeblin’s theorem are verified and Theorem 3 readily follows.

Concerning the conditioned activity N in System (19), we conclude from Theorem 3 that for X fixed,
there is a unique stationary NX ∈ L1(0,∞) determined by the method of characteristics through the
formula

nX(s, a) = NX(a− s) exp

(
−
∫ s

0

p(s′, a− s+ s′, X) ds′
)
, a > s. (31)

By replacing this expression in the boundary condition at s = 0, we obtain the following integral

13



equation for NX(a)
NX(a) = TX [NX ](a), (32)

with TX : L1(0,∞)→ L1(0,∞) given by

TX [N ](a) :=

∫ ∞
0

p(a, u+ a,X) exp

(
−
∫ a

0

p(s′, u+ s′, X) ds′
)
N(u) du

= − ∂

∂a

∫ ∞
0

exp

(
−
∫ a

0

p(s′, u+ s′, X) ds′
)
N(u) du.

Moreover, by integrating Equation (31) we get∫ ∞
0

∫ ∞
0

NX(a) exp

(
−
∫ s

0

p(s′, a+ s′, X) ds′
)
da ds = 1. (33)

Therefore we conclude that finding a function N ∈ L1(0,∞) satisfying Equation (32) and Condition
(33) is equivalent to finding a steady state nX(s, a) in Equation (19). The integral Equation (32) will
play an important role in the analysis of the non-linear System (1), thus we prove the following two
lemmas on the operator TX that will be useful in the sequel.

Lemma 3. Assume that p Lipschitz satisfies Assumption (3). For each X > 0 the operator TX is compact and
it satisfies that dim ker(I − TX) = 1, which is generated by a non-negative function, and

ran(I − TX) =

{
f ∈ L1(0,∞) :

∫ ∞
0

f(x) dx = 0

}
.

Proof. The first step is to prove that TX is a compact operator. This means we have to prove that the
set A = {TX [f ] : ||f ||1 ≤ 1} is relatively compact in L1.

First observe that ‖TX [f ]‖1 ≤ p∞ for all f with ||f ||1 ≤ 1, so A is bounded.

Second, we prove that ∫ ∞
r

|TX [f ](a)|da→ 0 uniformly when r →∞.

Indeed for r > σ we have∫ ∞
r

|TX [f ](a)|da ≤ p∞
∫ ∞
r

∫ ∞
0

|f(u)|e−
∫ a
0
p(s′,u+s′,X) ds′ du da

≤ p∞
∫ ∞
r

∫ ∞
σ

|f(u)|e−p0(a−σ) du da

≤ p∞ep0σ
∫ ∞
σ

|f(u)|du
∫ ∞
r

e−p0ada

≤ p∞ep0σ
e−p0r

p0
→ 0.

Now we prove the equicontinuity property. Observe that

d

da
TX [f ](a) =

∫ ∞
0

(∂sp+ ∂ap)(a, u+ a,X)e−
∫ a
0
p(s′,u+s′,X) ds′f(u)du

−
∫ ∞

0

p(a, u+ a,X)2e−
∫ a
0
p(s′,u+s′,X) ds′f(u)du,
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thus for f with ‖f‖1 ≤ 1 we have∫ ∞
0

∣∣∣∣ ddaTX [f ](a)

∣∣∣∣ da ≤ ‖∇p‖∞ + p2
∞.

Therefore by the Kolmogorov-Frechet theorem we conclude that A is relatively compact so the oper-
ator TX is.

Furthermore, since nX is the unique steady state of Equation (18) that is a probability density, from
the linearity we deduce that any other function in ker(I−TX) is a multiple ofNX and thus dim ker(I−
TX) = 1.

Next, we proceed to determine ran(I−TX). Observe that adjoint operator T ∗X : L∞ → L∞ is given by

T ∗X [g](a) =

∫ ∞
0

p(u, u+ a,X) exp

(
−
∫ u

0

p(s′, a+ s′, X) ds′
)
g(u) du,

and from Fredholm’s alternative we get dim ker(I − T ∗X) = dim ker(I − TX) = 1. Since T ∗X [g] ≡ 0 for
any constant function, we deduce that ker(I −T ∗X) is the subspace of constant functions. Finally from
orthogonality conditions we conclude that

ran(I − TX) =

{
f ∈ L1(0,∞) :

∫ ∞
0

f(x) dx = 0

}
.

