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Figure 1: Sample results of our method in various configuration. Our method is able to generate plau-
sible poses given a starting pose (on the left) and some targets (in red), respecting skeleton constraints

without having to explicitly specify them.

Abstract

Authoring an appealing animation for a virtual
character is a challenging task. In computer-
aided keyframe animation artists define the key
poses of a character by manipulating its under-
lying skeletons. To look plausible, a character
pose must respect many ill-defined constraints,
and so the resulting realism greatly depends on
the animator’s skill and knowledge. Animation
software provide tools to help in this matter,
relying on various algorithms to automatically
enforce some of these constraints. The in-
creasing availability of motion capture data
has raised interest in data-driven approaches
to pose design, with the potential of shifting
more of the task of assessing realism from the
artist to the computer, and to provide easier
access to non-experts. In this paper, we propose
such a method, relying on neural networks to
automatically learn the constraints from the
data. We describe an efficient tool for pose
design, allowing naive users to intuitively ma-

nipulate a pose to create character animations.

Keywords: Character Pose Design, Machine
Learning for Animation

1 Introduction

Character animation is an essential part of
computer-generated imagery industries such as
feature films, cartoons or video games which
make use of on-screen characters to tell sto-
ries, convey emotions and appeal to their audi-
ences. These characters are represented by 3-
dimensional meshes whose motion is driven by
an underlying skeleton. A common method to
design and edit animations is keyframing: ani-
mator pose the character at desired time stamps
(the key frames) and the computer interpolates
between them to fill in the gaps. Most animation
software such as Blender or Maya provide inter-

"The code is available at https://github.com/
leonvictor/neural-pose—edition
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active tools allowing users to pose a character by
manipulating its underlying skeleton. We pro-
pose an innovative solution that makes the pose
editing process more affordable without com-
promising the quality of the results. The pre-
sented method leverages neural networks to im-
plicitly learn the intricacies of a (human) skele-
ton and provide simple controls. Our main goal
is to create an intuitive real-time system that can
produce appealing poses even for a novice user.

Our framework relies on a few small networks
requiring reasonable resources to train, with the
added advantage of running quite fast at infer-
ence time. The core of our approach is an
encoder-decoder trained on skeleton pose data,
the task of which is to build a latent represen-
tation of the pose space, alleviating some of the
limitations of the former. We then train a family
of solver networks to work on this latent space in
order to generate a pose satisfying user-defined
target positions.

2 Related work

The industry standard for pose edition is to cre-
ate rigs, a collection of pieces of software de-
signed to manipulate a character’s skeleton. The
rig describes the skeleton’s bones, how they re-
late to each other, are constrained in their pos-
sible motion and are deformed. These rules
are loosely specified and creating a good rig re-
quires a detailed understanding of physics and
anatomy, as well as technical and artistic skills.
Rigging is thus a time consuming task even
for experienced animators, and even more so
in large scale productions which often require a
different in-depth rig for each character in the
cast. Previous work has helped alleviate this
difficulty by providing efficient tools to speed
up/and or ease the rigging process, relying on
inverse kinematics or data-driven methods.

2.1 Character pose design
2.1.1 Inverse Kinematics (IK)

IK solvers are a family of methods commonly
used in robotics, engineering and computer
graphics, in which the parameterization of a
kinematic chain is determined from the position
of its end effector. They are a staple tool in

pose design software, ensuring the respect of el-
ementary constraints during pose edition. Their
de-facto role is to guarantee the length of the
limbs, and in some cases to enforce the orien-
tation angle range of a joint. Many IK solutions
have been studied over the years [[1]; usually re-
volving around approximated linearizations or
heuristics.

Numerical methods require a set of itera-
tions to achieve a satisfactory solution formu-
lated by a cost function to be minimized. IK so-
lutions can generally be divided into three sub-
categories: Jacobian [2f], Newtonians [3] and
Heuristics. Most software implement heuris-
tic methods such as Cyclic Coordinate Descent
(CCD) [4] or Forward-Backward Reaching 1K
(FABRIK) [3]] due to their simplicity and exten-
sibility.

The main drawback of these solvers is that
they manipulate kinematic chains without taking
into account many morphological aspects that
make a pose more or less plausible. They offer
a first level of help to users but are not sufficient
to guarantee a realistic pose. Many joints con-
straints are dependent on each other and require
subjective, human-made approximations.

