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Abstract

In the general setting of long-memory multivariate time series, the long-memory characteris-
tics are defined by two components. The long-memory parameters describe the autocorrelation
of each time series. And the long-run covariance measures the coupling between time series,
with general phase parameters. This wide class of models provides time series not necessarily
Gaussian nor stationary. It is of interest to estimate the parameters: long-memory, long-run
covariance and general phase. This inference is not possible using real wavelets decomposition
or Fourier analysis. Our purpose is to define an inference approach based on a representation
using quasi-analytic wavelets. We first show that the covariance of the wavelet coefficients pro-
vides an adequate estimator of the covariance structure including the phase term. Consistent
estimators based on a Whittle approximation are then proposed. Simulations highlight a sat-
isfactory behavior of the estimation on finite samples on linear time series and on multivariate
fractional Brownian motions. An application on a real dataset in neuroscience is displayed,
where long-memory and brain connectivity are inferred.

Keywords. Multivariate processes, long-memory, covariance, phase, wavelets, cerebral con-
nectivity

1 Introduction

Multivariate processes are often observed nowadays thanks to the recordings of multiple sensors

simultaneously. Numerous examples can be cited such as hydrology [Whitcher and Jensen, 2000],
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finance [Gençay et al., 2001] or neuroscience [Achard and Gannaz, 2016]. When in addition the

time series have the property of long-memory, the definition of the model is complicated and

several definitions can be proposed. A simple model is defined by long-memory parameters for

each univariate process with a covariance structure added between the processes [Robinson, 1995a].

However phenomena such as co-integration cannot be modeled using this simple definition. An

alternative was proposed by Robinson [2008], Kechagias and Pipiras [2014], where a phase-term is

added to the covariance structure.

Let X(t) denote a multivariate long-memory dependence process X(t) =
[
X1(t) . . . Xp(t)

]T
,

t ∈ Z with long memory parameters d = (d1, d2, . . . , dp), d ∈ (−0.5,+∞)p. We will denote by

L the difference operator, (LX)(t) = X(t + 1) − X(t). The k-th difference operator, Lk, k ∈ N,

is defined by k recursive applications of L. For D = bd + 1/2c, we assume that the multivariate

process Diag
(
LD` , ` = 1, . . . , p

)
X is covariance stationary with a spectral density matrix given by

(M-1) fD(λ) =
(

Diag
(
|λ|−d

∗
1 , . . . , |λ|−d

∗
p

)
Θ Diag

(
|λ|−d

∗
1 , . . . , |λ|−d

∗
p

))
◦ fS(λ), for all λ > 0,

where ◦ denotes the Hadamard product, and d∗m = dm −Dm ∈ (−0.5, 0.5) for all m. The process

LDmXm is said to have long-memory if d∗m ∈ (0, 0.5), and to be anti-persistent if d∗m ∈ (−0.5, 0)

(see for instance Lobato [1999], Shimotsu [2007]). For simplicity of notation, we will use the term

long-memory call parameters d throughout the paper.

The function f(·) is defined by

f(λ) = (Λ(λ) Θ Λ(λ)) ◦ fS(λ), for all λ > 0,

with Λ(λ) = Diag
(
|λ|−d1 , . . . , |λ|−dp

)
. Under the condition (M-1), the function f(·) is called the

generalized spectral density of the multivariate process {X(t), t ∈ Z}.

The function fS(·) represents the short-range memory of f(·). In order to get identifiability, it is

necessary to assume fS(0) = 1. The following assumption is also needed to control the regularity.

(M-2) There exists Cf > 0 and β > 0 such that sup0<λ<π sup`,m=1,...,N
|fS`,m(λ)−1|

λβ
6 Cf .

In particular, our definition agrees with the one given in Kechagias and Pipiras [2014] if Dm = 0 for
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all m. Our definition (M-1) encompass both stationary and non-stationary time series. Therefore

it has the advantage of covering multivariate fractional Brownian motion [Coeurjolly et al., 2013].

The major interest of this model is the introduction of the matrix Θ. This provides a generalisation

of multivariate long-memory models used in Lobato [1997], Shimotsu [2007], Achard and Gannaz

[2016]. Indeed, the matrix Θ can be written as,

Θ`,m = Ω`,meiφ`,m ,

with Ω = (Ω`,m)`,m=1,...,p a real symmetric non-negative semi-definite matrix and Φ = (φ`,m)`,m=1,...,p

an anti-symmetric matrix. Let the bar above denote the conjugate operator. The matrix Θ

satisfies ΘT = Θ since fT (·) = f(·). We will use ‖Ω‖ to denote the infinity norm, that is,

‖Ω‖ = max`,m=1,...,p Ω`,m. In Lobato [1997], Shimotsu [2007], Achard and Gannaz [2016], the

phase term was defined by φ`,m = π(d` − dm)/2.

In a univariate setting, the main parameter of interest is the long-memory parameter or equivalently

the Hurst parameter. In this particular case, three main families of Fourier-based estimation have

already been proposed: the average periodogram estimation [Robinson, 1994], the log periodogram

regression [Geweke and Porter-Hudak, 1983, Robinson, 1995a] and semiparametric estimation based

on Whittle approximation [Künsch, 1987, Robinson, 1995b]. Estimation with a wavelet represen-

tation of time series was proposed in Abry and Veitch [1998] with a log-scalogram approach similar

to log-periodogram estimation and in Moulines et al. [2008] with a wavelet-based local Whittle

estimation.

In a multivariate setting, estimation procedures have also been proposed using either Fourier or

wavelets. For a general phase term, Sela and Hurvich [2012] proposed an estimation based on

the average periodogram and Robinson [2008] and Baek et al. [2020] developed a Fourier-based

local Whittle estimation. For a fixed phase term, φ`,m = π(d` − dm)/2, estimation of both the

covariance structure and the long-memory was proposed by Lobato [1999] and Shimotsu [2007],

with a Fourier-based local Whittle estimation, and by Achard and Gannaz [2016] with a similar

procedure based on a real wavelet representation.

