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Abstract

Let g : Ω = [0, 1]d → R denote a Lipschitz function that can
be evaluated at each point, but at the price of a heavy computational
time. Let X stand for a random variable with values in Ω such that one
is able to simulate, at least approximately, according to the restriction
of the law of X to any subset of Ω. For example, thanks to Markov
chain Monte Carlo techniques, this is always possible when X admits
a density that is known up to a normalizing constant. In this context,
given a deterministic threshold T such that the failure probability
p := P(g(X) > T ) may be very low, our goal is to estimate the latter
with a minimal number of calls to g. In this aim, building on Cohen
et al. [9], we propose a recursive and optimal algorithm that selects
on the fly areas of interest and estimate their respective probabilities.
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1 Introduction

Let g : Ω = [0, 1]d → R denote a function that can be evaluated at any point
x ∈ Ω. Then, considering a random variable X with values in Ω that we can
easily simulate, we want to estimate the so-called failure probability

p := P(g(X) > T ),

where T is a fixed threshold such that p is strictly positive but possibly very
low. We are motivated by applications where each evaluation of the function
g at a given x ∈ Ω is costly. For example, it could be the result of a numerical
simulation or of a physical experiment, that has to be repeated for each new
value of x. Therefore, one would like to limitate as much as possible the
number of queries x 7→ g(x).

In this framework, a naive Monte Carlo method consists in simulating n
independent and identically distributed (i.i.d.) random variables X1, . . . , Xn

with the same law as X, and considering the estimator

pn :=
1

n

n∑
i=1

1g(Xi)>T .
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Since the random variables 1g(Xi)>T are i.i.d. with Bernoulli law B(p), this
estimator is unbiased, strongly consistent, and satisfies the following central
limit theorem: √

n(pn − p)
d−−−→

n→∞
N (0, p(1− p)).

However, this is an asymptotic result that is of no practical interest unless n
is of order 1/p. Indeed, if n � 1/p, as is the case in the situations we have
in mind, then most of the time pn = 0 and this estimator is useless.

To circumvent this issue, the purpose of variance reduction techniques is to
make the rare event less rare and, in turn, decrease the previous asymptotic
variance, that is σ2 = p(1− p). For example, instead of simulating according
to the law µ of X, the idea of Importance Sampling is to consider an auxiliary
distribution µ̃ such that, if X̃ ∼ µ̃, the event {g(X̃) > T} is not rare. If this
is possible, one then just has to simulate X̃1, . . . , X̃n i.i.d. according to µ̃,
and consider the estimator

p̃n :=
1

n

n∑
i=1

dµ

dµ̃
(X̃i)1g(X̃i)>T

,

where dµ
dµ̃

stands for the Radon-Nikodym derivative of µ w.r.t. µ̃. This tech-
nique has been widely applied in practice and may indeed lead to dramatic
variance reductions. However, it requires a lot of information about both the
failure domain

F := {x ∈ Ω : g(x) > T}, (1.1)

and the law µ in order to find a relevant instrumental distribution µ̃. There
is a huge amount of literature on this topic. Among the first references, we
can mention the paper by Kahn and Harris in particle physics [14], while the
application to structural safety dates back at least to Harbitz [13]. We refer
for example to the monograph [5] for details.

Another classical variance reduction technique is Importance Splitting, in-
troduced by Kahn and Harris [14]. The principle is to consider several inter-
mediate levels −∞ = L0 < L1 < · · · < LK = L such that each conditional
probability p(k) := P(g(X) > Lk|g(X) > Lk−1) is not small, and to apply

the corresponding Bayes formula p = p(1) . . . p(K). Accordingly, if p̂
(k)
n is an

estimator of p(k), then a natural estimator for p is simply

p̂n = p̂(1)
n . . . p̂(K)

n .

In our specific context, this is the purpose of Subset Simulation [1, 2] and
Adaptive Multilevel Splitting [6, 7, 8]. This is particularly suitable when X
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has a density fX that is known up to a normalizing constant, like for ex-
ample in Bayesian statistics and statistical physics, for one may then apply
Markov Chain Monte Carlo (MCMC) techniques to estimate each interme-
diate probability pk. As explained in [12], the best asymptotic variance that
one can expect through splitting techniques is s2 = p2 log(p−1), which is in-
deed much lower than σ2 = p(1− p). Nonetheless, if t stands for the number
of steps of each Markov chain constructed at each step k, this necessitates
about tn log(n) log(p−1) calls to g, which is much larger than the number n
of calls required for a naive Monte Carlo estimator. Therefore, when the sim-
ulation budget is severely limited, we can not directly apply these splitting
techniques, even if we will recycle some of their ingredients in what follows.

In uncertainty quantification, a standard approach is to make more or less
agressive assumptions on the failure domain F and/or the function g. One
may trace back this idea to First (respectively Second) Order Reliability
Methods, or FORM (respectively SORM) for short. In a nutshell, they as-
sume that one can rewrite the probability of interest as p = P(L(Z) < 0),
where Z stands for a standard Gaussian random vector in dimension d. De-
noting z? := argmin{‖z‖2, L(z) = 0} the so-called most probable point, the
idea is to approximate p by the probability that Z falls in the neighborhood
of z?. We refer to [10] and references therein for more details.

Alternatively, a widespread Bayesian framework consists in assuming that
the function g is the realization of a Gaussian random field, defined as a
prior model. Conditionally on observed values of the function, the posterior
model is still Gaussian. Its mean function provides a surrogate model used
to approximate g while the variance represents the uncertainty of the model
(see, e.g., [16]). It is then possible to construct sequential sampling strategies
to estimate the probability of failure. It basically consists in determining
each new evaluation of g by minimizing a criterion that ensures that the
precision of the considered estimator is improved. For instance, one may
apply Stepwise Uncertainty Reduction strategies, which are formalized in [3]
in this Bayesian framework. Combined with Subset Simulation, this approach
can also be found in [4] for the estimation of very small probabilities. Note
that this Gaussian process modelling approach corresponds to an assumption
on the regularity of g, notably through the choice of the correlation function
(see, e.g., [16]).

Let us also finally mention that polynomial chaos expansions represent an-
other set of popular non-intrusive metamodelling techniques. The principle
is to approximate the mapping g by a series of multivariate polynomials
which are orthogonal with respect to the distributions of the input random
variables X1, . . . , Xd (see, e.g., [17] and references therein). In particular, it
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allows one to compute analytically Sobol’ indices, which are a standard tool
in uncertainty quantification.

