Copula-based conformal prediction for multi-target regression - Archive ouverte HAL
Article Dans Une Revue Pattern Recognition Année : 2021

Copula-based conformal prediction for multi-target regression

Résumé

There are relatively few works dealing with conformal prediction for multi-task learning issues, and this is particularly true for multi-target regression. This paper focuses on the problem of providing valid (i.e., frequency calibrated) multi-variate predictions. To do so, we propose to use copula functions for inductive conformal prediction, and illustrate our proposal by applying it to deep neural networks and random forests. We show that the proposed method ensures efficiency and validity for multi-target regression problems on various data sets.
Fichier principal
Vignette du fichier
S0031320321002880.pdf (1009.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03298834 , version 1 (02-08-2023)

Licence

Identifiants

Citer

Soundouss Messoudi, Sébastien Destercke, Sylvain Rousseau. Copula-based conformal prediction for multi-target regression. Pattern Recognition, 2021, 120, pp.108101. ⟨10.1016/j.patcog.2021.108101⟩. ⟨hal-03298834⟩
96 Consultations
152 Téléchargements

Altmetric

Partager

More