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Abstract

There are relatively few works dealing with conformal prediction for multi-task

learning issues, and this is particularly true for multi-target regression. This

paper focuses on the problem of providing valid (i.e., frequency calibrated)

multi-variate predictions. To do so, we propose to use copula functions for

inductive conformal prediction, and illustrate our proposal by applying it to

deep neural networks and random forests. We show that the proposed method

ensures efficiency and validity for multi-target regression problems on various

data sets.

Keywords: Inductive conformal prediction; Copula functions; Multi-target

regression; Deep neural networks; Random forests.

1. Introduction

The most common supervised task in machine learning is to learn a single-

task, single-output prediction model. However, such a setting can be ill-adapted

to some problems and applications.

On the one hand, producing a single output can be undesirable when data is5

scarce and when producing reliable, possibly set-valued predictions is important

(for instance in the medical domain where examples are very hard to collect for

specific targets, and where predictions are used for critical decisions). Such an
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issue can be solved by using conformal prediction approaches [1]. It was initially

proposed as a transductive online learning approach to provide set predictions10

(in the classification case) or interval predictions (in the case of regression) with

a statistical guarantee depending on the probability of error tolerated by the

user, but was then extended to handle inductive processes [2]. On the other

hand, there are many situations where there are multiple, possibly correlated

output variables to predict at once, and it is then natural to try to leverage such15

correlations to improve predictions. Such learning tasks are commonly called

Multi-task in the literature [3].

Most research work on conformal prediction for multi-task learning focuses

on the problem of multi-label prediction [4, 5], where each task is a binary

classification one. Conformal prediction for multi-target regression has been less20

explored, even though it can be quite useful in practice, for instance to accurately

predict the localization of an object in 2D [6] or of a drone in 3D [7]. Only a few

studies deal with conformal prediction for multi-target regression : Kuleshov et

al. [8] provide a theoretical framework to use conformal predictors within manifold

(e.g., to provide a mono-dimensional embedding of the multi-variate output),25

while Neeven and Smirnov [9] use a straightforward multi-target extension of

a conformal single-output k-nearest neighbor regressor [10] to provide weather

forecasts. However, this latter essentially verifies validity (i.e., having well-

calibrated outputs) for each individual target. Recently, we proposed a simple

method to have an approximate validity for the multi-variate prediction [11],30

that generally provided overly conservative results.

In this paper, we propose a new conformal prediction method fitted to

multi-target regression, that makes use of copulas [12] (a common tool to model

dependence between multi-variate random variables) to provide valid multi-

variate predictions. The interest of such a framework is that it remains very easy35

to apply while linking multi-variate conformal predictions to the theoretically

sound framework that are copulas. Experiments also show that it works quite

well, and allows to improve upon previous heuristics [11].

Section 2 provides a general overview of our problem: a brief introduction to
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conformal prediction and multi-target regression will be presented in Sections 2.140

and 2.2, before raising the problematic of applying conformal prediction to the

multi-target regression setting in Section 2.3. We will then present our setting

in Section 3: we will first recall the needed basic principles and theorems of

copulas in Section 3.1, before detailing our conformal multi-target approach in

Section 3.2. The experiments and their results are described in Section 4.45

2. Inductive conformal prediction (ICP) for Multi-Target Regression

This section recalls the basics of inductive conformal regression and multi-

target regression, before introducing the issues we will tackle in this paper.

2.1. Inductive conformal regression

In regression tasks, conformal prediction is a method that provides a statistical50

guarantee to the predictions by giving an interval prediction instead of a point

prediction in the regression case. By statistical guarantee, it is meant that the

set-valued predictions cover the true value with a given frequency, i.e., they are

calibrated. It was first introduced as a transductive online learning approach [13]

and then adapted to the inductive framework [2] where one uses a model induced55

from training examples to get conformal predictions for the new instances. The

two desirable features in conformal regressors are (a) validity, i.e. the error

rate does not exceed ε for each chosen confidence level 1− ε, and (b) efficiency,

meaning prediction intervals are as small as possible.

Let *z1 = (x1, y1), z2 = (x2, y2), . . . , zn = (xn, yn)+ be the successive pairs of60

an object xi ∈ X and its real-valued label yi ∈ R, which constitute the observed

examples. Assuming that the underlying random variables are exchangeable

(a weaker condition than i.i.d.), we can predict yn+1 ∈ R for any new object

xn+1 ∈ X by following the inductive conformal framework.

The first step consists of splitting the original data set Z = *z1, . . . , zn+65

into a training set Ztr = *z1, . . . , zl+ and a calibration set Zcal = *zl+1, . . . , zn+,

with |Zcal| = n− l. Then, an underlying algorithm is trained on Ztr to obtain
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the non-conformity measure Al, a measure that evaluates the strangeness of an

example compared to other examples of a bag, called the non-conformity score.

Hence, we can calculate the non-conformity score αk for an example zk compared70

to the other examples in the bag *z1, . . . , zl+ with αk = Al(*z1, . . . , zl+, zk).