Here we do not adopt a Bayesian/metamodelling approach. Concerning the
function g, we suppose that it is L-Lipschitz, with L known, and satisfies
a so-called level set condition (see Assumption 3). As for the law of X, we
assume that it admits a bounded density fX that is known up to a normalizing
constant, or that we are able to simulate at least approximately according to
the restriction of fX to any subset of Ω. In this framework, building on [9],
we show that the failure probability p admits a lower (resp. upper) bound
p−n (resp. p+

n ) based on n calls to g, and such that the approximation error
satisfies, for d > 2,

En := p+
n − p−n 6 Cn−

1
d−1 . (1.2)

Even if this rate of convergence is classic in deterministic numerical integra-
tion, one may notice that the quantity of interest

p =

∫
Ω

1g(x)>TfX(x)dx

is the integral of a non regular function, which makes the problem non trivial.
In fact, we prove in Section 6 that this rate is optimal, meaning that under
this set of assumptions, no algorithm based on n calls to g can achieve a
better approximation error.

Nevertheless, besides n calls to g, our algorithm requires the sequential eval-
uation of probabilities of the form P(X ∈ Q), where Q stands for a generic
dyadic subcube of Ω. It is generally impossible to do this exactly, but in
many situations of interest we may apply standard MCMC techniques to
estimate these probabilities with an arbitrary small (random) error. More
explicitly, we propose to adopt here the same idea as in the abovementioned
splitting techniques, by generating for each Q a sample of size N that is
approximately i.i.d. according to the restriction of the law of X to Q.

Putting all pieces together, we propose a sequential algorithm with global
stochastic error

|ÊN
n | 6 Cn−

1
d−1 +Op(1/

√
N). (1.3)

We point out that, in the latter, since the second term does not require any
supplementary evaluation of g, it can easily be made arbitrarily small, so
that only the first one matters and, as already explained, this first term is
optimal for our set of assumptions.

The article is organized as follows. Section 2 gives in more details the assump-
tions and the main results of this work. Section 3 explains the deterministic
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algorithm that allows us to reach the approximation error En in (1.2), while
the proof of its optimality is deferred to Section 6. Section 4 makes more
explicit the term Op(1/

√
N) in (1.3) and provides asymptotic confidence in-

tervals for our estimators. All of these results are illustrated on a toy example
in Section 5, and the proof of Theorem 4.4 is detailed in Section 7.

2 Assumptions and main results

Let X be a random variable on Ω = [0, 1]d with d ∈ N? and g : Ω→ R. For
a given threshold T ∈ R, let us denote by F the failure domain and p the
failure probability, i.e.,

F = {x ∈ Ω : g(x) > T} and p = P(X ∈ F ) = P(g(X) > T ).

We intend to present and analyse an algorithm to estimate this failure prob-
ability as precisely as possible for a given total number n of calls to g. In all
what follows, the upcoming assumptions will be of constant use.

Assumption 1 (Absolute continuity of the distribution of X). The distri-
bution of X on Ω admits a bounded density function fX with respect to the
Lebesgue measure λ. In other words

‖fX‖L∞ = K <∞.

Assumption 2 (Lipschitz smoothness). The function g is assumed to be
L-Lipschitz with respect to the supremum norm on Rd, i.e.,

|g(x)− g(x̃)| 6 L‖x− x̃‖∞, x, x̃ ∈ Ω.

Equivalently, ∇g ∈ L∞(Ω) with ‖∇g(x)‖1 6 L almost everywhere in Ω.

Here, we denote by ‖z‖p the `p norm of a vector z ∈ Rd. For the Euclidean
norm, we sometime simply write |z| := ‖z‖2.

Assumption 3 (Level set condition). There exists a constant M > 0 such
that

λ({x ∈ Ω : |g(x)− T | 6 δ}) 6Mδ, δ > 0.

The constants L and M in Assumptions 2 and 3 are jointly coupled. Indeed,
since the failure probability p is such that 0 < p < 1, there exists xT such
that g(xT ) = T , and for all x ∈ Ω, we have

|g(x)− T | 6 L‖x− xT‖∞ 6 L,
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so that, if Assumption 3 is satisfied,

1 = λ ({x ∈ Ω : |g(x)− T | 6 L}) 6ML,

which shows that ML > 1. We introduce the constant

C := ML, (2.1)

which will appear in the error estimates established for the algorithm pre-
sented and analyzed further.

Remark 2.1. The level set Assumption 3 may be thought as reflecting the
fact that the function g is not too much flat in the vicinity of the level set
ST = g−1({T}). Indeed, when d = 1, if xT is a point such that g(xT ) = T
and assuming that g is continuously differentiable, then g′(xT ) < M−1 would
contradict Assumption 3 for δ small enough. In the case d > 2, assuming
that g is continuously differentiable with ∇g(x) 6= 0 for any x ∈ ST , then ST
is a compact submanifold of dimension (d− 1) and the coarea formula (see,
e.g., [11], Proposition 3 page 118) says that, for δ small enough,

λ({x ∈ Ω : |g(x)− T | 6 δ}) =

∫ T+δ

T−δ

(∫
St

ds

|∇g(s)|

)
dt, (2.2)

where ds stands for the (d − 1)-dimensional Hausdorff measure on the level
set St = g−1({t}). As a consequence, Assumption 3 is fulfilled with constant
M for δ small enough as soon as

|∇g(x)| > 2H

M
,

where H is the (d − 1)-dimensional Hausdorff measure of ST , and therefore
for all δ up to raising the value of M .

The proof of the following result is housed in Section 3.3 for the first part
(definition of the algorithm and error rates), and in Section 6 for the second
part (optimality).

Theorem 2.2. Under Assumptions 1, 2, and 3, there exists an algorithm
that, based on n calls to g, constructs two deterministic bounds p−n 6 p 6 p+

n

such that the approximation error En := p+
n − p−n satisfies

• If d = 1, En 6 2CK 2−
n

2C .

• If d > 2, En 6 8C
d

d−1K n−
1

d−1 .
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In addition, these rates of convergence are optimal.

Remark 2.3. As it will become clear in Section 3, the algorithm that we
propose only requires the knowledge of the Lipschitz constant L (or an upper-
bound), while that of K and M is not needed.

The quantities p−n and p+
n are defined as the measures of certain sets of dyadic

cubes that are determined by our algorithm. When fX = 1, that is when X
is uniformly distributed, this measure can be computed exactly, otherwise it
may need to be estimated. This requires possibly many samples of X, but
not any additional call of g.

We begin with an idealized situation. The following result is established in
Section 4.1.

Theorem 2.4. If for each dyadic cube Q of Ω, one is able to simulate an N
i.i.d. sample according to the restriction of the law of X to Q, then, without
any additional call to g, we can construct two unbiased, strongly consistent
and asymptotically Gaussian estimators p−n,N and p+

n,N of the previous lower
and upper bounds, i.e.,

√
N
(
p±n,N − p

±
n

) d−−−→
N→∞

N (0, (σ±n )2),

along with consistent estimators σ−n,N and σ+
n,N of the latter asymptotic stan-

dard deviations.