2.1.2 Data-driven pose edition

Data-driven methods offer promising opportuni-
ties to solve these approximations. Using real-
life data can help in modelling the complex
inter-dependencies of skeletons and providing
users with smarter edition tools. While it is still
an early field of research, some solutions have
been studied. Wu et al. [6] propose a method
for natural character posing from a large motion
database. It employs adaptive KD-clustering to
select a representative frame from a database
and sparse approximations to accelerate train-
ing and posing. Huang ef al. in [7] present
a method based on the formulation of multi-
variate Gaussian distribution models (MGDMs),
which learn the joint constraints of a kinematic
skeleton from motion capture data.

Some work has also been dedicated to finding
new editing interfaces. Instead of the usual setup
manipulating joints directly, Guay et al. [8]] ar-
ticulate a framework based on the conceptual
line of action” which describes the overall pose
dynamics. They provide a mathematical defini-



tion of the line of action, and a interface in which
the software modifies the pose to follow a user-
provided line. In the same line of though Gar-
cia et al. [9] propose a virtual reality-based in-
terface where the user’s hands motion (position
and orientation over time) are transformed into
sequences of actions and then into detailed char-
acter animations using a dataset of parametrized
motion clips automatically fitted to the trajec-
tory.

2.2 Neural modelling of human motion

Neural networks have received a great amount
of attention over the last decade and shown im-
pressive result in modelling complex data. Hu-
man motion has not been spared and deep learn-
ing methods have proven their capability of gen-
erating realistic motion in a number of difficult
cases.

The literature in neural-based animation in-
clude example in user-controlled character nav-
igation [10] and interactions with the environ-
ment [11]. Holden et al. [12] also show that
neural networks can be used to replace parts
of existing data-driven methods, improving their
scalability potential. More recently, some work
has also focused on improving smaller parts of
the animation pipeline rather than replacing it
completely. Berson et al. [13] leverage neural
networks to provide an interactive system to edit
facial animation.

Data-driven IK and pose editing can relieve
animators from time-consuming, back-and-forth
pose adjustments by applying constraints ex-
tracted from real-world data. Recently, neural-
network-based approaches have demonstrated
their ability to model the intricacies of human
motion while scaling to large amount of data
and retaining a fast inference time. In this paper
we seek to take advantage of these properties to
create an efficient posing tool, intuitively usable
even by a inexperienced user.

3 Proposed method

3.1 Method overview

We propose a method to solve a high level pose
design problem in which a pose is modified to
reach desired target positions for some of its

joints. We leverage the modelling power of neu-
ral networks to implicitly learn skeleton con-
straints from a pre-existing pose database. Our
method, illustrated in Fig. |2} relies on two mod-
els: an auto-encoder to build an alternative la-
tent pose space, and a solver model operating on
this space to solve the pose design problem. We
also describe an optional post-processing step
to smooth out the remaining errors, and outline
a methodology using multiple instances of the
solver model at once to work with a varying
amount of targets.

3.2 Data

We train the models using a dataset of human
poses, obtained by processing multiple avail-
able motion-capture datasets from the literature:
Emilya [14], CMU [13], and the clips from Ed-
inburgh university [[16]. Each animation clip is
retargeted to a standard skeleton following the
scheme proposed by [17]. The global transla-
tion is removed, and each joint’s position is cal-
culated relative to the root joint, which is the
projection of the pelvis on the floor. The uni-
fied skeleton is composed of 21 joints; using the
joints’ positions in space, a pose is described by
3 x 21 = 63 float values concatenated in a single
vector. The dataset is then formed by the indi-
vidual poses in each clip. Before feeding them
to the network we also normalize each pose by
subtracting the mean and dividing by the stan-
dard deviation of each feature. With a few jittery
clips manually removed, the final dataset used in
the following experiments is composed of about
1,5 million poses.

3.3 Models description
3.3.1 Autoencoder

Auto-encoders are made up of two neural net-
works tasked to learn efficient encodings of
complex data. The encoder maps real data
points to a learned, usually more compact, la-
tent space; and the decoder maps them back to
the original data space. We build such an auto-
encoder of poses in order to build a common op-
erating space for the following solvers. Generat-
ing points in the latent space allows us to ensure
that the output is always a plausible pose, as the
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Figure 2: High level overview of the generation setup. The target joint’s positions (yellow) are
matched as closely as possible, while the other joints (green) should be as close as possible to the

starting pose (blue).

decoder is trained to turn any and all latent point
into them.

The encoder network is composed of two
fully connected layers with 200 neurons and
ReLU [18] activations, followed by an output
layer with no activation. The output layer’s size
is based on the number of dimensions d in which
the latent representations are encoded. We em-
pirically find that d = 64 yields a good balance
of representation accuracy and inference speed.
The decoder is the exact reversed replica and
uses the same set of weights.