By computing the non-conformity score αi for each example zi of Zcal using

this equation, we get the sequence αl+1, . . . , αn. When making a prediction

for a new example xn+1, we use the underlying algorithm to associate to any

possible prediction ŷ its non-conformity score αŷn+1, and calculate its p-value

which indicates the proportion of less conforming examples than zn+1, with:

p(ŷn+1) =
|{i = l + 1, . . . , n, n+ 1 : αi ≥ αŷn+1}|

n− l + 1
. (1)

The final step before producing the conformal prediction consists of choosing

the significance level ε ∈ (0, 1) to get a prediction set with a confidence level of

1− ε, which is the statistical guarantee of coverage of the true value yn+1 by the

interval prediction ŷn+1 such that

ŷn+1 = {ŷn+1 ∈ R : p(ŷn+1) > ε}.

The most basic non-conformity measure in a regression setting is the absolute

difference between the actual value yi and the predicted value ŷi by the underlying

algorithm. The non-conformity score is then calculated as follows:

αi = |yi − ŷi|. (2)

The sequence of non-conformity scores αl+1, . . . , αn for all examples in Zcal

are obtained and sorted in descending order. Then, we compute the index of the

(1− ε)-percentile non-conformity score αs, based on the chosen significance level

ε, such as:

P(|yi − ŷi| ≤ αs) ≥ 1− ε. (3)

Finally, the prediction interval for each new example xn+1, which covers the

true output yn+1 with probability 1− ε is calculated as:

ŷn+1 = [ŷn+1 − αs, ŷn+1 + αs]. (4)
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The drawback of this standard non-conformity measure is that all prediction

intervals are equally sized (2αs) for a given confidence level. Adopting a normal-

ized non-conformity measure instead provides personalized individual bounds

for each new example by scaling the standard non-conformity measure with σi,

a term that estimates the difficulty of predicting yi. This means that using a

normalized non-conformity measure gives a smaller prediction interval for “easy”

examples, and a bigger one for “hard” examples. Thus, two distinct examples

with the same αs calculated by (2) will have two different interval predictions

depending on their difficulty. In this case, the normalized non-conformity score

is as follows:

αi =
|yi − ŷi|
σi

. (5)

Thus, we have:

P
(
|yi − ŷi|
σi

≤ αs
)
≥ 1− ε, (6)

which becomes an equality if the method is perfectly calibrated. For a new

example xn+1, the prediction interval becomes :

ŷn+1 = [ŷn+1 − αsσn+1, ŷn+1 + αsσn+1] . (7)

The value σi can be defined in various ways. A popular approach proposed

by Papadopoulos and Haralambous [14] consists of training a small neural

network to estimate the error of the underlying algorithm by predicting the value

µi = ln(|yi − ŷi|). In this case, the non-conformity score is defined as:

αi =
|yi − ŷi|

exp(µi) + β
, (8)

where β ≥ 0 is a sensitivity parameter. With the significance level ε, we have:

P
(
|yi − ŷi|

exp(µi) + β
≤ αs

)
≥ 1− ε. (9)

For a new example xn+1, the prediction interval is:

ŷn+1 = [ŷn+1 − αs(exp(µn+1) + β), ŷn+1 + αs(exp(µn+1) + β)] . (10)

Other approaches use different algorithms to normalize the non-conformity

scores, such as regression trees [15] and k-nearest neighbors [10]. Before intro-

ducing the problem of multi-target regression, let us first note that, assuming
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that our method is well-calibrated and that |yi− ŷi|/σi is associated to a random

variable Q, (6) can be rewritten as

P(Q ≤ αs) = 1− ε := FQ(αs), (11)

which will be instrumental when dealing with copulas and multi-variate outputs

later on. Also note that this means that specifying a confidence ε uniquely

defines a value αs.

2.2. Multi-target regression (MTR)75

In multi-target regression, the feature space X is the same as in standard

regression, but the target space Y ⊂ Rm is made of m real-valued targets.

This means that observations are i.i.d pairs (xi, yi) drawn from a probability

distribution on X × Y , where each instance xi ∈ X is associated to an m

dimensional real-valued target yi = (y1i , . . . , y
m
i ) ∈ Y . The usual objective of80

multi-target regression is then to learn a predictor h : X → Y , i.e. to predict

multiple outputs based on the input features characterizing the data set, which

generalizes standard regression. There are two distinct approaches to treat MTR

called algorithm adaptation and problem transformation methods.

For algorithm adaptation approaches, standard single-output regression algo-85

rithms are extended to the multi-target regression problem. Many models were

adapted to the MTR problem, such as Support Vector Regressors [16], regression

trees [17], kernel methods [18] and rule ensembles [19].

In problem transformation, one usually decomposes the initial multi-variate

problems into several simpler problems, thus allowing the use of standard90

classification methods without the need for an adaptation that can be tricky

or computationally costly. A prototypical example of such a transformation

is the chaining method [20], where one predicts each target sequentially, using

the output and predictions of previous targets as inputs for the next one, thus

capturing some correlations between the targets.95

As our goal here is not to produce a new MTR method, but rather to propose

a flexible means to make their predictions reliable through conformal prediction,
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we will not make a more detailed review of those methods. The reader interested

in different methods can consult for instance [20]. We will now detail how

conformal prediction and MTR can be combined. Let us just mention that100

exploiting the possible relationships allow in general to improve performances of

the methods [21, 22].