Unfortunately, it is usually not possible to simulate an N sample that is
exactly i.i.d. according to the restriction of the law of X to Q. However, if
the pdf fX is known up to a normalizing constant (as is the case in many
situations of interest), then one can do it at least approximately thanks to a
Metropolis-Hastings algorithm. The upcoming proposition gives a flavor of
the type of results we obtain in this context.

Proposition 2.5. If fX is continuous strictly positive on Ω, and known up
to a normalizing constant, then, without any additional call to g, we can
construct two estimators p̂−n,N and p̂+

n,N such that, for all t ∈ N?,

P
(
p̂±n,N = p±n,N

)
>
(
1− Art

)mN
.

for some constants A > 0, 0 < r < 1, and m ∈ N?. The same result holds
true for σ−n,N and σ+

n,N .

The proof of this proposition is detailed in Section 4.2.
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3 Approximation error

3.1 Neveu’s notation

Let us denote D the set of all dyadic subcubes of Ω, and Dj the set of all
dyadic cubes with sidelength 2−j for j > 1. Given a dyadic cube Q in D, cQ
stands for the center of Q. Each dyadic cube Q has 2d children numbered
from 1 to 2d and each Q 6= Ω has exactly one parent.

In the sequel, we will identify a dyadic cube in D to a vertex in the infinite
2d-regular tree T . It will be referred to thanks to Neveu’s notation (see [15]):
the root of the tree, associated to Ω, is denoted by ∅ and, for any k ∈ N? and
1 6 u1, . . . , uk 6 2d, the vertex (u1, . . . , uk) is the uthk child of (u1, . . . , uk−1).
A vertex u = (u1, . . . , uk) in T is then associated to a cube Q(u) in D. Notice
that the sidelength of Q(u) is 2−k where k is the depth of u (distance between
the root and u).

If v is a vertex in T , v̄ (resp. C(v)) denotes the parent (resp. the set of the
2d children) of v. The vertex v is said to be an ancestor of u, and we denote
v 6 u, if Q(u) ⊂ Q(v) or, equivalently, if v is a prefix of u. Notice that u 6 u.
In the sequel, a(v) stands for the set made of the ancestors of v, including v
but excluding the root for convenience. Finally, if v and w are two vertices,
then v ∧ w stands for the more recent common ancestor of v and w.

We say that Λ is a finite 2d-regular tree, if it is a finite subset of T such
that u ∈ Λ and v 6 u implies that v ∈ Λ. For any finite 2d-regular tree Λ
of T , the leaves (resp. internal vertices) of Λ are the vertices in Λ with no
child (resp. with 2d children) in Λ. The depth of Λ is defined as the maximal
depth of the vertices in Λ. See Figure 1 for an illustration.

For the purpose of our algorithm, the dyadic cubes (or vertices) are labelled
according to the following rule that involves the evaluation of g at their
centers.

Definition 3.1 (Label of a cube). The dyadic cube Q with side length 2−j

and center cQ is labelled

• I (inside) if g(cQ) > T + L2−j−1,

• O (outside) if g(cQ) < T − L2−j−1,

• U (uncertain) otherwise.

A cube with label I is included in the failure set F . Indeed, for any Q ∈ Dj
and any x ∈ Q,

|g(x)− g(cQ)| 6 L‖x− cQ‖∞ 6 L2−j−1.
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∅

(1) (2)

(2, 1) u ∧ v

(2, 2, 1) v̄

ū

u (2, 2, 1, 1, 2)

v (2, 2, 2, 2)

Figure 1: Example of a 2-regular finite tree of depth 5 in dimension 1. The
red line represents the set a(u) of the ancestors of the leaf u.

As a consequence, if the label of Q is I, then, for any x ∈ Q, we have

g(x) > g(cQ)− L2−j−1 > T.

Likewise, a cube with label O is included in F c := Ω \ F . Finally, a cube
with label U may intersect F and/or F c.

3.2 Recursive construction of relevant trees

The algorithm starts with Λ(0) = {Ω}, where Ω has the label U and the
depth of Λ(0) is 0. At a given step k > 0, a finite 2d-regular tree Λ(k) of
depth k has been constructed with the following features:

(i) internal vertices are all labelled as U ,

(ii) leaves of depth lower than k are labelled I or O,

(iii) leaves of depth k can have any label.

Then, the tree Λ(k + 1) is obtained by performing a 2d-split on each leaf
with label U and evaluating g at their center in order to label the new leaves
according to Definition 3.1. Clearly the new tree Λ(k + 1) of depth (k + 1)
has similar properties (see Figure 2).
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U ∅

O (1) U (2)

U ∅

O (1) U (2)

O (2, 1) U (2, 2)

U ∅

O (1) U (2)

O (2, 1) U (2, 2)

U (2, 2, 1) I (2, 2, 2)

U ∅

O (1) U (2)

O (2, 1) U (2, 2)

U (2, 2, 1) I (2, 2, 2)

U (2, 2, 1, 1) I (2, 2, 1, 2)

Figure 2: Example of a recursive construction of Λ(1), . . . ,Λ(4) for d = 1.

Denoting |Λ(k)| the cardinal of Λ(k), the number nk of evaluations of g that
is involved in the construction of Λ(k) is therefore given by n0 = 0 and, for
all k > 1,

nk = |Λ(k)| − 1,

since the evaluation at the center of Ω is useless when p > 0. The following
result gives an upper bound on this number. Recall that C is the constant
defined by (2.1).

Proposition 3.1. Let k > 0. If d = 1, the number nk of evaluations of g
satisfies

nk 6 2Ck.

If d > 2, then we have
nk 6 4C 2(d−1)k.

Proof. Since n0 = 0, the result is clear for k = 0. Therefore, let us consider
the case where k > 1. For any 0 6 j 6 k − 1, let us denote by U(j) the
set of leaves of Λ(j) with label U (see Figure 2). Recall from Definition 3.1
that this set is made of dyadic cubes with side length 2−j such that, for any
Q ∈ U(j),

|g(cQ)− T | 6 L

2j+1
.
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As a consequence, for any x ∈ Q ∈ U(j), Assumption 2 gives

|g(x)− T | 6 |g(x)− g(cQ)|+ |g(cQ)− T | 6 L

2j
.

This ensures that ⋃
Q∈U(j)

Q ⊂
{
x ∈ Ω : |g(x)− T | 6 L

2j

}
.