The objective of this work is to propose an estimation procedure in the general framework described

above, with a general phase, based on a wavelet representation of the processes rather than a Fourier

representation. We do not consider here the fractional co-integration and we refer to Baek et al.
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[2020] for a Fourier-based local Whittle estimation.

Introducing wavelets is motivated by their flexibility for real data applications. It enables in par-

ticular to consider non-stationary processes thanks to an implicit differentiation. The introduction

of a general phase term challenges the choice of the wavelet filters. Because of condition (M-1),

we need to consider analytic filters especially for identifying the imaginary part of Θ. Indeed, as

illustrated in Gannaz et al. [2017], with real wavelet filters it is not possible to recover both the real

and imaginary part of the matrix Θ. Quasi-analytic wavelet filters are described in Section 2. Main

properties of the filters are displayed and an approximation of the covariance of wavelet coefficients

is derived in Section 3. Section 4 recalls the definition of the wavelet local Whittle estimators and

gives their consistency and their convergence rate, as well as their asymptotic distribution. Sec-

tion 5 reports some simulation results, on ARFIMA linear models and on multivariate fractional

Brownian motions. Section 6 provides an empirical application on neuroscience data. The detailed

proofs are provided in Appendix.

2 Transform of the multivariate process

We first define the filters used to transform the multivariate time series {X(t), t ∈ Z}.

Let (h(L), h(H)) and (g(L), g(H)) denote two pairs of respectively low-pass and high-pass filters. Let

(ϕh(·), ψh(·)) be respectively the father and mother wavelets associated to (h(L), h(H)). They can

be defined through their Fourier transforms as

ϕ̂h(λ) = 2−1/2
∞∏
j=1

[
2−1/2ĥ(L)(2−jλ)

]
and ψ̂h(λ) = 2−1ĥ(H)(λ/2) ϕ̂h(λ/2). (1)

Let us define similarly (ϕg, ψg) the father and the mother wavelets associated with the wavelet

filters g(L) and g(H). Their Fourier transforms are

ϕ̂g(λ) = 2−1/2
∞∏
j=1

[
2−1/2ĝ(L)(2−jλ)

]
and ψ̂g(λ) = 2−1ĝ(H)(λ/2) ϕ̂g(λ/2). (2)
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The complex father and mother wavelets (ϕ(·), ψ(·)) are then defined by

ϕ̂(λ) = ϕ̂h(λ) + i ϕ̂g(λ) and ψ̂(λ) = ψ̂h(λ) + i ψ̂g(λ). (3)

2.1 Selesnick’s common factor filters

From Heisenberg’s uncertainty principle, analytic filters with finite support do not exist. We

choose here to consider the quasi-analytic filters introduced by Thiran [1971], Selesnick [2002].

The common-factor wavelets, defined by Selesnick [2002], are parametrized by a degree L on the

analytic property of the derived complex wavelet. We refer the reader to Selesnick [2001, 2002],

Achard et al. [2020] for a fuller description of the construction of the wavelets and their properties.

Let d̂L(λ) be defined by

d̂L(λ) = eiλ(−L/2+1/4)
[
cos(λ/4)2L+1 + i (−1)L+1 sin(λ/4)2L+1

]
.

Next, filters (ĥ(L), ĥ(H)), and (ĝ(L), ĝ(H)) are defined by

ĥ(L)(λ) = 2−M+1/2
(

1 + e−iλ
)M

q̂L,M (λ) d̂L(λ) and ĥ(H)(λ) = ĥ(L)(λ+ π)e−iλ , (4)

ĝ(L)(λ) = 2−M+1/2
(

1 + e−iλ
)M

q̂L,M (λ) d̂L(λ)e−iλL and ĝ(H)(λ) = ĝ(L)(λ+ π)e−iλ, (5)

with q̂L,M (λ) a real polynomial of (e−iλ) such that q̂L,M (0) = 1. Observe that the normalization of

the filters is different from the one defined in Achard et al. [2020].

Common-factor wavelets are introduced with q̂L,M such that the wavelet decomposition satisfies

the perfect reconstruction condition. This condition is classically used for deriving wavelet bases

21/2ψg j,k = 2−1/22j/2ψg(2
j ·−k) and 21/2ψh j,k = 2−1/22j/2ψh(2j ·−k), j, k ∈ Z, which are orthonor-

mal bases of L2(R). In that case, q̂L,M is defined as a solution of

|q̂L,M (λ)|2 s(λ) + |q̂L,M (λ+ π)|2 s(λ+ π) = 1 , (6)

where s(λ) = 24L−1

(2L+1)2
2−M (1 + cos(λ))M

∣∣∣d̂L(λ)
∣∣∣2. The existence of q̂L,M is proved in Achard et al.

[2020]. However, to the best of our knowledge, under perfect reconstruction, no explicit expression

of q̂L,M is easy to obtain. Sine perfect reconstruction is not necessary for deriving estimation
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procedures, we can assume that q̂L,M is a constant equal to 1.

Definition 1 (Common-Factor Wavelets (CFW)). Let M , L be strictly positive integers. Let (ϕ,ψ)

be a family of Common-Factor wavelets defined by equations (1), (2), (3), and (4), (5). If the filter

q̂L,M satisfies perfect reconstruction condition (6), the pair (ϕ,ψ) will be denoted by CFW-PR(M,L).

If q̂L,M is a constant polynomial equal to 1, (ϕ,ψ) will be denoted by CFW-C(M,L) filters.

Let us first recall the main result established in Achard et al. [2020].