2.3. Inductive conformal prediction for Multi-Target Regression

As said before, previous studies about conformal MTR focused on providing

valid and efficient inferences target-wise [9], thus potentially neglecting the105

potential advantages of exploiting target relations. Our main goal in this paper

is to provide an easy conformal MTR method allowing to do so.

Within the MTR setting, we have a multi-dimensional output {Y 1, . . . , Y m}

(we will use superscripts to denote the dimensions, and subscripts to denote

sample indices) with Y j ∈ R, j ∈ {1, . . . ,m} the different individual real-valued

m targets. Let ŷj
n+1

, ŷ
j

n+1 be respectively the lower and upper bounds of the

interval predictions given by the non-conformity measure for each target Y j

given a new instance xn+1. We define the hyper-rectangle [ŷn+1] as the following

Cartesian product:

[ŷn+1] = ×mj=0[ŷj
n+1

, ŷ
j

n+1]. (12)

This hyper-rectangle forms the volume
∏m
j=0(ŷ

j

n+1 − ŷ
j

n+1
) to which a global

prediction yn+1 of a new example xn+1 should belong in order to be valid, i.e.

each single prediction yjn+1 for each individual target Y j should be between the

bounds ŷj
n+1

, ŷ
j

n+1 of its interval prediction. With this view, the objective of the

conformal prediction framework for MTR in the normalized setting is to satisfy

a global significance level εg required by the user such that:

P(yn+1 ∈ [ŷn+1]) ≥ 1− εg. (13)

This probability can also be written as follows:

P(y1n+1 ∈ [y1n+1, y
1
n+1], . . . , ymn+1 ∈ [ymn+1, y

m
n+1])

= P
(
|y1n+1 − ŷ1n+1|

σ1
n+1

≤ α1
s, . . . ,

|ymn+1 − ŷmn+1|
σmn+1

≤ αms
)
≥ 1− εg. (14)
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Thus, we need to find the individual non-conformity scores α1
s, . . . , α

m
s , defined

for instance by target-wise confidence levels εj , such that we ensure a global

confidence level 1 − εg. Extending (11) and considering the random variables

Qj = |yj − ŷj |/σj , j ∈ {1, . . . ,m}, we get:

P(Q1 ≤ α1
s, . . . , Q

m ≤ αms ) ≥ 1− εg. (15)

Should we know the joint distribution in (15), and therefore the dependence

relations between target predictions, it would be relatively easy to get the

individual significance levels1 εj associated to the individual non-conformity

scores αjs such that we satisfy the chosen confidence level 1− εg. Yet, such a joint

distribution is usually unknown. The next section proposes a simple and efficient

method to do so, leveraging the connection between (15) and copulas. Before

doing that, note again that under the assumption that we are well calibrated,

we can transform (15) into

F (α1
s, . . . , α

m
s ) = 1− εg, (16)

where F denotes here the joint cumulative distribution induced by P.

3. Copula-based conformal Multi-Target Regression

This section introduces our approach to obtain valid or better conformal110

prediction in the multi-variate regression setting. We first recall some basics of

copulas and refer to Nelsen [12] for a full introduction, before detailing how we

apply them to conformal approaches.

3.1. Overview on copulas

A copula is a mathematical function that can describe the dependence115

between multiple random variables. The term “copula” was first introduced by

Sklar [23] in his famous theorem, which is one of the fundamentals of copula

1Note that there may be multiple choices for such individual levels. Here we will fix them

to be equal for simplicity.
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theory, now known as Sklar’s theorem. However, these tools have already been

used before, as for instance in Fréchet’s paper [24] and Höffding’s work [25, 26]

(reprinted as [27]). Copulas are popular in the statistical and financial fields [28],120

but they are nowadays more and more used in other domains as well, such as

hydrology [29], medicine [30], and machine learning [31].

Let Q = (Q1, . . . , Qm) be an m-dimensional random vector composed of the

random variables Q1, . . . , Qm. Let its cumulative distribution function (c.d.f.)

be F = FQ : Rm → [0, 1]. This c.d.f. carries two important pieces of information:125

• The c.d.f. of each random variable Qj s.t. Fj(q
j) = P(Qj ≤ qj), for all

j ∈ {1, . . .m}.

• The dependence structure between them.

The objective of copulas is to isolate the dependence structure from the

marginals Qj by transforming them into uniformly distributed random variables130

U j and then expressing the dependence structure between the U j ’s. In other

words, an m-dimensional copula C : [0, 1]m → [0, 1] is a c.d.f. with standard

uniform marginals. It is characterized by the following properties:

1. C is grounded, i.e. if uj = 0 for at least one j ∈ {1, . . . ,m}, then

C(u1, . . . , um) = 0.135

2. If all components of C are equal to 1 except uj for all uj ∈ [0, 1] and

j ∈ {1, . . . ,m}, then C(1, . . . , 1, uj , 1, . . . , 1) = uj .