Since the volume of each cube in U(j) is 2−jd, this yields

|U(j)|
2jd

6 λ

({
x ∈ Ω : |g(x)− T | 6 L

2j

})
,

with the understanding that |U(j)| is the cardinal of U(j). Thanks to As-
sumption 3, we get that

|U(j)| 6
(
C

L

L

2j

)
2jd = C2j(d−1) =: µj. (3.1)

Thus, the construction of Λ(j+ 1) requires at most 2dµj evaluations of g. As
a consequence, we can bound the total number nk of calls to g to construct
Λ(k) as follows:

nk 6
k−1∑
j=0

2dµj.

If d > 2, we are led to

nk 6 C2d
2(d−1)k − 1

2d−1 − 1
6 4C 2(d−1)k.

In the case d = 1, we obtain nk 6 2Ck.

3.3 Control of the error

For any k > 0, we denote by I(k) (resp. U(k)) the leaves of Λ(k) with label
I (resp. U). We can readily estimate the failure probability p thanks to the
tree Λ(k) as follows:

p−(k) 6 p 6 p+(k),

where

p−(k) :=
∑

Q∈I(k)

P(X ∈ Q) and p+(k) := p−(k) +
∑

Q∈U(k)

P(X ∈ Q). (3.2)
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Lemma 3.2 (Control of the error). For any k > 0, the estimations p−(k)
and p+(k) of the failure probability p given by the tree Λ(k) are such that

0 6 p+(k)− p−(k) 6 CK2−k.

Proof. Under Assumption 1, for any k ∈ N and Q ∈ U(k), we have

λ(Q) = 2−dk and P(X ∈ Q) 6 2−dkK.

As a consequence, the definition of p−(k) and p+(k) together with Equa-
tion (3.1) ensure that

p+(k)− p−(k) =
∑

Q∈U(k)

P(X ∈ Q) 6
|U(k)|K

2dk
6 CK

2k(d−1)

2dk
.

This concludes the proof.

Before going further, let us notice that, for any n > 1, there exists k > 0 such
that nk 6 n < nk+1, with the convention n0 = 0. We can apply the same
algorithm as before, with the understanding that all the leaves of the tree
Λ(k) are explored while this is the case only for (n − nk) leaves with depth
(k + 1) of the tree Λ(k + 1). This defines a subtree Λn of Λ(k + 1). With
obvious notation, the leaves of Λn can be partitioned as In∪Un∪On. In this
respect, we deduce upper and lower bounds p−n and p+

n for p as follows:

p−n :=
∑
Q∈In

P(X ∈ Q) and p+
n := p−n +

∑
Q∈Un

P(X ∈ Q). (3.3)

Clearly, we have
p−(k) 6 p−n 6 p 6 p+

n 6 p+(k),

so that the approximation error En := p+
n − p−n satisfies En 6 p+(k)− p−(k).

With this in mind, we can now complete the proof of Theorem 2.2. When
d > 2, according to Proposition 3.1, we may write

n < nk+1 6 4C 2(d−1)(k+1) or, equivalently, 2−k 6 2
( n

4C

)− 1
d−1
.

Hence, Lemma 3.2 yields

En 6 p+(k)− p−(k) 6 CK2−k 6 8C
d

d−1Kn−
1

d−1 .

When d = 1, the same reasoning gives

n < nk+1 6 2C(k + 1) or, equivalently, 2−k 6 21− n
2C ,

so that
En 6 p+(k)− p−(k) 6 2CK 2−

n
2C .

This terminates the proof of the first part of Theorem 2.2. The fact that this
error is optimal is shown in Section 6.
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4 Estimation error

We return to the notation of Section 3.3 and recall that, for any n > 2, we
denote by In (resp. Un) the leaves of Λn with label I (resp. U), so that

p−n 6 p 6 p+
n ,

where

p−n :=
∑
Q∈In

P(X ∈ Q) and p+
n := p−n +

∑
Q∈Un

P(X ∈ Q). (4.1)

Our goal in this section is to estimate p−n and p+
n with no additional call to g.

We first do it by assuming that, for each vertex u ∈ Λn, we can simulate an
N i.i.d. sample distributed according to the law of X given that it belongs to
Q(u). This allows us to propose in Section 4.1 two idealized estimators p−n,N
and p+

n,N along with their asymptotic variances. In Section 4.2, thanks to

MCMC techniques, we construct two estimators p̂−n,N and p̂+
n,N of the latters

provided that the density fX is known up to a normalizing constant.

4.1 Estimation error in an idealized case

From a given tree Λn, one can estimate the failure probability p thanks to
p−n and p+

n defined in Equation (4.1). To that end, one has to compute (or
estimate) the probability

p(u) := P(X ∈ Q(u)),

for each leaf u of Λk. If u is far from the root, then p(u) should be very small
and difficult to estimate directly through a naive Monte Carlo method, as
explained in Section 1. Therefore, we propose to apply a splitting strategy
inspired by rare event estimation.

For a given leaf u ∈ Λn, recall that a(u) stands for the set of the ancestors of
u, including u but excluding the root for convenience. Since P(X ∈ Ω) = 1,
Bayes formula ensures that

P(X ∈ Q(u)) =
∏
v∈a(u)

P(X ∈ Q(v)|X ∈ Q(v̄)),

which can be reformulated as follows

p(u) =
∏
v∈a(u)

q(v) where q(v) := P(X ∈ Q(v)|X ∈ Q(v̄)).
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Assumption 4 (Perfect samplings). Recall that T stands for the infinite
2d-regular tree. For any v ∈ T , consider a sequence (Xv

i )i>1 of i.i.d. random
variables with distribution L(X|X ∈ Q(v)) and assume that the sequences
(Xv)v∈T are independent.

Definition 4.1 (Ideal estimators). For N > 1 and u, v ∈ T , we define

Cv
N :=

N∑
i=1

1{X v̄
i ∈Q(v)}, qN(v) :=

Cv
N

N
and pN(u) :=

∏
v∈a(u)

qN(v). (4.2)

Remark 4.2 (Multinomial distribution and unbiasedness). The random
variable Cv

N is the number of random variables (X v̄
i )16i6N which are in fact

in the cube Q(v). Let w be a fixed vertex. The distribution of the random
vector (Cv

N)v∈c(w) is the multinomial distribution with parameters N and

(q(v))v∈c(w). As a consequence, qN(v) is a strongly consistent and unbiased
estimator of q(v). In addition, for k different vertices w1, w2, . . . , wk in T ,
the vectors

(Cv
N)v∈c(w1), (C

v
N)v∈c(w2), . . . , (C

v
N)v∈c(wk)

are independent. From this we deduce that pN(u) is also unbiased.

Remark 4.3. The random variables (qN(v))v∈a(u) are independent. Never-
theless, for two different leaves u and u′, pN(u) and pN(u′) are not indepen-
dent.