A direct consequence of Lemma 3 is the following result

Lemma 4. Assume that p is smooth respect to variable X , then NX(a) is also smooth with respect to X .

Proof. Define the F : L1(0,∞)× (0,∞)→ ran(I − TX)×R given by

F (N,X) =
(
(I − TX)[N ] ,

∫∫
N(a)e−

∫ a
0
p(s′,u+s′,X) ds′ da ds− 1

)
,

so that for each X we have F (NX(a), X) = 0. Observe that DNF is given by

DNF [h] =
(
(I − TX)[h] ,

∫∫
h(a)e−

∫ a
0
p(s′,u+s′,X) ds′ da ds

)
Thus by Lemma 3 this operator is an isomorphism and from the implicit function theorem we con-
clude that NX(a) depends smoothly on X .

Remark 1. The lower bound condition (3) on the firing rate p is important to verify the existence of a steady
state for System (1) and Doeblin’s condition. For example, when we consider a fixed X > 0 and

p(s, a,X) = 1{a−s>X},

then there are no steady states of the linear Equation (18), besides the zero solution. Indeed, from Equation (32)
we deduce that the discharging flux N should satisfy

NX(a) = e−a
∫ ∞
X

NX(u) du,

thusNX is an exponential function and by integrating with respect to awe get
∫∞

0
NX(a) da =

∫∞
X
NX(u) du.

Since N is non-negative, we conclude N vanishes on (0, X), implying that N ≡ 0.
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4 Steady states

Consider n∗ = n∗(s, a) with support in the set {s ≤ a}. We are interested in the stationary solutions
of the non-linear System (1) given by

∂sn+ ∂an+ p(s, a,X)n = 0 a > s > 0,

n(s = 0, a) = N(a) :=
∫∞

0
p(a, u,X)n(a, u) du a > 0,

X =
∫∞

0
N(a) da,∫∫

n(s, a) da ds = 1, n(s, a) ≥ 0.

(34)

We define NX as the respective conditional activity in terms of X . In order to have a steady state of
the non-linear Problem (1), we must find X > 0 such that

X = Φ(X) :=

∫ ∞
0

NX(a) da. (35)

In the general case this equation has always a solution since the right-hand side is uniformly bounded
thanks to estimate (4) andNX(a) depends continuously onX . By using the properties of the operator
TX , we prove that under the weak interconnections regime the non-linear System (1) has a unique
steady state.

Theorem 4. Assume (2) and that p smooth satisfies Assumption (3). Then for ‖∂Xp‖∞ small enough, System
(1) has a unique steady state (n∗, N∗, X∗).

Proof. The goal is to prove that Φ is a contraction in order to obtain a unique fixed point. In order to
estimate ∂XN we make use of the implicit function theorem. By differentiating Equation (33) we get∫∫

∂X(NX)e−
∫ s
0
p(s′,a+s′,X) ds′ da ds =

∫∫
NXe

−
∫ s
0
p(s′,a+s′,X) ds′

(∫ s

0

∂Xp(s
′, u′ + s′, X) ds′

)
da ds.

(36)
Furthermore, if we differentiate with respect to X the Equation (32), we get

∂XNX(a) =

∫ ∞
0

(
−∂ae−

∫ a
0
p(s′,u+s′,X) ds′

)
∂XNX(u) du

+

∫ ∞
0

(
−∂a∂Xe−

∫ a
0
p(s′,u+s′,X) ds′

)
NX(u) du,

i.e. ∂XNX(a) satisfies the equation

(I − TX)[∂XN ](a) =

∫ ∞
0

p(a, u+ a,X)e−
∫ a
0
p(s′,u+s′,X) ds′NX(u) du

−
∫ ∞

0

p(a, u+ a,X)

(∫ a

0

∂Xp(s
′, u+ s′, X) ds′

)
e−

∫ a
0
p(s′,u+s′,X) ds′NX(u) du.