3. C is m-increasing, i.e., for all a,b ∈ [0, 1]m with a ≤ b :

∆(a,b]C =
∑

j∈{0,1}m
(−1)

∑m
k=1 jkC(aj11 b

1−j1
1 , . . . , ajmm b1−jmm ) ≥ 0.

The last inequality simply ensures that the copula is a well-defined c.d.f. inducing

non-negative probability for every event. The idea of copulas is based on

probability and quantile transformations [32]. Using these latter, we can see140

that all multivariate distribution functions include copulas and that we can use

a mixture of univariate marginal distributions and a suitable copula to produce
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a multivariate distribution function. This is described in Sklar’s theorem [23] as

follows:

Theorem 3.1 (Sklar’s theorem). For any m-dimensional cumulative distri-

bution function (c.d.f.) F with marginal distributions F1, . . . , Fm, there exists a

copula C : [0, 1]m → [0, 1] such that:

F (q) = F (q1, . . . , qm) = C(F1(q1), . . . , Fm(qm)), q ∈ Rm. (17)

If Fj is continuous for all j ∈ {1, . . . ,m}, then C is unique.145

Denoting the pseudo inverse of Fj as F←j [32], we can get from (17) that

C(u) = C(u1, . . . , um) = F (F←1 (u1), . . . , F←m (um)). (18)

There are a few noticeable copulas, among which are:

• the product copula: Π(u) =
∏m
j=1 u

j ;

• the Fréchet-Höffding upper bound copula 2: M(u) = min1≤j≤m{uj};

• the Fréchet-Höffding lower bound copula 3: W (u) = max{
∑m
j=1 u

j −m+

1, 0}.150

While the product copula corresponds to classical stochastic independence,

the Fréchet-Höffding bound copulas play an important role as they correspond

to extreme cases of dependence [33]. Indeed, any m-dimensional copula C is

such that W (u) ≤ C(u) ≤M(u),u ∈ [0, 1]m.

Another important class of copulas are so-called Archimedean copulas, which

are based on generator functions φ of specific kinds. More precisely, a continuous,

strictly decreasing, convex function φ : [0, 1] → [0,∞] satisfying φ(1) = 0 is

known as an Archimedean copula generator. It is known as a strict generator if

φ(0) =∞. The generated copula is then given by

C(u1, . . . , um) = φ[−1](φ(u1) + . . .+ φ(um)). (19)

2M is a copula for all m ≥ 2.
3W is a copula if and only if m = 2.
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Table 1 provides examples and details of three one parameter Archimedean155

copula families [32], which are particularly convenient in estimation problems

(being based on a single parameter).

Family Generator φ(t) θ range Strict Lower Upper

Gumbel [34] (− ln t)θ θ ≥ 1 Yes Π M

Clayton [35] 1
θ (t−θ − 1) θ ≥ −1 θ ≥ 0 W M

Frank [36] − ln
(
e−θt−1
e−θ−1

)
θ ∈ R Yes W M

Table 1: Archimedean copula families.

3.2. Copula-based conformal Multi-Target Regression

Let us now revisit our previous problem of finding the significance levels εj

for each target so that the hyper-rectangle prediction [ŷ] covers the true value

with confidence 1− εg. Let us first consider (16). Following Sklar’s theorem, we

have

F (α1
s, . . . , α

m
s ) = C(F1(α1

s), . . . , Fm(αms ))

= C(1− ε1, . . . , 1− εm)

= 1− εg

where the second line is obtained from (6). Clearly, if we knew the copula C,

then we could search for values εj providing the desired global confidence.160

A major issue is then to obtain or estimate the copula modelling the depen-

dence structure between the targets and their confidence levels. As copulas are

classically estimated from multi-variate observations, a simple means that we

will use here is to estimate them from the non-conformity scores generated from

the calibration set Zcal. Namely, if αji is the non-conformity score corresponding

to the jth target of the zi example of Zcal for i ∈ {l + 1, . . . , n}, we simply

11



propose to estimate a copula C from the matrix

A =


α1
l+1 α2

l+1 . . .
...

. . .

α1
n αmn

 . (20)

3.3. On three specific copulas

We will now provide some detail about the copulas we performed experiments

on. They have been chosen to go from the one requiring the most assumptions

to the one requiring the least assumptions.

3.3.1. The Independent copula165

The Independent copula means that the m targets are considered as being

independent, with no relationship between them. It is a strong assumption, but

it does not require any estimation of the copula. In this case, (15) becomes:

Π(F1(α1
s), . . . , Fm(αms )) =

m∏
j=1

Fj(α
j
s) =

m∏
j=1

P(Qj ≤ αjs)

≥
m∏
j=1

(1− εj) = 1− εg,

If we assume that all ε1, . . . , εm equal the same value εt, then:

m∏
j=1

(1− εj) = (1− εt)m = 1− εg.

Thus, we simply obtain

εt = 1− m
√

1− εg. (21)

This individual significance level εt is then used to calculate the different non-

conformity scores αjs for each target in the multi-target regression problem for

the Independent copula.