Our next result, whose proof is deferred to Section 7, provides asymptotic
properties (namely, consistency and asymptotic normality) for the estimator
pN(S) of the probability p(S) associated to any set of leaves S. One may
keep in mind that, for our problem, we will apply this result with S = In
and S = In ∪ Un, in which case p(S) (respectively pN(S)) corresponds to p−n
and p+

n (respectively p−n,N and p+
n,N).

Theorem 4.4. For any set S of leaves of a tree Λ, one can estimate

p(S) :=
∑
u∈S

p(u) by pN(S) :=
∑
u∈S

pN(u),

where pN(u) is defined in (4.2). The estimator pN(S) is unbiased and strongly
consistent:

pN(S)
a.s.−−−→

N→∞
p(S).

Moreover, it is asymptotically normal, namely

√
N(pN(S)− p(S))

D−−−→
N→∞

N (0, σ2),
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where

σ2 =
∑
u∈S

p(u)2
∑
v∈a(u)

1− q(v)

q(v)
+
∑
u,u′∈S
u6=u′

p(u)p(u′)

 ∑
v∈a(u∧u′)

1− q(v)

q(v)
− 1

.
Remark that if q(v) = 0 then p(u) = 0 whenever v 6 u, so that one can cancel
u from the set of leaves S and the expression of σ2 is always well-defined.

Remark 4.5 (Variance estimation). Recall that each q(v) is strictly positive
and consistently estimated on the fly by qN(v), so that σ2 is readily estimated
by

σ2
N =

∑
u∈S

pN(u)2
∑
v∈a(u)

1− qN(v)

qN(v)
+
∑
u,u′∈S
u6=u′

pN(u)pN(u′)

 ∑
v∈a(u∧u′)

1− qN(v)

qN(v)
− 1


and σ2

N goes almost surely to σ2 when N goes to infinity. Hence, Slutsky’s
lemma ensures that

√
N

pN(S)− p(S)

σN

d−−−→
N→∞

N (0, 1).

In particular, the latter provides asymptotic confidence intervals for p(S).

For our concern, recall that p−n 6 p 6 p+
n where

p−n = p(In) =
∑
u∈In

p(u) and p+
n = p(In ∪ Un).

Hence, the sets of leaves of interest are S = In and S = In ∪Un. Indeed, the
previous results establish that

p−n,N = pN(In)
a.s.−−−→

N→∞
p−n 6 p 6 p+

n
a.s.←−−−

N→∞
pN(In ∪ Un) = p+

n,N ,

as well as √
N
(
p±n,N − p

±
n

) d−−−→
N→∞

N (0, (σ±n )2).

In addition, by Remark 4.5, we can construct on the fly consistent estimators
σ−n,N and σ+

n,N of the latter asymptotic standard deviations. This closes the
proof of Theorem 2.4.
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Remark 4.6 (Asymptotic confidence intervals). Denote by Φ the cumulative
distribution function of the standard normal distribution so that, for α ∈
(0, 1), Φ−1(1− α/2) is the (1− α/2) quantile. If we define

mn,N := p−n,N −
Φ−1(1− α/2)σ−n,N√

N

as well as

Mn,N := p+
n,N +

Φ−1(1− α/2)σ+
n,N√

N
,

then [mn,N , 1] and [0,Mn,N ] are 100(1 − α/2)% asymptotic confidence in-
tervals for, respectively, p−n and p+

n . Since p−n 6 p 6 p+
n , the union bound

ensures that [mn,N ,Mn,N ] is a 100(1 − α)% asymptotic confidence interval
for p.

4.2 Estimation error in practice

The purpose of this section is to prove Proposition 2.5. Recall from Definition
4.1 that each leaf probability

p(u) = P(X ∈ Q(u)) =
∏
v∈a(u)

P(X ∈ Q(v)|X ∈ Q(v̄)) =
∏
v∈a(u)

q(v)

is estimated by

pN(u) =
∏
v∈a(u)

qN(v) where qN(v) =
Cv
N

N
=

1

N

N∑
i=1

1{X v̄
i ∈Q(v)}.

To apply the results of Theorem 4.4, this supposes that, for each v̄, we have
a sample of N i.i.d. random variables X v̄

i . In addition, for two vertices v and
v′ such that v̄ 6= v̄′, these samples must be independent. The present section
explains how to reach this goal, at least approximately.

Consider a fixed vertex v̄, denote µv̄ = L(X|X ∈ Q(v̄)), and fv̄ the corre-
sponding probability density function, that is

µv̄(dx) = fv̄(x)dx =
1

P(X ∈ Q(v̄))
fX(x)1x∈Q(v̄).

Starting from a point X0 ∼ Uv̄ the uniform law on Q(v̄), the Metropolis-
Hastings algorithm allows us to construct a Markov chain (Xn) with asymp-
totic distribution µv̄.
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We refer the interested reader to Tierney [18] for a thorough presentation as
well as numerous theoretical results on Markov chain Monte Carlo methods.
For our purpose, we just present the idea for a specific choice of the Markov
dynamics, which turns out to be a particular case of independent Metropolis.

Here is the mechanism: starting from Xt, simulate X ′t ∼ Uv̄ and set

Xt+1 := X ′t1Ut+16fX(X′t)/fX(Xt) +Xt1Ut+1>fX(X′t)/fX(Xt), (4.3)

where (Ut)t∈N? is a sequence of i.i.d. random variables with uniform law on
[0, 1]. Needless to say, in the previous expression, Xt, X

′
t, and Ut+1 are

also assumed independent. It is readily seen that, if we denote by Kv̄ the
transition kernel associated to this Markov chain, then Kv̄ is µv̄-reversible so
that, under appropriate assumptions, (Xt) goes in distribution to µv̄.

In order to make this convergence more precise, let us recall that the total
variation distance between two probability measures µ and ν on Q(v̄) is

‖µ− ν‖TV := sup
B∈Bv̄

|µ(B)− ν(B)|,

where Bv̄ is the collection of all Borel sets on Q(v̄). Denoting δx the Dirac
measure at x and δxK

t
v̄ the law of Xt for the above Markov chain with initial

condition X0 = x, we say that the chain is uniformly ergodic on Q(v̄) if there
exist Av̄ > 0 and 0 < rv̄ < 1 such that, for all t ∈ N?,

sup
x∈Q(v̄)

‖δxKt
v̄ − µv̄‖TV 6 Av̄r

t
v̄.

