Learning-based pose edition for efficient and interactive design - Archive ouverte HAL
Article Dans Une Revue Computer Animation and Virtual Worlds Année : 2021

Learning-based pose edition for efficient and interactive design

Résumé

Authoring an appealing animation for a virtual character is a challenging task. In computer-aided keyframe animation artists define the key poses of a character by manipulating its underlying skeletons. To look plausible, a character pose must respect many ill-defined constraints, and so the resulting realism greatly depends on the animator's skill and knowledge. Animation software provide tools to help in this matter, relying on various algorithms to automatically enforce some of these constraints. The increasing availability of motion capture data has raised interest in data-driven approaches to pose design, with the potential of shifting more of the task of assessing realism from the artist to the computer, and to provide easier access to nonexperts. In this article, we propose such a method, relying on neural networks to automatically learn the constraints from the data. We describe an efficient tool for pose design, allowing naïve users to intuitively manipulate a pose to create character animations.
Fichier principal
Vignette du fichier
LearningBasedPoseEdition_openaccess.pdf (893.06 Ko) Télécharger le fichier
casa2021_-_best_paper_award.png (210.78 Ko) Télécharger le fichier
deep_ik.jpg (8.47 Ko) Télécharger le fichier
ik_deep.png (132.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03275581 , version 1 (01-07-2021)

Identifiants

Citer

Léon Victor, Alexandre Meyer, Saïda Bouakaz. Learning-based pose edition for efficient and interactive design. Computer Animation and Virtual Worlds, 2021, ⟨10.1002/cav.2013⟩. ⟨hal-03275581⟩
238 Consultations
207 Téléchargements

Altmetric

Partager

More