3.3.2. The Gumbel copula

The Gumbel copula is a member of the Archimedean copula family which

depends on only one parameter, and in this sense is a good representative
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of parametric copulas. It comes down to applying the generator function

φ(Fj(α
j
s)) = (− lnFj(α

j
s))

θ and its inverse φ[−1](Fj(α
j
s)) = exp−(Fj(α

j
s))

1/θ

to (19), resulting in the expression

CθG(F1(α1
s), . . . , Fm(αms )) = exp−

 m∑
j=1

(
− lnFj(α

j
s)
)θ1/θ

. (22)

In this case, we need to estimate the parameter θ. Since the marginals Fj(α
j)

are unknown, we also need to estimate them. In our case, we will simply use

the empirical c.d.f. induced by the non-conformity scores αji of matrix A. An

alternative would be to also assume a parametric form of the Fj , but this seems

in contradiction with the very spirit of non-conformity scores. In particular, we

will denote by F̂j the empirical cumulative distribution such that

F̂j(β) =
|{αji : αji ≤ β, i ∈ {l + 1, . . . , n}}|

n− l
, β ∈ R.

The parameter θ can then be estimated from matrix A using the Maximum

Pseudo-Likelihood Estimator [37] with a numerical optimization, for instance by

using the Python library “copulae”4. Once this is obtained, we then get for a

particular choice of εj that

C θ̂G = exp−

 m∑
j=1

(− ln(1− εj))θ̂
1/θ̂

(23)

= exp−

 m∑
j=1

(
− lnFj(α

j
s)
)θ̂1/θ̂

(24)

And we can search for values εj that will make this equation equal to 1− εg,

using the estimations F̂j . The solution is especially easy to obtain analytically if

we consider that ε1 = . . . = εm = εt, as we then have that

εt = 1− (1− εg)1/
θ
√
m,

and one can then obtain the corresponding non-conformity scores α1
s, . . . , α

m
s by170

replacing Fj by F̂j .

4https://pypi.org/project/copulae/
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We chose this particular family of Archimedean copulas because its lower

bound is the Independent copula (as seen in Table 1). We can easily verify

this by taking θ̂ = 1. Thus, we can capture independence if it is verified, and

otherwise search in the direction of positive dependence. One reason for such a175

choice is that previous experiments [11] indicate that the product copula gives

overly conservative results.

3.3.3. The Empirical copula

Parametric copulas, as all parametric models, have the advantage of requiring

less data to be well estimated, while having the possibly important disadvantage

that they induce some bias in the estimation, that is likely to grow as the number

of target increases. The Empirical copula presents a non-parametric way of

estimating the marginals directly from the observations [38, 39]. It is defined as

follows [37]:

CE(u) =
1

n− l

n∑
i=l+1

1ui≤u =
1

n− l

n∑
i=l+1

m∏
j=1

1uji≤uj
, u ∈ [0, 1]m, (25)

where 1A is the indicator function of event A, and the inequalities ui ≤ u for

i ∈ {l + 1, . . . , n} need to be understood component-wise. ui are the pseudo-

observations that replace the unknown marginal distributions, which are defined

as:

ui = (u1i , . . . , u
m
i ) = (F̂1(α1

i ), . . . , F̂m(αmi )), i ∈ {l + 1, . . . , n}, (26)

where distributions F̂j are defined as before. Simply put, the Empirical copula

corresponds to consider as our joint probability the Empirical joint cumulative

distribution. We then have that

CE(F1(α1
s), . . . , Fm(αms )) =

1

n− l

n∑
i=l+1

m∏
j=1

1uji≤Fj(α
j
s)
. (27)

Using that Fj(α
j
s) = 1 − εj , we can then search for values of εj , j = 1, . . . ,m

that will make (27) equal to 1− εg. Note that in this case, even assuming that180

ε1 = . . . = εm = εt will require an algorithmic search, which is however easy

as CE is an increasing function, meaning that we can use a simple dichotomic

search.
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4. Evaluation

In this section, we describe the experimental setting (underlying algorithm,185

data sets and performance metrics) and the results of our study.

4.1. Experimental setting

We choose to work with a deep Neural Network (NN) and a Random Forest

(RF) as the underlying algorithms, and compare between the three copula

functions to show that adding copulas to the non-conformity measures works190

with any underlying algorithm. However, our approach can be easily adapted to

any multi-variate regression model.

To compute the non-conformity scores over the calibration set, we use the

normalized non-conformity score given by (8) as described in [14], and predict

µi = ln(|yi − ŷi|) simultaneously for all targets by a single multivariate multi-195

layer perceptron. In this case, µi represents the estimation of the underlying

algorithm’s error. As mentioned before, the approach can be adapted to any

conformal regression approach.

