Whittle estimation with (quasi-)analytic wavelets - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2021

Whittle estimation with (quasi-)analytic wavelets

Abstract

The notion of long-memory is considered in the case of multivariate time series, not necessarily Gaussian nor stationary. The long-memory characteristics are defined by the long-memory parameters describing the autocorrelation structure of each process and the long-run covariance measuring the coupling between time series. A phase term is present in the model to widen the classes of models. We introduce a representation of the time series by quasi-analytic wavelets for inference in this setting. We first show that the covariance of the wavelet coefficients provides an adequate estimator of the covariance structure of the processes, including the phase term. Consistent estimators are then proposed which is based on a Whittle approximation. Simulations highlight a satisfactory behavior of the estimation on finite samples on some linear time series and on multivariate fractional Brownian motions. An application on a real dataset in neuroscience is displayed, where long-memory and brain connectivity are inferred.
Fichier principal
Vignette du fichier
AnalyticWhittle.pdf (694.49 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03272326 , version 1 (28-06-2021)
hal-03272326 , version 2 (18-06-2022)
hal-03272326 , version 3 (04-08-2023)

Identifiers

  • HAL Id : hal-03272326 , version 1

Cite

Sophie Achard, Irène Gannaz. Whittle estimation with (quasi-)analytic wavelets. 2021. ⟨hal-03272326v1⟩
170 View
77 Download

Share

Gmail Facebook X LinkedIn More