Let gv̄ stand for the density of the uniform distribution on Q(v̄) and

β−1
v̄ := sup

x∈Q(v̄)

fv̄(x)

gv̄(x)
, (4.4)

then Corollary 4 in [18] ensures that the Markov chain (Xt) is uniformly
ergodic with convergence rate rv̄ 6 1 − βv̄. In our context, notice that the
latter is always strictly less than 1 if, for example, fX is continuous and
strictly positive on Ω = [0, 1]d, hence our assumption in Proposition 2.5.

To see the consequence of this result in our context, remember the coupling
interpretation of the total variation distance, that is

‖µ− ν‖TV = inf
(X,Y )

P(X 6= Y ),

where the infimum is over all couples of random variables on Q(v̄) × Q(v̄)
with marginal laws µ and ν. More precisely, given X with law ν, it is always
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possible to construct a random variable Y with law µ such that the equality
is achieved, i.e., P(X 6= Y ) = ‖µ− ν‖TV .

Hence, if we consider as above a Markov chain (X v̄
t ) with arbitrary initial

condition, for exampleX v̄
0 with uniform law Uv̄ onQ(v̄), there exists a random

variable X v̄
∞ with law µv̄ such that

P(X v̄
t 6= X v̄

∞) = ‖Uv̄Kt
v̄ − µv̄‖TV 6 Av̄r

t
v̄.

Therefore, if we start fromN i.i.d. initial conditions Xv̄
0 := (X

v̄,(1)
0 , . . . , X

v̄,(N)
0 )

with uniform distribution on Q(v̄), and run independently during t steps the

previous Metropolis algorithm to obtain the sample Xv̄
t := (X

v̄,(1)
t , . . . , X

v̄,(N)
t ),

we deduce that
P(Xv̄

t = Xv̄
∞) > (1− Av̄rtv̄)N ,

where Xv̄
∞ := (X

v̄,(1)
∞ , . . . , X

v̄,(N)
∞ ) ∼ µ⊗nv̄ .

Next, apply the previous procedure to each vertex v̄ of the considered tree
Λ, denote by Xt := (Xv̄

t )v̄∈Λ all the corresponding sets of N i.i.d. samples,
and X∞ := (Xv̄

∞)v̄∈Λ the corresponding sets of N i.i.d. “idealized” samples.
Denoting AΛ := maxv̄∈ΛAv̄ and rΛ := maxv̄∈Λ rv̄ ∈ (0, 1), we deduce that

P(Xt = X∞) > (1− AΛr
t
Λ)|Λ|N .

For each vertex v and each leaf u, consider the estimators

p̂N(u) :=
∏
v∈a(u)

q̂N(v) where q̂N(v) :=
1

N

N∑
i=1

1{
X

v̄,(i)
t ∈Q(v)

},
and, for any set S of leaves of the tree Λ,

p̂N(S) :=
∑
u∈S

p̂N(u).

Clearly, on the event {Xt = X∞}, we have p̂N(S) = pN(S), which means that

P(p̂N(S) = pN(S)) > (1− AΛr
t
Λ)|Λ|N ,

where pN(S) is the ideal estimator defined in Theorem 4.4. Finally, it suffices
to consider S = In and S = In∪Un to conclude the proof of Proposition 2.5.

Remark 4.7 (Confidence intervals in practice). Mutatis mutandis, the result
of Remark 4.6 is still valid. Specifically, if we denote

m̂n,N := p̂−n,N −
Φ−1(1− α/2)σ̂−n,N√

N
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as well as

M̂n,N := p̂+
n,N +

Φ−1(1− α/2)σ̂+
n,N√

N
,

then on the event {Xt = X∞}, [m̂n,N , M̂n,N ] is a 100(1 − α)% asymptotic
confidence interval for p. This will be illustrated in Section 5.

Remark 4.8. Returning to (4.4), one can notice that the smaller the side
length of Q(v̄), the faster the convergence of the Metropolis algorithm. In-
deed, denoting cQ(v̄) its center and λ(Q(v̄)) its Lebesgue measure, the conti-
nuity of fX ensures that, when λ(Q(v̄))→ 0,

fv̄(x) =
fX(x)1x∈Q(v̄)

P(X ∈ Q(v̄))
≈

fX(cQ(v̄))1x∈Q(v̄)

fX(cQ(v̄))λ(Q(v̄))
= gv̄(x),

which means that βv̄ goes to 1 or, equivalently, that rv̄ goes to 0.

5 Numerical illustration

Figure 3: Representation of the function g (black), the pdf fX (blue), the
threshold T (red), the probability p (blue region), and illustration of the first
step of the algorithm.
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To illustrate our algorithm, we consider a toy example which is just a variant
of the one proposed in Section 5.1 of [3]. For all x ∈ [0, 1], we set

g(x) = (0.8x− 0.3) + exp
(
−11.534x1.95

)
+ exp

(
−2(x− 0.9)2

)
,

which is L-Lipschitz with L = supx∈[0,1] |g′(x)| ≈ 1.61. The law of X is the
restriction of a Gaussian distribution N (1/5, 1/25) to [0, 1], i.e.,

fX(x) ∝ exp

{
−25

2

(
x− 1

5

)2
}

1[0,1](x).

Finally, we take T = 1.3, so that a standard numerical integration gives
p ≈ 2.08× 10−3. This is illustrated on Figure 3, together with the first step
of the algorithm. Recall that the evaluation of g at point x = 1/2 is useless.
Indeed, since 0 < p < 1, the interval Ω = [0, 1] is necessarily classified as
uncertain (i.e., U). Therefore, the first step consists in computing g(1/4)
and g(3/4), which correspond respectively to vertices (1) and (2) of the tree.
From this figure, it is easy to see that (1) is classified as out (i.e., O) while
(2) is classified as uncertain (i.e., U). Therefore, there is no need to further
investigate the interval [0, 1/2].

Figure 4: Step 4 of the algorithm.
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Figure 5: Convergence of p−n and p+
n .

Figure 4 represents step 4 of the algorithm, which consists in evaluating g
at points x = 25/32 (i.e., vertex (2, 2, 1, 1)) and x = 27/32 (i.e., vertex
(2, 2, 1, 2)). These evaluations lead to classify the interval [24/32, 26/32] as
uncertain (i.e., U) and the interval [26/32, 28/32] as included in the failure
domain (i.e., I). At this point, the deterministic lower and upper bounds for
p are thus

p−(4) = P(X ∈ [13/16, 1]) ≈ 1.3× 10−3 6 p,

and
p 6 p+(4) = P(X ∈ [12/16, 1]) ≈ 2.5× 10−3,

and the approximation error is simply

p+(4)− p−(4) = P(X ∈ [12/16, 13/16]) ≈ 2.2× 10−3.