Theorem 2 (Achard et al. [2020]). For all λ ∈ R, for all q̂L,M real polynomial of (e−iλ),

ψ̂(λ) = ψ̂h(λ) + i ψ̂g(λ) =
(

1− eiηL(λ)
)
ψ̂h(λ) ,

with aL(λ) = 2(−1)L atan
(
tan2L+1(λ/4)

)
and ηL(λ) = −aL(λ/2 + π) +

∞∑
j=1

aL(2−j−1λ). (7)

Additionally, for all λ ∈ R,∣∣∣ψ̂h(λ) + i ψ̂g(λ)− 21R+(λ) ψ̂H(λ)
∣∣∣ = UL(λ)

∣∣∣ψ̂H(λ)
∣∣∣ ,

where UL is a R→ [0, 2] function satisfying, for all λ ∈ R,

UL(λ) 6 2
√

2

(
log2

(
max(4π, |λ|)

2π

)
+ 2

) (
1− δ(λ, 4πZ)

max(4π, |λ|)

)2L+1

.

and, for all λ ∈ R and A ⊂ R, δ(λ,A) denotes the distance of λ to A defined by δ(λ,A) =

inf {|λ− x| , x ∈ A} .

In equation (7), we adopt the convention that atan(±∞) = ±π/2 so that αL is well defined on R.

Theorem 2 quantifies the quality of the analytic approximation. Observe that the function UL(·)
only depends on the parameter L. The higher L, the better the analytic approximation.
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3 Moments approximations of the wavelet coefficients

Let {Wj,k, j > 0, k ∈ Z} denote the wavelet coefficients of the process X associated to the wavelet

pair (ϕ,ψ). At a given resolution j > 0, for k ∈ Z, we define the dilated and translated functions

ψj,k(·) = 2−j/2ψ(2−j · −k). The wavelet coefficients of the process X are defined by

Wj,k =

∫
R

X̃(t)ψj,k(t)dt j > 0, k ∈ Z,

where X̃(t) =
∑

k∈Z X(k)ϕ(t − k). Given any j > 0 and any k ∈ Z, Wj,k is a p-dimensional

vector Wj,k =
(
Wj,k(1) Wj,k(2) . . . Wj,k(p)

T
)

where Wj,k(a) =
∫
R X̃a(t)ψj,k(t)dt, a = 1, . . . , p.

Throughout the paper, we adopt the convention that large values of the scale index j correspond

to coarse scales (low frequencies).

We will consider the behavior of Cov(Wj,k), defined as follows

Cov(Wj,k) = E
[
Wj,kWj,k

T
]

=

∫ π

−π
f(λ) |τ̂j(λ)|2 dλ ,

with τ̂j(λ) =
∫∞
−∞

∑
`∈Z ϕ(t+ `) e−iλ `2−j/2ψ(2−jt)dt.

In practice, a finite number of observations of the process X are available, X(1),X(2), . . .X(N).

Since the wavelets have a compact support, only a finite number of coefficients are non null at each

scale j. More precisely for every j > 0, let nj denote the number of coefficients Wj,k evaluated using

all the observations. For every k < 0 and k > nj , the coefficients Wj,k are set to zero because of

finite length of observations. The number nj is such that, when j goes to infinity, 2jnj is equivalent

to Tϕ +N , where Tϕ denotes the length of the support of the function ϕ(.). With CFW-PR(M,L)

filters, Tϕ is equal to 2(M +L), while with CFW-C(M,L) filters, Tϕ = M +L+ 1. In the following,

we will assume that M is fixed and finite and that L may go to infinity. If LN−1 → 0, then 2jnj is

equivalent to 2−jN . It is the case in particular when 2−jL is bounded and 2−jN →∞. Then, the

behavior of nj is similar to the framework of Moulines et al. [2008] and Achard and Gannaz [2016].
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3.1 Motivations

In this section results obtained in Gannaz et al. [2017] are summarized. We begin with a bivariate

ARFIMA(0,d,0) process defined as

X`(k) = (1− L)−d`u`(k), ` = 1, 2, k ∈ Z , (8)

where L is a lag operator and

(
u1(k)

u2(k)

)
i.i.d. with distribution N

((
0

0

)
,Ω

)
, where Ω =(

1 0.8

0.8 1

)
. The spectral density of (X1, X2) satisfies (M-1) with Θ`,m = Ω`,meiφ`,m , φ`,m =

π(d1−d2)/2. Let d be equal to (0.2, 1.2). The phase is equal to π/2 and, hence, Θ`,m is imaginary.

Let us now illustrate the impossibility using real wavelets decomposition o infer Θ`,m.

We simulate X(1), . . . ,X(2J), with J = 12. For each scale j > 0, we evaluate the sample wavelet

covariances as Σ̂(j) = 1
nj

∑nj−1
k=0 Wj,k(1)Wj,k(2)−

(
1
nj

∑nj−1
k=0 Wj,k(1)

)(
1
nj

∑nj−1
k=0 Wj,k(2)

)
, and the

wavelet sample correlations as Σ̂1,2(j)/
√

Σ̂1,1(j)Σ̂2,2(j). Note that by correlations instead of co-

variance we did not really have to take care of the normalization factors.

Figure 1 displays the behavior of sample wavelet correlations with respect to the scale j on 100

realizations of (X(1), . . . ,X(2J)). First observe that for real wavelets (left colmn), Θ1,2 is equal to

0 for scale 8 which confirms the impossibility to identify Θ1,2. In addition, plots displayed in middle

and right columns confirm that the imaginary part of the sample wavelet coefficient correlations

does not vanish for CFW-PR(M,L) and CFW-C(M,L) filters. The average sample correlation seems

to converge to Ω1,2eiφ1,2/
√

Ω1,1Ω2,2 when the frequency decreases.

