Whittle estimation with (quasi-)analytic wavelets - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Whittle estimation with (quasi-)analytic wavelets

Résumé

In the general setting of long-memory multivariate time series, the long-memory characteristics are defined by two components. The long-memory parameters describe the autocorrelation of each time series. And the long-run covariance measures the coupling between time series, with general phase parameters. This wide class of models provides time series not necessarily Gaussian nor stationary. It is of interest to estimate the parameters: long-memory, long-run covariance and general phase. This inference is not possible using real wavelets decomposition or Fourier analysis. Our purpose is to define an inference approach based on a representation using quasi-analytic wavelets. We first show that the covariance of the wavelet coefficients provides an adequate estimator of the covariance structure including the phase term. Consistent estimators based on a Whittle approximation are then proposed. Simulations highlight a satisfactory behavior of the estimation on finite samples on linear time series and on multivariate fractional Brownian motions. An application on a real dataset in neuroscience is displayed, where long-memory and brain connectivity are inferred.
Fichier principal
Vignette du fichier
AnalyticWhittle2022_hal.pdf (895.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03272326 , version 1 (28-06-2021)
hal-03272326 , version 2 (18-06-2022)
hal-03272326 , version 3 (04-08-2023)

Identifiants

  • HAL Id : hal-03272326 , version 2

Citer

Sophie Achard, Irène Gannaz. Whittle estimation with (quasi-)analytic wavelets. 2022. ⟨hal-03272326v2⟩
257 Consultations
129 Téléchargements

Partager

More