Unsurprisingly, one may notice that the upper bound given by Lemma 3.2
is very pessimistic. Indeed, since d = 1 we know that C > 1 (see Section 2)
and this upper bound can be minorized as follows:

CK2−k >
2−4∫ 1

0

exp

{
−25

2

(
x− 1

5

)2
}
dx

≈ 0.148� 2.2× 10−3.

On this toy example, since the law of X is simply the restriction of a Gaussian
distribution, it is easy to have a very precise numerical approximation of
P(X ∈ Q) for any dyadic interval Q and, in turn, for the lower and upper
bounds at each step of the algorithm. In other words, we can easily compute
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the (deterministic) approximation error. The evolution of these bounds p−n
and p+

n as the number of evaluation points grows is given in Figure 5 for a
total budget of n = 35 calls to g.

However, in practice, this is usually not possible, hence the use of MCMC
techniques as explained in Section 4.2. On our example, up to a normalizing
constant, the pdf fX is defined by

fX(x) ∝ exp

{
−25

2

(
x− 1

5

)2
}

1[0,1](x).

Thus, for any couple of points (x, x′), the Metropolis ratio fX(x′)/fX(x) that
appears in (4.3) is very easy to compute. We have applied this idea for a
sample size N = 105 with t = 25 Markov transitions for each probability
estimation. In this respect, Figure 6 shows that when N is much larger than
the approximation error, then the latter is much larger than the estimation
error. In order to illustrate Remark 4.6, the asymptotic confidence intervals
are also given.

Figure 6: Estimators p̂−n,N and p̂+
n,N of p−n and p+

n , together with asymptotic
confidence intervals.

6 Optimality

We have established in Theorem 2.2 that after n evaluations of the function
g, the approximation error of our algorithm is of polynomial order n−

1
d−1

when d > 2, and of exponential order 2−βn when d = 1. The aim of this
section is to show that these bounds are optimal, meaning that they cannot
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be improved by any other algorithm under the sole general assumptions that
we have made on the function g.

6.1 The case d > 2

When d > 2, we consider the following particular case:

• The random variable X is uniformly distributed on Ω = [0, 1]d;

• The function g is defined by g(x) = −x1 for x = (x1, . . . , xd) ∈ Ω;

• The threshold T is equal to 0.

Thus, in this setting, the failure probability p := P(g(X) > 0) is equal to 0.
Clearly the function g satisfies the Lipschitz Assumption 2 with L = 1 and
the level set Assumption 3 with M = 1.

Let us fix an integer n = 2j(d−1)−1 for some j ∈ N? and n arbitrary points
x1, . . . , xn in Ω. In the sequel, we construct a function g̃ on Ω such that

• g(xi) = g̃(xi) for 1 6 i 6 n;

• p̃ := P(g̃(X) > 0) > cn−
1

d−1 ;

• g̃ satisfies Assumptions 2 and 3 with L and M independent of n.

The first fact ensures that any algorithm based on the points (xi)16i6n leads
to the same estimation for p and p̃. The second one ensures that p̃− p is (at

least) of order n−
1

d−1 .

First, let us define the face

C := {x ∈ Ω : g(x) = 0} =
{
x ∈ Ω : x1 = 0

}
.

Consider the set
D?j = {Q ∈ Dj : dist(Q, C) = 0}

of dyadic cubes with side length 2−j which intersect C and the set

D̃j = {Q ∈ D?j : xi /∈ Q, i = 1, . . . , n}

of dyadic cubes that intersect C and do not contain any point xi. Since the
cardinal of D?j is equal to 2j(d−1) = 2n, the cardinal of D̃j is at least n.

Second, for any cube Q and any x ∈ Ω, let us introduce the piecewise affine
function

hQ(x) = dist(x,Qc) = inf
y∈Qc
‖x− y‖∞
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where Qc := Ω \ Q. The function hQ is thus supported on Q and it is
1-Lipschitz for the `∞ norm.

Finally, consider the function g̃ defined as follows on Ω:

g̃ = g + 2
∑
Q∈D̃j

hQ.

By construction, the functions g and g̃ coincide on the cubes that do not
belong to D̃j. In particular, g(xi) = g̃(xi) for any 1 6 i 6 n.

Additionally, since
∑

Q∈D̃j
hQ is 1-Lipschitz, the function g̃ is 3-Lipschitz,

and therefore Assumption 2 holds with L = 3.

For any Q ∈ D̃j, if xQ is the center of Q one has

g̃(xQ) = g(xQ) + 2hQ(xQ) = −2−j−1 + 2−j = 2−j−1.

Therefore g̃(x) > 0 for any x ∈ Q such that ‖x − xQ‖∞ 6 2−j−1

3
. As a

consequence, since X has a uniform distribution on Ω, the failure probability
associated to g̃ satisfies

P(g̃(X) > 0) > n3−d2−dj = cn−
1

d−1 ,

where c = 3−d2−
d

d−1 .

Finally, let us prove the validity of the level set Assumption 3 for the function
g̃. Just like g, the absolute value of g̃ is smaller than 2−j on the cubes Q ∈ D?j
and larger elsewhere. Therefore, when δ > 2−j, it is readily seen that

λ({x ∈ Ω : |g̃(x)| 6 δ}) 6 δ.

For the values δ 6 2−j, we know that {x ∈ Ω : |g̃(x)| 6 δ} is contained in
the union of the cubes Q ∈ D?j . If Q /∈ D̃j, then

λ({x ∈ Q : |g̃(x)| 6 δ}) 6 δ2−j(d−1).

The cubes Q ∈ D̃j are treated by noticing that on such a cube, the function
g̃(x) = −x1 + 2hQ(x) is a rescaled version of the function g∗(x) = −x1 +
2hΩ(x) defined on Ω. The gradient of this function is piecewise constant
with ‖∇g∗(x)‖1 > 1 and therefore |∇g∗(x)| > 1√

d
almost everywhere on Ω.

In addition g∗ vanishes on a polyhedral shaped set S of (d− 1)-dimensional
measure 1 < H <∞ since in particular g∗(x) = 0 if x1 = 0. Using the coarea
formula (2.2), this yields

λ({x ∈ Ω : |g∗(x)| 6 δ}) 6 2
√
dHδ,
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for δ > 0 small enough, and therefore

λ({x ∈ Ω : |g∗(x)| 6 δ}) 6 Bδ,

for all value of δ > 0 up to possibly taking a constant B larger than 2
√
dH.

By rescaling
λ({x ∈ Q : |g̃(x)| 6 δ}) 6 Bδ2−j(d−1).

for all δ 6 2−j. Summing on all Q ∈ D?j , since H > 1 and |D?j | = 2n, we find
that

λ({x ∈ Ω : |g̃(x)| 6 δ}) 6 Bδ.

This shows that Assumption 3 holds with M = B independent of n.

This proves the optimality of the approximation error rate of our algorithm.