3.2 Theoretical results

We will now develop the theory of the behavior of Cov(Wj,k). This result consists in the extension

of Proposition 3 of Achard and Gannaz [2016] to quasi-analytic wavelets. The results are obtained

hereafter only for CFW-C(M,L) filters. Indeed, the same results are more difficult to obtain for

CFW-PR(M,L) filters because no explicit expression of q̂L,M satisfying (6) is available.
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Figure 1: Boxplots of sample correlations between wavelet coefficients at different scales for
the bivariate process defined in (8). First row gives the real part of the correlations and sec-
ond row gives the imaginary part. Each column corresponds to a different wavelet filters, from
left to right: Daubechies’ real wavelets with M=4, CFW-PR(4,4) and CFW-C(4,4). Horizon-
tal red lines correspond to the real value, that is, Ω1,2 cos(φ1,2)/

√
Ω1,1Ω2,2 for the real part and

Ω1,2 sin(φ1,2)/
√

Ω1,1Ω2,2 for the imaginary part.

Our basic assumption on the regularity of the spectral density is the following.

(C-a) −M + β/2 + 1/2 < d` < M for all ` = 1, . . . , p, M > 2

Parameter M is the number of vanishing moments and it also corresponds to the regularity of

CFW-C(M,L) filters. Parameters (d`)`=1,...p and β characterize the dependence in the spectral

domain (M-1)-(M-2).

Let us first prove the following approximation using the regularity of the filters.

9



Proposition 3. Let X be a p-multivariate long range dependent process with long memory pa-

rameters d1, . . . , dp with normalized spectral density f(·) satisfying (M-1) with short-range behavior

(M-2). Consider {Wj,k(`), (j, k) ∈ Z, ` = 1, . . . , p} the wavelet coefficients obtained with CFW-

C(M,L) filters. Suppose that (C-a) hold. Then we have, for all j > 0, k ∈ Z,∣∣∣∣Cov(Wj,k(`),Wj,k(m))− 2j(d`+dm)Ω`,m

∫ ∞
−∞

esign(λ)φ`,m |λ|−d`−dm
∣∣∣ψ̂(λ)

∣∣∣2 dλ

∣∣∣∣ 6 C1 2j (d`+dm−β) ,

where C1 is a constant only depending on M,L and Cf , β, ‖Ω‖ , {d`, ` = 1, . . . , p}.

The proof is given in Appendix.

The result follows from the fact that CFW-C(L,M) satisfy the assumptions (W1)–(W4) described

in Moulines et al. [2008] and Achard and Gannaz [2016] (see Appendix). Note that it does not

depend on the quasi-analytic property.

The use of the Proposition 3 in inference needs the evaluation of the integral depending of |ψ̂(λ)|2.

With real wavelets, the approximation is given in Proposition 3 of Achard and Gannaz [2016]. Since

|ψ̂(λ)|2 is a real and symmetric function, the imaginary part of the integral is null. Consequently,

a cosine term with the phase appears in the approximation of the covariance. That is, we would

obtain in this framework an approximation of the form∣∣∣∣Cov(Wj,k(`),Wj,k(m))− 2j(d`+dm) Ω`,m cos(φ`,m) 2

∫ ∞
0
|λ|−δ

∣∣∣ψ̂(λ)
∣∣∣2 dλ

∣∣∣∣ 6 C ‖Ω‖ 2j (d`+dm−β).

It is straightforward that parameters {Ω`,m, φ`,m} are not identifiable. Estimation can be derived

in the case of a parametric phase, typically φ`,m = π
2 (d` − dm) (see Achard and Gannaz [2016]).

In the case of quasi-analytic wavelets, the imaginary part no longer vanishes. The control of quasi-

analyticity, given by Theorem 2, leads to the following result.

Proposition 4. Let X be a p-multivariate long range dependent process with long memory parame-

ters d1, . . . , dp with normalized spectral density satisfying (M-1)–(M-2). Consider {Wj,k(`), (j, k) ∈
Z, ` = 1, . . . , p} the wavelet coefficients obtained with CFW-C(M,L) filters. Suppose that (C-

a) hold and that L goes to infinity, with L2−2j → 0 when j goes to infinity. Then, for all

10



(`,m) ∈ {1, . . . , p}2,∣∣∣∣2−j(d`+dm) Cov(Wj,k(`),Wj,k(m))−Θ`,m 4

∫ ∞
0
|λ|−d`−dm

∣∣∣ψ̂h(λ)
∣∣∣2 dλ

∣∣∣∣
6 C2

(
2−jβ + L2−2j + L−(2M−d`−dm+1)

)
, (9)

where C2 is a constant only depending on M and Cf , β, ‖Ω‖ , {d`, ` = 1, . . . , p}.

The proof is given in Appendix.

Convergence (9) can be written as follows: when 2−jβ+L2−2j+L−1 → 0, for all (`,m) ∈ {1, . . . , p}2,

lim
j→∞

2−j (d`+dm)Cov(Wj,k(`),Wj,k(m)) = G`,m, (10)

with G`,m = Θ`,mK(d` + dm) and K(δ) = 4

∫ ∞
0
|λ|−δ

∣∣∣ψ̂h(λ)
∣∣∣2 dλ .

Common-factor wavelets, as stated by Proposition 4, have the ability of recovering simultaneously

the magnitude and the phase. Observe that for real wavelets the rate of convergence of the limit

above is 2jβ. The rate with CFW-C(M,L) depends on L.

The specificity of CFW-C(M,L) filters is that the quality of the analyticity approximation is based

only on parameter L, as written in Proposition 4. Nevertheless, if we want to have an approximation

with the same quality than the one obtained with real wavelets, the choice of L is more constrained.

This tradeoff is due to the fact that the greater L, the better analyticity approximation, but the

larger the length of the wavelets support. In practice, due to numerical instability, choosing high

values (i.e. > 8) is not tractable. As the simulations developed in Section 5 show, nevertheless,

the results have a good quality even with a smaller value of L.