(37)

By using the implicit function theorem and the Condition (36) we can define an inverse of I − TX
which depends continuously on X . Observe that ‖(I − TX)−1‖ is uniformly bounded on X in the
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operator norm, since X is uniformly bounded. Thus, for the function Φ we get

|Φ′(X)| =
∣∣∣∣∫ ∂XNX(a) da

∣∣∣∣
≤ ‖(I − TX)−1‖ ‖∂Xp‖∞

(∫∫
(1 + p∞a)e−

∫ a
0
p(s′,u+s′,X) dsNX(u)da du

)
≤ C‖∂Xp‖∞

(∫∫
(1 + p∞a)e−p0aNX(u) da du

)
≤ C‖∂Xp‖∞p∞

(∫
(1 + p∞a)e−p0a da

)
,

so that for ‖∂Xp‖∞ small enough Φ is a contraction and we conclude the result.

5 Convergence to equilibrium

After studying the linear case, we are now ready to prove convergence to the steady state under the
weak interconnection regime, i.e. ‖∂Xp‖∞ small enough, by a perturbation argument.

Theorem 5 (Convergence to equilibrium). Assume that n0 ∈ L1(D) satisfies Assumption (2) and that p
Lipschitz satisfies Assumption (3). For ‖∂Xp‖∞ small enough, let (n∗, N∗, X∗) be the corresponding station-
ary state of System (1). Then there exist C, λ > 0 such that the solution n of System (1) satisfies

‖n(t)− n∗‖L1
s,a
≤ Ce−λt‖n0 − n∗‖L1

s,a
, ∀t ≥ 0.

Moreover ‖N(t)−N∗‖L1 and |X(t)−X∗| converge exponentially to 0 when t→∞.

Proof. Observe that n satisfies the evolution equation

∂tn = LX [n] := −∂sn− ∂an− p(s, a,X(t))n+ δ{s=0}(s, a)

∫ ∞
0

p(a, u,X(t))n(t, a, u) du,

where δ{s=0}(s, a) is the measure along the line {(0, a) : a ≥ 0}. We can rewrite the evolution equation
as

∂tn = LX∗ [n] + (LX [n]− LX∗ [n]) = LX∗ [n] + h. (38)

with h(t, s, a) given by

h =
(
p(s, a,X∗)−p(s, a,X(t)

)
n(t, s, a)+δ{s=0}(s, a)

∫ ∞
0

(
p(a, u,X(t))−p(a, u,X∗)

)
n(t, a, u) du. (39)

Let Pt : L1(D) → L1(D) be the linear semi-group associated to operator LX∗ . As in the proof of
Lemma 1, Pt is extended to space (M(D), ‖ · ‖M1) in order to be able to evaluate at the measure h.
Since Ptn∗ = n∗ for all t ≥ 0, we get that n satisfies

n− n∗ = Pt(n0 − n∗) +

∫ t

0

Pt−τh(τ, s, a) dτ, (40)
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so we need find an estimate for the function h. Observe that we have the following inequalities:

‖h(t)‖L1
s,a
≤ 2‖∂Xp‖∞|X(t)−X∗|,

|X(t)−X∗| ≤ ‖N(t)−N∗‖1,

‖N(t)−N∗‖1 ≤ ‖ ∂p∂X ‖∞|X(t)−X∗|+ p∞‖n(t)− n∗‖L1
s,a
,

and since ‖∂Xp‖∞ < 1 we get

‖h(t)‖L1
s,a
≤ 2p∞‖∂Xp‖∞

1−‖∂Xp‖∞ ‖n(t)− n∗‖L1
s,a
,

|X(t)−X∗| ≤ p∞
1−‖∂Xp‖∞ ‖n(t)− n∗‖L1

s,a
,

‖N(t)−N∗‖1 ≤ p∞
(
‖∂Xp‖∞

1−‖∂Xp‖∞ + 1
)
‖n(t)− n∗‖L1

s,a
,

thus by taking norm in Equality (40) and applying Doeblin’s Theorem we obtain

‖n(t)− n∗‖L1
s,a
≤ ‖Pt(n0 − n∗)‖L1

s,a
+

∫ t

0

‖Pt−τh(τ)‖L1
s,a
dτ

≤ e−λt

1− α
‖n0 − n∗‖L1

s,a
+

1

1− α

∫ t

0

e−λ(t−τ)‖h(τ)‖L1
s,a
dτ

≤ e−λt

1− α
‖n0 − n∗‖L1

s,a
+ C

∫ t

0

e−λ(t−τ)‖n(τ)− n∗‖L1
s,a
dτ,

with C := 1
1−α

2p∞‖∂Xp‖∞
1−‖∂Xp‖∞ . By using Gronwall’s inequality with respect to the function eλt‖n(t) −

n∗‖L1
s,a

we conclude

‖n(t)− n∗‖L1
s,a
≤ e−(λ−C)t

1− α
‖n0 − n∗‖L1

s,a
,

so that for ‖∂Xp‖∞ small enough we have C < λ and we deduce the exponential convergence of
n(t, ·, ·), N(t, ·) and X(t) when t→∞.

6 Numerical simulations

In order to illustrate the theoretical long time results and other possible behaviors of System (1), we
present numerical simulations for different firing rates and initial data. The numerical illustrations
below are obtained by solving the equation (1) with a classical first-order upwind scheme, while the
initial activity X(0) is computed by solving numerically the fixed-point equation (11).

We focus in displaying the discharging fluxN(t, a) and the total activityX(t) since these two elements
determine the general behavior of system (1).

6.1 Example 1: Convergence to equilibrium

For our first example, we consider a firing rate given by

p = ϕ(X − e−s − e−a)1{s>1}, ϕ(u) =
1.5

1 + e−u
,
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which corresponds to an excitatory case, modulated by a sigmoid function ϕ with an absolute refrac-
tory period σ = 1. By taking as initial data n0(s, a) = e−a, we observe in Figure 4 that the solution

(a) Discharging Flux N(t, a).

0 1 2 3 4 5 6 7

Time t

0.25

0.3

0.35

0.4

0.45

0.5

0.55

X
(t

)
(b) Total Activity X(t).

Figure 4: Example 1.1. Case n0(s, a) = e−a and p = ϕ(X − e−s − e−a)1{s>1}.

converges to the steady state for both discharging flux N and the total activity X , following the re-
sults of Theorem 5. As consequence of the refractory period in the firing rate, we observe in Figure
4a that steady states vanishes for a < 1.

From Example 1.1, we can compute a numerical approximation of the stationary flux N∗ and the
respective total activity X∗. In this setting, consider now as initial data the stationary density condi-
tioned to a spike immediately before s = 0, i.e.

n0(s, a) = e−aδ0(s)

which corresponds to a synchronization of all neurons at t = 0. The theoretical results on well-
posedness in Section 2 allows us to consider probability measures as initial data and we approximate
the Dirac mass as

δ0(s) ≈ 1

∆s
1{s∈[0,∆s]}, ∆s small enough.

As in Example 1.1, we observe in Figure 5 that the solution converges to the steady state and it
stabilizes at similar times. This numerical result is compatible with Theorem (5) extended for initial
data in the space of measures (M(D), ‖ · ‖M1). Moreover, as effect of the refractory period and the
fact that initial data is supported on the line {s = 0} of the domain D, the total activity vanishes for
small times and then it becomes increasing when the time approaches to t = 1.

We continue with some numerical examples beyond the scope of the theory of weak interconnections,
in order to explore the possible behaviors of a strongly interconnected regime.

6.2 Example 2: Jump discontinuities

We now consider a compactly supported initial data n0(s, a) = 2 ·1{2>a>s+1}, with a firing rate given
by

p = 1{s>e−X} + 1{a−s>e−X},
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(a) Discharging Flux N(t, a).
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(b) Total Activity X(t).