6.2 The case d = 1

The idea is the same as for the case d > 2. More precisely, we consider the
following setting:

• The random variable X is uniformly distributed on Ω = [0, 1];

• The function g is defined by g(x) = −x;

• The threshold T is equal to 0.

As in the previous subsection, the failure probability p := P(g(X) > 0) is
thus equal to 0, and the function g satisfies Assumption 2 with L = 1 and
Assumption 3 with M = 1.

Let us fix an integer n ∈ N? and n points x1, . . . , xn in Ω. As before, the idea
is to construct a function g̃ on Ω such that

• g(xi) = g̃(xi) for 1 6 i 6 n;

• p̃ := P(g̃(X) > 0) > c2−n.

• g̃ satisfies Assumptions 2 and 3 with L and M independent of n.

First, we define In+1 := [0, 2−n] and, for 1 6 j 6 n, Ij := [2−j, 2−(j−1)]. To
mimic the previous notation, this set of (n+ 1) intervals is denoted D?n and,
accordingly,

D̃n = {I ∈ D?n : ∀i = 1, . . . , n, xi /∈ I}

stands for the set of intervals that do not contain any point xi. Since the
cardinal of D?n is equal to (n+ 1), the cardinal of D̃n is at least equal to 1.
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Second, for any interval I and any x ∈ Ω, we consider the 1-Lipschitz function

hI(x) = dist(x, Ic) = inf
y∈Ic
|x− y|.

Finally, we pick one interval J ∈ D̃n and define the function g̃ defined as
follows

g̃ = g + 4hJ .

As before, the functions g and g̃ coincide on Ω\J . In particular, g(xi) = g̃(xi)
for any 1 6 i 6 n.

Additionally, the function g̃ is 5-Lipschitz, and therefore Assumption 2 holds
with L = 5. Since g̃ vanishes at x = 0 and (at most) at two other points inside
J where its gradient is larger than 3, it is also easily seen that Assumption
3 holds with M = 7/3.

If xJ denotes the center of J , then one has

g̃(xJ) = g(xJ) + 4hJ(xJ) = −3

4
2−(j−1) + 4× 2−(j+1) = 2−(j+1) > 0,

in the case J = Ij = [2−j, 2−(j−1)], 1 6 j 6 n, and

g̃(xJ) = g(xJ) + 4hJ(xJ) = −1

2
2−n + 4× 2−(n+1) = 3× 2−(n+1) > 0,

in the case J = In+1 = [0, 2−n]. Since g̃ has Lipschitz constant 5, it follows
that {x ∈ Q : g̃(x) > 0} always contains an interval of length larger than
1
5
2−n. As a consequence, since X has a uniform distribution on Ω, the failure

probability associated to g̃ is such that

P(g̃(X) > 0) > c2−n,

with c = 1
5
.

This proves the optimality of the approximation error rate of our algorithm.

7 Proof of Theorem 4.4

Consistency and unbiasedness are clear by Remark 4.2. The asymptotic
normality is a consequence of the delta method. Remember that for N > 1
and u, v ∈ T , we denote

Cv
N :=

N∑
i=1

1{X v̄
i ∈Q(v)}, qN(v) :=

Cv
N

N
and pN(u) :=

∏
v∈a(u)

qN(v).

First of all, let us recall the (classical) multidimensional CLT.
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Lemma 7.1 (Multidimensional CLT). For all w ∈ Λ,

qN(w) =
Cw
N

N

a.s.−−−→
N→∞

q(w).

Let us denote by CN the random vector (Cw
N)w∈Λ and q the vector (q(w))w∈Λ.

We have √
N

[
CN

N
− q

]
D−−−→

N→∞
N (0,Γ),

where the covariance matrix Γ is given by

Γ(v, w) =


q(v)(1− q(v)) if v = w,

−q(v)q(w) if v 6= w and v̄ = w̄,

0 otherwise.

From the latter we immediately deduce that

pN(S) =
∑
u∈S

pN(u) =
∑
u∈S

∏
v6u

qN(v)
a.s.−−−→

N→∞
p(S).

Next, we may rewrite p(S) as a function of q = (q(v))v∈Λ as follows:

p(S) = F (q) :=
∑
u∈S

∏
v6u

q(v).

The partial derivative of F with respect to q(v), denoted ∂vF , is given by

∂vF (q) =
∑
u∈S
v6u

∏
w∈a(u)
w 6=v

q(w) =
∑
u∈S
v6u

p(u)

q(v)
.

If ∇F = (∂vF )v∈Λ is seen a row vector, the delta method ensures that

√
N(F (qN)− F (q)) −−−→

N→∞
N (0, σ2),
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where

σ2 = (∇F )Γ(∇F )T =
∑
v,w∈Λ

(∂vF )Γ(v, w)(∂wF )

=
∑
v∈Λ

Γ(v, v)(∂vF )2 +
∑

v 6=w∈Λ
v̄=w̄

Γ(v, w)(∂vF )(∂wF )

=
∑
v∈Λ

q(v)(1− q(v))

∑
u∈S
v6u

p(u)

q(v)


2

−
∑

v 6=w∈Λ
v̄=w̄

q(v)q(w)

∑
u∈S
v6u

p(u)

q(v)


∑
u′∈S
w6u′

p(u′)

q(w)



=
∑
v∈Λ

1− q(v)

q(v)

∑
u∈S
v6u

p(u)


2

−
∑

v 6=w∈Λ
v̄=w̄

∑
u∈S
v6u

p(u)


∑
u′∈S
w6u′

p(u′)

.
Let us define

A :=
∑
v∈Λ

1− q(v)

q(v)

∑
u∈S
v6u

p(u)


2

and B :=
∑

v 6=w∈Λ
v̄=w̄

∑
u∈S
v6u

p(u)


∑
u′∈S
w6u′

p(u′)

.
We have, since (v 6 u)⇔ v ∈ a(u),

A =
∑
v∈Λ

∑
u∈S
v6u

p(u)2 1− q(v)

q(v)
+
∑
v∈Λ

∑
u,u′∈S
v6u
v6u′

p(u)p(u′)
1− q(v)

q(v)

=
∑
u∈S

∑
v∈a(u)

p(u)2 1− q(v)

q(v)
+
∑

u6=u′∈S

∑
v∈a(u)∩a(u′)

p(u)p(u′)
1− q(v)

q(v)
.

Similarly, we get

B =
∑

v 6=w∈Λ
v̄=w̄

∑
u,u′∈S
v6u
w6u′

p(u)p(u′) =
∑

u6=u′∈S

p(u)p(u′).

Since a(u) ∩ a(u′) = a(u ∧ u′), this finally yields the claimed expression for
σ2.
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