3.3 Quality of approximation

To evaluate empirically the accuracy of the approximation, let us compare the empirical covariances

of the example of Section 3.1 to the approximation of Proposition 3. Figure 2 displays the sample

covariance of wavelet coefficients, respectively with real Daubechies filters with M = 4, CFW-

PR(4,4) and CFW-C(4,4) filters. Observe that the covariance term is complex, and only the
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magnitude is displayed in Figure 2.

Figure 2 shows the difference between our theoretical findings given in Proposition 3 and the simula-

tions for both CFW-PR(M,L) and CFW-(M,L). To better evaluate the quality of the approximation

with CFW-C(M,L) filters, let us display the same figure without the first scale. Figure 3 shows

that indeed the approximation is improving when the scale j increases. Nevertheless, the difference

between results obtained with simulations at first scales (corresponding to the highest frequencies)

and the approximation given in Proposition 3 is bigger using CFW-C(4,4) filters in comparison to

Daubechies and CFW-PR(4,4) filters. Hence, the lowest scale used in estimation may be taken

higher with CFW-C(M,L) filters. This choice may reduce the bias but increase the variance.

4 Estimation

Let j1 > j0 > 1 be respectively the upper and the lower resolution levels used in the estimation

procedure. The estimation is based on the vectors of wavelet coefficients {Wj,k, j0 6 j 6 j1, k ∈ Z}.
The total number of non-zero coefficients used for estimation is then n =

∑j1
j=j0

nj . Note that if

2−jL is bounded and 2−jN →∞, then nj is equivalent to 2−jN when j goes to infinity.

We will make the following assumption:

(C-b) −M + β/2 + 1/2 < d` < M − 1/2 for all ` = 1, . . . , p, M > 2 and 0 < β < 2.

This condition is slightly stronger than (C-a), but it is still not restrictive. It allows to have simpler

expressions in the conditions for convergence.
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Figure 2: Boxplots of sample correlations between wavelet coefficients at different scales for the
bivariate process defined in (8). The first row gives the variance of the first component, the second
row gives the magnitude of the covariance and the third row gives the variance of the second
component. Each column corresponds to a different wavelet filters, form left to right: Daubechies’
real wavelets with M=4, CFW-PR(4,4) and CFW-C(4,4). Horizontal red lines correspond to the
approximation given by Proposition 3.
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Figure 3: Boxplots of sample correlations between CFW-C(4,4) coefficients at different scales for the
bivariate process defined in (8). From left to right, panels correspond respectively to the variance
of the first component, the magnitude of the covariance and the variance of the second component.
Horizontal red lines correspond to the approximation given by Proposition 3.

4.1 Estimation procedure

Based on approximation (10), the objective function L(·) is defined by the wavelet Whittle approx-

imation of the negative log-likelihood (see Achard and Gannaz [2016])

L(G,d) =
1

n

j1∑
j=j0

[
nj log det (Γj(d) G Γj(d)) +

nj∑
k=0

Wj,k
T

(Γj(d) G Γj(d))−1 Wj,k

]

where Γj(d) is the diagonal matrix with diagonal entries 2−j d1 , . . . , 2−j dp , and G is the matrix

with elements G`,m = Θ`,mK(d` + dm), 1 6, `,m 6 p. We can rewrite L(·) as

L(G,d) =
1

n

j1∑
j=j0

[
nj log det (Γj(d) G Γj(d)) + trace

(
(Γj(d) G Γj(d))−1 I(j)

)]
, (11)

where I(j) =
∑nj

k=0 Wj,kWj,k
T

denotes the (non-normalized) empirical scalogram at scale j.

Note that when G is an Hermitian positive definite matrix, for all j > 0 and for all d ∈ (−0.5,∞)p,

det(Γj(d) G Γj(d)) is real and strictly positive and trace
(
(Γj(d) G Γj(d))−1Ij

)
is real. The ob-

jective function L(G,d) is hence well-defined for G in the set of Hermitian matrices and for all
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d ∈ Rp, and takes its values in R.

Differentiating expression (11) with respect to the matrix G yields

∂L
∂G

(G,d) =
1

n

j1∑
j=j0

[
njG

−1 −G−1Γj(d)−1I(j)Γj(d)−1G−1
]T
,

where the exponent T denotes the transpose operator. Some keys for complex matrix differentiation

can be found in Hjorungnes and Gesbert [2007]. Hence, the minimum for fixed d is attained at

Ĝ(d) =
1

n

j1∑
j=j0

Γj(d)−1I(j)Γj(d)−1.

In Shimotsu [2007] the resulting objective function only depends of d since the phases are para-

metric while in Baek et al. [2020] the authors consider a general form of phases. In both Shimotsu

[2007] and Baek et al. [2020], with Fourier-based approach, a real matrix G(d) and complex valued

matrices Γj(d), including the phases
(
φ`,m

)
`,m=,,...,p

are considered. G(d) and Γj(d) are estimated

in a second step, together with parameter d, minimizing the objective function obtained when re-

placing G by Ĝ(d) in (11). Yet, our procedure enables to estimate the magnitude of the correlation

even when the phase is equal to π/2, with imaginary terms in G.

Replacing G by Ĝ(d), the objective function is defined by

R(d) := L(Ĝ(d),d)− p = log det(Ĝ(d))− 1

n

j1∑
j=j0

nj log(det (Γj(d)Γj(d)) .

Since Γj(d) = Diag
(
2−jd

)
, we obtain

R(d) = log det(Ĝ(d)) + 2 log(2)

 1

n

j1∑
j=j0

jnj

( p∑
`=1

d`

)
.

The vector of the long-memory parameters d is estimated by d̂ = argmindR(d).