Experiments are conducted on normalized data with a mean of 0 and a

standard deviation of 1, with a 10-fold cross validation to avoid the impact of200

biased results, and with a calibration set equal to 10% of the training examples

for all data sets. We take the value β = 0.1 for the sensitivity parameter and do

not optimize it when calculating the normalizing coefficient µi. After getting

the proper training data (Xtr, Y tr), calibration data (Xcal, Y cal) and test data

(Xts, Y ts) for each fold, we follow the steps described below:205

1. Train the underlying algorithm (NN or RF) on the proper training data

(Xtr, Y tr). The Neural Network’s architecture is composed of a first dense

layer applied to the input with “selu” activation (scaled exponential linear

units [40]), three hidden dense layers with dropouts and “selu” activation,

and a final dense layer with m outputs and a linear activation. The210

Random Forest is trained for each target alone using Python sklearn’s

implementation, then each target is predicted independently to get the

results.
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2. Predict Ŷ cal and Ŷ ts for calibration and test data respectively using the

underlying algorithm.215

3. Train the normalizing multi-layer perceptron on the proper training data

(Xtr, µtr = ln(|Y tr − Ŷ tr|), corresponding to the error estimation of the

underlying algorithm. The normalizing MLP consists of three hidden dense

layers with “selu” activation and dropouts and a final dense layer with

m outputs for predicting all targets simultaneously. This approach was220

chosen since it proved to be more effective than a single target approach

that we experimented in a previous work [11].

4. Predict µcal and µts for calibration and test data respectively using the

normalizing MLP.

5. If needed, get an estimation5 of the copula C from the matrix A of225

calibration non-conformity scores.

6. For each global significance level εg:

• Get the individual significance level εj = εt for j ∈ {1, . . . ,m} and

calculate αs = {α1
s, . . . , α

m
s } for all targets using calibration data,

according to the methods mentioned in Section 3.3.230

• Get the interval predictions for the test data with:[
Ŷ ts − αs(exp(µts) + β), Ŷ ts + αs(exp(µts) + β)

]
. (28)

Remark 4.1. We choose εj = εt for j ∈ {1, . . . ,m} as we have no indication

that individual targets should be treated with different degree of cautiousness.

However, since copulas are functions from [0, 1]m to [0, 1], there is in principle

no problem in considering different confidence degrees for different tasks, if an

application calls for it. How to determine and elicit such degrees is however, to235

our knowledge, an open question.

The implementation was done using Python and Tensorflow. The copula part

5In the case of the Gumbel copula, we use a Maximum Pseudo-Likelihood Estimator with

a numerical optimization using the BFGS algorithm

16



Names Examples Features Targets

music origin [41] 1059 68 2

indoor loc [42] 21049 520 3

scpf [43] 1137 23 3

sgemm [44] 241600 14 4

rf1 [43] 9125 64 8

rf2 [43] 9125 576 8

scm1d [43] 9803 280 16

scm20d [43] 8966 61 16

Table 2: Information on the used multi-target regression data sets.

of our experiments was based on the book [37] and the Python library “copulae”.

The code used for this paper is available in Github6.

We use eight data sets with different numbers of targets and varying sizes.240

They are summarized in Table 2.

4.2. Results

This section presents the results of our experiments, investigating in particular

the validity and efficiency of the proposed approaches. Figures 1 and 2 detail

these results for “music origin” and “sgemm”. The figures for all other data sets245

can be found in Appendix A.

To verify the validity of each non-conformity measure, we calculate the

accuracy of each one and compare it with the calibration line. This line represents

the case where the error rate is exactly equal to εg for a confidence level 1− εg,

which is the desired outcome of using conformal prediction. In multi-target

regression, the accuracy is computed based on whether the observation y belongs

to the hyper-rectangle [ŷ] or not depending on the significance level εg. Thus, a

6https://github.com/M-Soundouss/CopulaConformalMTR
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Figure 1: Results for music origin.
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Figure 2: Results for sgemm.

correctly predicted example must verify that all its individual predictions yi for

each individual target Yi is in its corresponding individual interval predictions.

Concretely, for each considered confidence level εg and test example x ∈ Xts, we

obtain a prediction [ŷ]εg . From this, we can compute the empirical validity as

the percentage of times that [ŷ]εg contains the true observed value, i.e.,∑
(x,y)∈Zts 1y∈[ŷ]εg

|Zts|
.

Doing it for several values of εg, we obtain a calibration curve that should be as

close as possible to the identity function.

The results of the error rate or accuracy curves are shown in sub-figures (a)

for the Neural Network and (b) for the Random Forest of each Figure 1 and 2.250

The curves correspond to the Independent, Gumbel and Empirical multivariate
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non-conformity measures. The results clearly show that the best performance

is obtained by using the Empirical copula, where the model is well calibrated.

For most of the studied data sets, the Empirical copula accuracy curve is almost

perfectly aligned with the calibration line, and thus almost exactly valid. This is255

due to the fact that Empirical copula functions use non-parametric estimate of the

marginals based on the observations, which enables the model to better adapt to

the dependence structure of each data set. This dependence structure is neglected

when using an Independent copula-based non-conformity measure, since the m

targets are treated as if they were independent, and so the link between them is260

not exploited when computing εt. This also means that the difference between

the Empirical and the Independent copula-based non-conformity measures is

bigger when there is a strong dependence between the non-conformity scores,

and is an indication of the strength of this dependence. For instance, we can

deduce that the targets are strongly related for “sgemm” by the big gap between265

the Independent and Empirical accuracy curves (Figures 2a and 2b). For the

Gumbel copula, the accuracy curve is generally closer to the calibration line than

the one for the Independent copula. This supports the existence of a dependence

structure between the targets, since the lower bound of the Gumbel copula is the

Independent copula, which means that if the targets were in fact independent,270

the two curves would perfectly match. This can be seen in Figures 1a and 1b for

“music origin”, where the accuracy curves almost overlap all the time, meaning

that the targets are likely to be independent. These conclusions concerning the

empirical efficiency are the same for both underlying algorithms, which suggests

that the difference regarding the validity performance mainly comes from the275

chosen copula-based non-conformity measure.