Figure 5: Example 1.2. Case n0(s, a) = e−aδ0(s) and p = ϕ(X − e−s − e−a)1{s>1}.

which corresponds to an excitatory case since p is increasing with respect to X .

(a) Discharging flux N(t, a).
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Figure 6: Example 2. Case n0(s, a) = 2 · 1{2>a>s+1} and p = 1{s>e−X} + 1{a−s>e−X}.

Like the previous examples, the solution converges to the steady state, but the total activity X shows
three jump discontinuities as we see in Figure 6. The multiple jump discontinuities are consequence
of the contribution of the term depending on the difference between the two elapsed times. Fur-
thermore, converging solutions with a single jump discontinuity were already observed in Torres et
al. [45] for the classical elapsed time model. The phenomenon of multiple jumps discontinuities in
Figure 6 is an extension for the case of Equation (1).
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6.3 Example 3: Periodic solutions and stabilization

Next, we choose initial data n0(s, a) = 1
2e
−(a−1)1{a>max(s,1)} and the firing rate is given by

p = ϕ(X)1{s>1}, ϕ(u) =
10u2

u2 + 1
+ 0.5,

which corresponds to an excitatory case since ϕ′(u) > 0. Since p does not depend on a, we take
advantage by solving the classical elapsed time Equation (5) after integrating with respect to a, as we
remarked in the introduction.

(a) Discharging Flux N(t, a).
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(b) Total Activity X(t).

Figure 7: Example 3.1. Case n0(s, a) = 1
2e
−(a−1)1{a>max(s,1)} and p = ϕ(X)1{s>1}.

For these data, both the discharging flux N and the total activity X are asymptotic to a periodic
pattern as we see in Figure 7. Similar examples on periodic solutions were found in Torres et al. [45]
in the classical elapsed time model for the same type of firing rates. For periodic solutions of Fokker-
Planck type models, see [28] and the references therein.

However, when we incorporate the effects of the difference between the elapsed times, the periodic
regime changes. For the same initial data and

p = ϕ(X)1{s>1} + 1{a−s>X},

we observe in Figure 8 that the solution of System (1) converges to the steady state. Like the classical
model, we can find examples of continuous solutions of System (1) converging to the steady state
under a general strongly interconnected regime.

7 Perspectives

By means of Doeblin’s theory applied to linear Equation (18) than the classical elapsed time model,
we managed to understand the dynamics of System (1) for weak non-linearities by adapting the ideas
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(a) Discharging Flux N(t, a).
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Figure 8: Example 3.2. Case n0(s, a) = 1
2 e
−(a−1)1{a>max(s,1)} and p = ϕ(X)1{s>1} + 1{a−s>X}.

of Cañizo et al. [6]. However, aspects such as well-posedness and the asymptotic behavior for strong
interconnections are still an open problem as in the classical elapsed time model, where multiple
solutions and discontinuities in the total activity are possible.

Concerning the strongly inhibitory case, it remains pending to prove uniqueness of the steady state
for the non-linear Equation (1). Whilst in the classical elapsed time model this problem is reduced
to solving a simple equation, for the model with two elapsed times we have to prove uniqueness for
the integral Equation (35), which is not straightforward to deal with. Moreover, we conjecture in the
general case that the speed of convergence to a steady state must be exponential like it is expected for
the classical elapsed equation.

With respect to the existence of periodic solutions, an interesting problem is to find or construct non-
trivial examples relying on dynamics for two elapsed times. The only examples we have found so
far are adaptations of solutions of the classical elapsed time equation that were obtained in Torres et
al. [45] and these types of solutions presents jump discontinuities, making them difficult to analyze.
Furthermore, it would be interesting to find some class of firing rates for the System (1) leading to
delay differential equation with two discrete delays. Following the ideas in Torres et al. [45] for the
classical elapsed time model and differential equations with a single delay, we expect to construct
specific periodic solutions for the multiple-time renewal equation.
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