The autoencoder’s weights are optimized by
minimizing the mean squared error (MSE) be-
tween the input pose x and its reconstructed
equivalent & (Eq. [I). In the following sections
we refer to the encoder as F, the decoder as D
and a latent encoding as z, i.e. z = E(z) and
z = D(z).

d
1
Loe = MSE(z, %) gz = &) (1)
The autoencoder is trained for 20 epoch with
batches of 256 poses, using the Adam optimizer
[19] with a learning rate of 0.0001.

3.3.2 Pose solver

An instance of the solver model S; is specialized
to solve the IK problem for n specific targets ¢
and is trained to generate a new pose from an in-
put pose and the desired targets locations. As it

operates on the latent space built by the autoen-
coder, it more precisely accepts and outputs a
latent pose vector, i.e. with p; the concatenated
target positions, 2 = Si(z, pt).

The network is composed of three fully con-
nected layers with 126 neurons and ReLu acti-
vations, and an output layer with d neurons.

During training, we randomly sample an in-
put pose x from the dataset and feed it to the
network. We also sample a second pose z’ from
the same source clip to use as target. We found
that this association helped the network learning
by not relying on random (and possibly unreach-
able) target positions.

The network’s weights are optimized to mini-
mize the loss function in Eq[2]designed to repre-
sent its high level objective: reaching the targets
with the associated joints while retaining a re-
alistic pose. We guide the network toward this
objective by using a modified mean squared er-
ror function , separating the poses (z in this ex-
ample) in two sets of joints: Ziqrget the joints
associated to the targets ¢, and .5 the others .
We introduce a constant k to give more relative
importance to the target term of the function, so
that the non-targets joints of 2’ are only used to
nudge the final result toward a plausible pose. In
our experiments k is set to 0.01.

Ls = MSE(i:tm’get7 m:farget)+k7 MSE(xT‘GStv Test)

(2)

An instance of the solver model is trained for



5 epochs with the Adam optimizer using a learn-
ing rate of 0.0001 and a batch size of 256.

3.4 Post processing

It is a common observation with neural net-
works working with joints position that the gen-
erated positions can be jittery, and the resulting
poses can suffer from slight variations in bone
lengths. Our model is no exception, and while
the variation is not visually detectable most of
the time, computing the total bone length differ-
ence between the input skeleton and the gener-
ated pose shows that it is present. These varia-
tions are naturally undesirable and can result in
visual discomfort on the spectator’s end. In or-
der to alleviate the problem we apply an optional
post-processing step to the resulting poses to en-
sure constant bone lengths. We use the back-
ward step from FABRIK as it is very lightweight
computation-wise. Our experiments show that
following this process lends better results at a
small cost in computing time (see table|[T).

3.5 Solving other targets configurations

Even though our solvers are designed to gen-
erate a pose considering one to two targets at
once, it is possible to use multiple instances
side by side and to switch to the correct one
with regard to the selected targets. In cases
where the user desires to use an arbitrary num-
ber of targets (to suggest a position for a fixed
joint for example) we can combine the multi-
ple instances by running them in sequence, i.e.
Z = (Sy30840851)(2) for t1,¢2, t3 various tar-
gets and Sy; the solvers trained to reach them.

4 Results

In order to evaluate the results of our method
we integrate our solver in an example posing
software and compare its outcome with a com-
parable, non-neural method: FABRIK [S]. We
pick FABRIK for the traits that make it a pop-
ular IK solver: its simplicity and fast conver-
gence times. We implement a full-body human
skeleton solver as described in [20] but stay as
close as possible to our method setup process by
not manually implementing any joint orient con-
straints.

4.1 Visual results
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Figure 3: Starting from a pose and targets for
two joints, an IK solver like FABRIK (mid-
dle) generates less realistic poses than our neural
solver (bottom).

Fig. showcases an example of how our
method can be used to edit a pose by moving
the targets around. in this case a single solver
with the targets set to both skeleton’s hands is
used.

Our solver yields poses satisfying the con-
straints without breaking the implicit skeleton
rules: the distance between limbs is constant,
self-occlusion is avoided and the poses appear
natural. The side-by-side comparisons with
FABRIK’s results highlight the limits of work-
ing on kinematics chains with no prior on the
human skeleton.