In a second step of estimation we define Ĝ(d̂), estimator of G. And we recover an estimation of

Θ by

Θ̂`,m = Ĝ`,m(d̂) /K(d̂` + d̂m) .
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4.2 Asymptotic convergence

Following Moulines et al. [2008] and Achard and Gannaz [2016], we introduce an additional condi-

tion on the variance of the scalogram {I(j)}. Examples of linear processes satisfying this condition

can be found in Proposition 4 of Achard and Gannaz [2016].

Condition (C)

For all `,m = 1, . . . , p, sup
n

sup
j>0

|Var (I`,m(j))|
nj22j(d`+dm)

< ∞ .

Let d0, G0 and Θ0 denote the true values of the parameters. The consistency of the estimators

can be established as in Achard and Gannaz [2016].

Theorem 5. Suppose that (C-b) and assumptions of Proposition 4 hold. Assume that Condition

(C) is satisfied. Let j0 and j1 be such that 2−j0β + N−1/22j0/2 → 0 and j0 < j1 6 jN with

jN = max{j, nj > 1}.

Let j0 and j1 satisfy log(N)2(2−j0β +N−1/22j0/2)→ 0 and j0 < j1 6 jN .

Consider CFW-C(M,L) filters with M > 2 and L2−j0 + log(N)3 L−1)→ 0.

Then , ∀(`,m) ∈ {1, . . . , p}2,

d̂− d0 = OP(L2−2j0 + log(N)L−1 + 2−j0β +N−1/22j0/2),

Ĝ`,m(d̂)−G`,m(d0) = OP(log(N)(L2−2j0 + log(N)L−1 + 2−j0β +N−1/22j0/2)),

Θ̂`,m −Θ0
`,m = OP(log(N)(L2−2j0 + log(N)L−1 + 2−j0β +N−1/22j0/2)).

Taking 2j0 = N1/(1+2β) and N 2j0β 6 L 6 2j0,

d̂− d0 = OP(N−β/(1+2β)).

Elements of proof are given in Appendix.

The condition on the scales used in estimation, log(N)2(2−j0β + N−1/22j0/2) → 0, states that
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highest frequencies should be removed. As explained in Achard and Gannaz [2019], the number of

scales that should be removed depends on the short-range dependence through β. In practice, j0

can be chosen applying a bootstrap procedure on the time series, see Achard and Gannaz [2019].

Next, the parameters M and L in CFW-C(M,L) filters are subject to the conditions (C-b) and

L2−j0 + log(N)3 L−1) → 0. Condition (C-b) depends only on M . It is not restrictive and very

similar to the one given in Achard and Gannaz [2016] with real filters. The parameter L quantifies

the quality of the analytic approximation of CFW-C(M,L) filters. The condition log(N)3 L−1 → 0

ensures that L is high enough so that this approximation is satisfactory. Alternatively, L should

not be too high, condition L 2−j0 → 0 ensures that the size of the support of the wavelets remains

reasonable. As discussed in Section 5, in practice, the choice of L is not critical, but this condition

influences the choice of j0. It must be higher than the usual choice for real filters. This also appears

in the discussion in Section 3.3, where it can be seen that the behavior of the wavelet coefficients

at first scales differs from the other scales.

4.3 Asymptotic normality

A useful result in estimation is the asymptotic normality. For real wavelet-based local Whittle

estimation, in multivariate context, it has been studied by Gannaz [2020]. The proof of the latter

can be extended to common-factor wavelets.

Let us introduce an additional assumption on the process X.

(M-3) There exists a sequence {A(D)(u)}u∈Z in Rp×p such that
∑

u∈Z maxa,b=1,...,p |A
(D)
a,b (u)|2 < ∞

and

∀t ∈ Z,
(
LDaXa(t)

)
a=1,...,p

=
∑
u∈Z

A(D)(t+ u)ε(u)

with ε(t) weak white noise process, in Rp. Let Ft−1 denote the σ-field of events generated

by {ε(s), s 6 t− 1}. Assume that ε satisfies E[ε(t)|Ft−1] = 0, E[εa(t)εb(t)|Ft−1] = 1a=b and

E[εa(t)εb(t)εc(t)εd(t)|Ft−1] = µa,b,c,d with |µa,b,c,d| 6 µ∞ <∞, for all a, b, c, d = 1, . . . , p. For

all (a, b) ∈ {1, . . . , p}2, for all λ ∈ R, the sequence (2−j da |A(D)∗
a,b (2−jλ)|)j>0 is convergent as j

goes to infinity.
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For u > 0, (δ1, δ2) ∈ (−α,M)2, define Ĩu(δ1, δ2)

Ĩu(δ1, δ2) =
2π

K(δ1)K(δ2)

∫ π

−π
D̃u,∞(λ; δ1)D̃u,∞(λ; δ2) dλ ,

where Du,∞(λ; δ) is an approximation of the cross-spectral density between wavelet coefficients

{W(j, k), k ∈ Z} and {W(j + u, 2uk + τ), τ = 0, . . . , 2u − 1, k ∈ Z},

Du,τ (λ; δ) =
∑
t∈Z
|λ+ 2tπ|−δψ̂(λ+ 2tπ) 2u/2ψ̂(2u(λ+ 2tπ)) e−i2uτ(λ+2tπ) ,

D̃u,∞(λ; δ) =
2−u−1∑
τ=0

Du,τ (λ; δ) .

We introduce

Id∆(δ1, δ2) =
2

κ∆
Ĩ0(δ1, δ2)

+
2

κ2
∆

∆∑
u=1

(2uδ1 + 2uδ2) 2−u
2− 2−∆+u

2− 2−∆
((u+ η∆−u − η∆)(η∆−u − η∆) + κ∆−u) Ĩu(δ1, δ2)

if ∆ <∞,

Id∞(δ1, δ2) = Ĩ0(δ1, δ2) +
∞∑
u=1

(2uδ1 + 2uδ2) 2−u Ĩu(δ1, δ2) , if ∆ =∞.