From the empirical validity results, we also noticed that the Empirical copula

non-conformity measure can be slightly invalid sometimes (Figures A.6a and A.6b

for “scpf”). We explain this by the fewer number of examples, in which case one

could use a more regularized form than the Empirical copula. However, when a280

lot of examples are available (for instance, more than 200000 observations for

“sgemm”), the validity curve of the Empirical copula non-conformity measure is
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perfectly aligned with the calibration line, meaning that this measure is exactly

valid (Figures 2a and 2b).

In single-output regression, efficiency is measured by the size of the intervals,285

and a method is all the more efficient as predicted intervals are small. To assess

efficiency in multi-target regression, we can simply compute the volume of the

obtained predictions [ŷ]εg , after (12). For each experiment, we then compute the

median value of those hyper-rectangle volumes (for the estimation to be robust

against very large hyper-rectangles).290

Efficiency results are shown in sub-figure c for all data sets for εg = 0.1.

They show that, for each underlying algorithm, the Independent copula has a

bigger median hyper-rectangle volume compared to the Gumbel and Empirical

copulas, especially in those cases where the existence of a dependence structure

is confirmed by the calibration curves. This is due to the fact that using an295

Independent copula ignores the dependence between the non-conformity scores,

which leads to an over-estimation of the global hyper-rectangle error. This

impact is avoided when using the Empirical copula because it takes advantage

of the dependence structure to construct better interval predictions. Another

remark concerning efficiency is that the box plots for Empirical copula are tighter300

than the other two, which shows that the values are homogeneous on all folds

compared to the Independent copula for instance, where the variation is much

more visible. When comparing between the underlying algorithms, we can see

that the Neural Network gives tighter volumes for “sgemm” (Figure 2c), whereas

the Random Forest gives better results for “music origin” (Figure 1c). We can305

explain this by the fact that “sgemm” has more data, and the strong dependence

structure is taken into consideration when training the Neural Network that is

trained on all targets simultaneously, as opposed to the Random Forest that is

trained on each target individually.

The empirical validity and hyper-rectangle median volume results are sum-310

marized in Tables 3 and 4. The validity simply provides the average difference

between a perfect calibration (the identity function) and the observed curve for

each copula. This means, in particular, that a negative value indicates that the
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Independent Gumbel Empirical

NN RF NN RF NN RF

music origin 2.19± 4.89 3.32± 4.68 −0.93± 4.66 0.17± 4.93 −1.41± 4.84 −0.56± 5.14

indoor loc 3.77± 1.11 3.89± 1.56 1.8± 1.16 1.09± 1.39 0.03± 1.13 0.12± 1.4

scpf 22.33± 4.79 18.56± 4.32 15.6± 4.7 11.57± 5.01 −3.47± 4.87 0.48± 5.79

sgemm 25.14± 0.84 28.07± 0.4 3.06± 0.68 1.99± 0.39 −0.14± 0.39 −0.15± 0.39

rf1 6.01± 1.44 4.99± 1.28 2.98± 1.38 1.98± 1.33 −0.4± 1.49 −0.34± 1.48

rf2 5.78± 2.68 4.94± 1.76 3.08± 2.37 1.98± 1.89 −0.3± 1.6 0.24± 1.68

scm1d 14.77± 2.84 14.58± 2.89 10.66± 2.67 9.79± 2.84 −0.57± 1.85 −0.79± 2.3

scm20d 14.44± 2.06 14.97± 2.02 10.52± 2.33 9.39± 2.1 −1.16± 2.01 −1.54± 2.09

Table 3: Validity (average gap between the empirical validity curve and the calibration line in

percentage) summarized results for all data sets.

observed frequency is in average below the specified confidence degree.

The numbers confirm our previous observations on the graphs, as the average315

gap is systematically higher for the Independent copula and lower for the

Empirical one, with Gumbel in-between. We can however notice that while

the Empirical copula provides the best results, it is also often a bit under the

calibration line, indicating that if conservativeness is to be sought, one should

maybe prefer the Gumbel copula. These outcomes are the same for both NN320

and RF, without one algorithm being overall better than the other. About the

same conclusions can be given regarding efficiency, with the Empirical copula

giving the best results and the Independent one the worst.