Example (1) illustrates how the targets are
used as guides rather than fixed, unbreakable
rules. While FABRIK extends the full body,
our solver generates a new pose where the torso
is slightly twisted towards the right-hand tar-
get while the legs are spread to mimic main-



taining balance. Even though our method is
aimed toward beginner animators, experienced
ones could also find it useful. It could for exam-
ple be used as a fast prototyping tool to flesh out
the pose, while switching to more accurate and
manipulation-heavy tools to focus on the details
later on.

Examples of real-time usage of our method
can also be found in the accompanying video.

4.2 Combining solvers

Figure [4] demonstrates an example with the
multi-solver setup described in [3.5] In this ex-
ample three solvers are used at once: for the two
hands, the two ankles and the head. Compared
to the FABRIK result, our method yields a plau-
sible pose: the skeleton is bent down to meet
the head target, but the general orientation of the
pose is kept intact. The limbs also retain some
sort of curvature rather than fully extending in
an unnatural way. Here again some of the tar-
gets are not strictly reached, as the pose gener-
ated by earlier solvers in the chain are modified
by the others further down, but the guidance pro-
vided by the targets is respected. This setup also
incurs slightly slower runtimes (see Table|[I]) but
is still faster than FABRIK.

4’\.. ‘I
/Xl /\

Starting pose FABRIK Ours

Figure 4: Sample results solving multiple targets
with a sequence of neural solvers. Targets are
shown in red.

4.3 Run times

At run-time the complexity of the solver is fixed
and regardless of the targets’ positions, a single
pass through the networks, which can be seen
as just a few matrix multiplications, is enough
to produce a result pose. This property coupled
with the relatively small size of the networks al-
low for a fast solving process, as highlighted in

Memory .

. Runtime

Method footprint (ms)**
(kB)

FABRIK (2) - 6.56
Ours (2) 442 1.47 (3.03%)
FABRIK (5) - 6.74
Ours (5) 826 3.36 (4.58%)

*With post-processing
**Average over 1000 random iterations

Table 1: Comparative numeric results of the neu-
ral and FABRIK solvers with two and five end-
effectors (using the combined solver method).
All experiments are run on a single CPU thread.

table 1]

Compared to other data-driven pose methods,
the computing-heavy part of our process is done
once at training time. Even so, the training itself
is kept short thanks to the modest size of the net-
works: around an hour for the auto-encoder and
15 minutes for the solvers, on a single GPU.

4.4 Memory footprint

An advantage of neural networks is the low
memory footprint they hold. While other data-
driven pose design methods require the pose
database (or a compressed version of it) to be
kept in memory, neural networks only require
their trained weights. These can be quite heavy
as well in the case of large models, but as ours
are quite small, so are their weights. As a com-
parison point, [6] discloses a 30MB memory
footprint while our full-body solver only takes
up 826kB.

4.5 Comparison with other pose edition
approaches

Huang et al. [7] proposed a general comparison
chart for full-body IK methods, ranking com-
mon approaches by speed and subjective qual-
ity. Adding our solution to the chart (Fig. [5)
highlights the useful spot it fills by striking a
good balance between speed and accuracy. To
the best of our knowledge, this work presents the
first method leveraging neural networks for pose
edition. It stands apart from previous learning-
based approaches as the first one to combine
real-time edition speed with fully learned skele-
ton constraints. In comparison, NAT-IK [7] uses



soft learned constraints but still requires explicit,
manual ones to be set. [[6] does not, but the poses
are not generated in real time.

A
® Style IK
® NAT-IK
° ® JDLS
® CcCcD

quality

® Ours

speed >
Figure 5: General comparison of various full-
body IK methods in terms of speed and quality.
Style IK [6], NAT-IK [7], JDLS [21], CCD [4]
FABRIK [5]

S Conclusion and perspectives

We propose a method leveraging neural net-
works to provide an interactive and efficient tool
to pose a character’s skeleton. Learning from
a large dataset of ground truth poses allows us
to avoid manually specifying the complex con-
straints of the human skeleton, and only gener-
ating plausible poses. Our approach also shifts
a large part of the algorithmic burden of tradi-
tional methods to the training phase, allowing it
to run competitively fast once set up. Compared
to previous data-driven pose edition methods,
our method takes up a small amount of memory,
freeing up resources for other processes. We
provide examples of integration of our method
in a prototype posing software, as well as a way
to switch to multiple targets configurations. Fu-
ture work on the subject will focus on extend-
ing the method to more use cases: using the
method for other, non standardized skeletons
(with a different morphology or non-humanoid)
and adding joint rotations to the solver’s input
and output.
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