Recursive Estimation of a Failure Probability for a Lipschitz Function - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Recursive Estimation of a Failure Probability for a Lipschitz Function

Résumé

Let g : Ω = [0, 1] d → R denote a Lipschitz function that can be evaluated at each point, but at the price of a heavy computational time. Let X stand for a random variable with values in Ω such that one is able to simulate, at least approximately, according to the restriction of the law of X to any subset of Ω. For example, thanks to Markov chain Monte Carlo techniques, this is always possible when X admits a density that is known up to a normalizing constant. In this context, given a deterministic threshold T such that the failure probability p := P(g(X) > T) may be very low, our goal is to estimate the latter with a minimal number of calls to g. In this aim, building on Cohen et al. [9], we propose a recursive and optimal algorithm that selects on the fly areas of interest and estimate their respective probabilities.
Fichier principal
Vignette du fichier
bcgm.pdf (588.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03301765 , version 1 (28-07-2021)
hal-03301765 , version 2 (02-01-2023)

Identifiants

Citer

Lucie Bernard, Albert Cohen, Arnaud Guyader, Florent Malrieu. Recursive Estimation of a Failure Probability for a Lipschitz Function. 2021. ⟨hal-03301765v1⟩
162 Consultations
79 Téléchargements

Altmetric

Partager

More