Define also

G � Id �G(∆) = Diag
(
vec
(
G0
)) (
Id∆(d0

a + d0
b , d

0
a′ + d0

b′)(a,b),(a′,b′)∈{1,...,p2}
)
Diag

(
vec
(
G0
))
. (12)

Additionally, let us denote

IG∆(δ1, δ2) = Ĩ0(δ1, δ2) +
∆∑
u=1

(2uδ1 + 2uδ2)2−u
2− 2−∆+u

2− 2−∆
Ĩu(δ1, δ2) if ∆ <∞,

IG∞(δ1, δ2) = Ĩ0(δ1, δ2) +
∞∑
u=1

(2uδ1 + 2uδ2)2−u Ĩu(δ1, δ2) if ∆ =∞.
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Let us also define

G � IG �G(∆) = Diag
(
vec
(
G0
)) (
IG∆(d0

a + d0
b , d

0
a′ + d0

b′)(a,b),(a′,b′)∈{1,...,p2}
)
Diag

(
vec
(
G0
))
. (13)

The asymptotic normality of the estimator of the long-memory parameters is established by our

next theorem.

Theorem 6. Suppose that conditions of Theorem 5 are satisfied and that assumption (M-3) hold.

Let j0 < j1 6 jN with jN = max{j, nj > 1} such that

j1 − j0 → ∆ ∈ {1, . . . ,∞}, log(N)2(N2−j0(1+2β) +N−1/22j0/2)→ 0.

Define n =
∑j1

j=j0
nj.

Consider CFW-C(M,L) filters with M > 2 and log(N)2N1/22−j0/2(L2−j0 + L−1)→ 0.

Then,

•
√
n(d̂−d0) converges in distribution to a centered Gaussian distribution with a variance equal

to

V(d)(∆) =
1

2 log(2)2
(G0−1 ◦G0 + Ip)

−1 Υ(∆) (G0−1 ◦G0 + Ip)
−1,

where Ip is the identity matrix in Rp×p and with entry (a, a′) of Υ(∆), for (a, a′) ∈ {1, . . . , p}2,

given by

Υa,a′(∆) =
∑

b,b′=1,...,p

(G0−1)a,b(G
0−1)a′,b′

(
G � Id �G(a,a′),(b,b′)(∆) + G � Id �G(a,b′),(a′,b)(∆)

)
where quantities G � Id �G(∆) are defined by (12).

• vec
(√

n
(
Ĝ(d̂)−G0

))
converges in distribution to a centered Gaussian distribution with a

variance equal to VG(∆), with

V
(G)

(a,b),(a′,b′)(∆) = G � IG �G(a,a′),(b,b′)(∆) + G � IG �G(a,b′),(a′,b)(∆)

where quantities G � IG �G(∆) are defined by (13).
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The proof is very similar to the one of Gannaz [2020]. Some points are detailed in Appendix.

As detailed in Gannaz [2020], these results allow to build hypothesis tests on the long-memory

parameters and on the long-run covariance. The conditions on the hyperparameters are very

similar to the ones obtained for the consistency, with only an additional log(N) term.

5 Simulation study

In this section, we verify the accuracy of the covariance approximation given in Proposition 4 and the

consistency of the parameters estimates provided in Proposition 5 on simulated data. We consider

1000 Monte-Carlo simulations of bivariate long-memory processes X observed at X(1), . . . ,X(N)

with N = 212. For each process, we compute the wavelet coefficients using CFW-PR(4,4) and CFW-

PR(4,4) filters. We also compare the quality of estimation of parameters d to the one given by real

wavelets, namely Daubechies’ wavelets with 4 vanishing moments. We choose here not to compare

with Fourier-based procedure since we want to consider non-stationary cases. For a comparison

between Fourier-based and wavelet-based local Whittle estimations in such a framework, we refer

the reader to Achard and Gannaz [2019].

The estimated parameters are d = (d1, d2), the magnitude of the long-run covariance Ω, the phase

φ = φ1,2 and the long-run correlation ρ =
Ω1,2√

Ω1,1Ω2,2
. For each parameter, we will evaluate the

quality of estimation by the bias, the standard deviation (std) and the Root Mean Squared Error,

RMSE =
√

bias2 + std2.

Two models are considered: models admitting a linear representation called ARFIMA and multi-

variate fractional Brownian motions (mFBM).

5.1 ARFIMA models

We first provide an estimation example on linear time series. Let ξ be a p-dimensional white noise

with E[ξ(t) | Ft−1] = 0 and E[ξ(t)ξ(t)T | Ft−1] = Σ with Σ positive definite, where Ft−1 is the

σ-field generated by {ξ(s), s < t}. The spectral density of ξ satisfies fξ(λ) = Σ.
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Let (Ak)k∈N be a sequence in Rp×p with A0 the identity matrix and
∑∞

k=0 ‖Ak‖2 < ∞. Let A(·)
be the discrete Fourier transform of the sequence, A(λ) =

∑∞
k=0 Ake

ikλ. We assume that |A(L)|
has all its roots outside the unit circle so that A(·)−1 is defined and smooth on R. We also define

(Bk)k∈N to be a sequence in Rp×p with B0 the identity matrix and
∑∞

k=0 ‖Bk‖2 <∞. Let B(·) be

the discrete Fourier transform of the sequence, B(λ) =
∑∞

k=0 Bke
ikλ.

Let us define the process X

A(L) Diag
(

(1− L)d
)

X(t) = B(L)ξ(t). (14)

The spectral density satisfies

f(λ) = (1− e−iλ)−dA(e−iλ)−1B(e−iλ)fξ(λ)B(eiλ)TA(eiλ)T
−1

(1− eiλ)−d.