To complete our experiments and analyze the sensitivity of our approach

to the size of the calibration set, we conducted the same experiments on two325

datasets, where we retained only 1% and 5% of the whole data set: “indoor

loc” which has a lot of examples (21049) and “music origin” which has fewer

examples (1059). We only used Neural Networks as the underlying algorithm

with the Empirical and Gumbel copulas non-conformity measures to compare

between them. Figures 3 and 4 show the results for both datasets.330

Results clearly show that with fewer examples for “music origin”, the Em-
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Independent Gumbel Empirical

NN RF NN RF NN RF

music origin 4.021 ± 1.541 2.471 ± 1.181 3.271 ± 1.51 2.071 ± 1.11 3.081 ± 1.461 1.811 ± 7.82

indoor loc 1.31−1 ± 7.77−2 4.76−1 ± 7−1 1.15−1 ± 7.95−2 4.13−1 ± 6.02−1 1.03−1 ± 7.65−2 4.26−1 ± 6.5−1

scpf 1.0311 ± 3.0211 8.7210 ± 2.0611 1.0211 ± 3.0211 7.5610 ± 2.0811 1.127 ± 2.057 5.716 ± 1.547

sgemm 7.97−4 ± 4.81−4 1.75−2 ± 2.58−3 2.47−4± 1.45e−4 7.48−3 ± 7.91−4 2.17−4 ± 1.25−4 7.4−3 ± 8.15−4

rf1 7.19−3 ± 1.23−2 5.64−5 ± 4.87−5 5.15−3 ± 9.11−3 3.56−5 ± 3.44−5 4.49−3 ± 9.23−3 2.81−5 ± 1.67−5

rf2 2.17−3 ± 2.89−3 2.67−4 ± 3.54−4 1.67−3 ± 2.45−3 1.42−4 ± 1.71−4 1.52−3 ± 2.42−3 1.42−4 ± 1.71−4

scm1d 1.085 ± 1.045 1.725 ± 1.665 1.674 ± 1.334 2.114 ± 1.584 2.313 ± 1.933 3.433 ± 2.273

scm20d 2.186 ± 4.266 5.776 ± 5.386 2.145 ± 2.885 1.026 ± 7.35 2.734 ± 2.584 2.015 ± 1.065

We note XY the value X × 10Y .

Table 4: Efficiency (hyper-rectangle median volume for εg = 0.1) summarized results for all

data sets.
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Figure 3: Results for music origin for different calibration data sizes.
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Figure 4: Results for indoor loc for different calibration data sizes.

pirical non-conformity measure is often invalid and also unstable (has larger

variability) with 1% of the examples as calibration data (Figure 3a). This can

also be seen in the difference of variance between values for the empirical validity,

with 10% having more homogeneous values as compared to 5% and 1% respec-335

tively. Using the Gumbel copula, which is semi-parametric, helps to attenuate

the effect, with more consistent results even for 1% (Figure 3b). For “indoor

loc”, the impact of the percentage of data used is insignificant, since the validity

curves overlap for 10%, 5% and 1% of data used for calibration, mainly because

1% of the whole data set is still quite large (about 200 samples, to be compared340

with the 10 samples of “music origin”). This is the case for both Empirical

and Gumbel copulas, giving the same results as earlier in Figure A.5a, i.e. the

Empirical copula being exactly valid and better than the Gumbel copula.

5. Conclusion and discussion

In this paper, we provided a quite easy and flexible way to obtain valid con-345

formal predictions in a multi-variate regression setting. We did so by exploiting

a link between non-conformity scores and copulas, a commonly used tool to
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model multi-variate distribution.

Experiments on various data sets for a small choice of representative copulas

show that the method indeed allows to improve upon the naive independence350

assumption for different underlying algorithms (Neural Networks and Random

Forests). Those first results indicate in particular that while parametric, simple

copulas may provide valid results for some data sets, more complex copulas may

be needed in general to obtain well calibrated predictions, with the cost that

good estimations of such copulas require a lot of calibration data.355

As future lines of work, we would like to explore further the flexibility of

our framework, for instance by adapting it to the richer conformal predictive

distributions [45], by exploring the possibility of using vines [46] to model complex

dependencies, or by proposing protocols allowing to obtain εg from different

individual, user-defined confidence degrees, taking up on our Remark 4.1. We360

also would like to directly learn a cost function that takes into consideration

validity and efficiency [47] for a multi-target regression problem, possibly by

using the hyper-rectangle volume as a parameter to define εt values that give us

the smallest volume for the same validity.

Finally, while we mostly focused on multi-variate regression in the present365

paper, it would be interesting to try to extend the current approach to other

multi-task settings, such as multi-label problems. A possibility could be to make

such problems continuous, as proposed for instance by Liu [31].
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[15] U. Johansson, H. Linusson, T. Löfström, H. Boström, Interpretable regres-

sion trees using conformal prediction, Expert systems with applications 97

(2018) 394–404.410

[16] M. Sánchez-Fernández, M. de Prado-Cumplido, J. Arenas-Garćıa, F. Pérez-
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Appendix A. Validity and efficiency figures

This appendix contains the figures for empirical validity and hyper-rectangle

median volume for all remaining data sets.
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Figure A.5: Results for indoor loc.
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Figure A.6: Results for scpf.
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Figure A.7: Results for rf1.
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Figure A.8: Results for rf2.
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Figure A.9: Results for scm1d.
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Figure A.10: Results for scm20d.
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