In particular

f`,m(λ) ∼λ→0+ G`,me
−iπ/2(d`−dm)λ−(d`+dm) ,

with G = A(0)−1B(0)fξ(λ)B(0)TA(0)T
−1

= A(0)−1B(0)ΣB(0)TA(0)T
−1

a real valued matrix.

Condition (M-2) is satisfied with β = min`(d`). In this case f(0+) = f(0−).

This corresponds to Model A of Lobato [1997]. Note that this model satisfies the definition of

LRD processes of Kechagias and Pipiras [2014] when fξ(λ) ∼λ→0+ Σ, this is satisfied when ξ is a

white-noise process.

Following (14), we have simulated {X(1), . . .X(N)} in (14) with N = 212, null Ak and Bk for

k > 0. That is, there is no short-range terms in the model. We consider three sets of values for d,

d ∈ {(0.2, 0.2), (0.2, 0.4), (0.2, 0.8)}. Matrix Σ is equal to

(
1 ρ

ρ 1

)
, with ρ = 0.8. The phase is

equal to π(d1− d2)/2 which is respectively equal to 0, π/10, 3π/10. Simulations were done using R

package multiwave [Achard and Gannaz, 2015].

Remark. The objective of this simulation part is to compare estimations based respectively on real

and complex wavelet filters. Hence, only simulations with null Ak and Bk are considered. We refer

to Achard and Gannaz [2019] for results with non null AR and MA parts, with real wavelet filters.

Figure 4 displays the boxplots of the correlations between the wavelet coefficients obtained by
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CFW-PR(4,4) filter at different scales. It illustrates that the approximation of Proposition 4 is

accurate, especially for the high scales (lowest frequencies), even if it has not been established

theoretically for such filters. The figure shows that the approximation of Proposition 4 is slightly

more accurate for the real part of wavelet correlations than for the imaginary part.
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(c) d = (0.2, 0.8)
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Figure 4: Boxplots of correlation between CFW-PR(4,4) coefficients at different scales for ARFIMA
processes. First row gives the real part of the correlations and second row gives the imaginary part.
Each column corresponds to a given value of parameter d. Horizontal red lines correspond to the
approximation given by Proposition 4, ρ cos(φ)rK for the real part and ρ sin(φ)rK for the imaginary
part, with rK = K(d1 + d2)/

√
K(2 d1)K(2 d2).

Results for the estimation of the long-memory parameters d are displayed respectively in Table 1 for

CFW-PR(4,4) filter and in Table 2 for CFW-C(4,4) filter. Based on Achard and Gannaz [2019], the

only hyperparameter that needs to be chosen is the minimal scale j0. The example in Section 3.3

illustrates that the behaviors of Daubechies’ wavelets and CFW-PR(M,L) are very similar with

respect to the scales. Hence, for both of them, we consider j0 = 1 when both components of the

time series are stationary, and j0 = 2 when a component is not stationary. These choices are

motivated by previous studies done in Achard and Gannaz [2019].
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Table 1 shows that the estimation of d with CFW-PR(M,L) filters is good and similar to the

Daubechies’ real wavelet-based estimation.

Concerning CFW-C(M,L) estimation, it has been shown in Section 3.3 that the approximation of

Proposition 3 is not accurate for the first scales. Therefore, results are displayed with j0 = 4 in

each case, to reduce the bias of the long-run covariance estimation. Since less scales are available in

the procedure, the variance increases and the quality of estimation is lower than the one based on

CFW-PR(M,L). Table 2 illustrates that the quality of estimation with CFW-C(M,L) filters present

a good accuracy, however lower than the one with CFW-PR(M,L) filters.

d bias std RMSE PR/Real

0.2 -0.0066 0.0165 0.0178 1.0375
0.2 -0.0069 0.0156 0.0171 1.0228

0.2 -0.0080 0.0165 0.0183 1.1537
0.4 -0.0138 0.0159 0.0211 1.1888

0.2 -0.0094 0.0255 0.0272 0.9072
0.8 -0.0145 0.0270 0.0307 1.3319

Table 1: Results for the estimation of long-memory parameters d with CFW-PR(4,4) filters us-
ing ARFIMA processes. j0 = 1 for d ∈ {(0.2, 0.2), (0.2, 0.4)} and j0 = 2 for d ∈ {(0.2, 0.8)}.
PR/Real denotes the ratio between the RMSE given by CFW-PR(4,4) filter and the RMSE given
by Daubechies’ real filter.

d bias std RMSE C/PR

0.2 -0.0152 0.0401 0.0429 2.4155
0.2 -0.0145 0.0392 0.0418 2.4504

0.2 -0.0158 0.0394 0.0425 2.3229
0.4 -0.0150 0.0385 0.0413 1.9626

0.2 -0.0166 0.0397 0.0430 1.5837
0.8 -0.0163 0.0390 0.0422 1.3762

Table 2: Results for the estimation of long-memory parameters d with CFW-C(4,4) filters using
ARFIMA processes. j0 = 4. C/PR denotes the ratio between the RMSE given by CFW-C(4,4)
filter and the RMSE given by CFW-PR(4,4) filter.

Table 3 and Table 4 give the results for the covariance structure estimation, respectively for CFW-
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PR(4,4) filter and for CFW-C(4,4) filter. The quality of estimation using CFW-PR(4,4) improves

significantly the results obtained with real wavelets. This is not the case for CFW-C(4,4) filters

where the quality of estimation deteriorates.

With CFW-PR(M,L) filters, the results for the phase parameter φ are less satisfactory. A bias

term can be observed when the phase φ increases. This term has for example an order of π/10

when estimating the phase of 3π/10 corresponding to the case d = (0.2, 0.8). Yet our results

seem comparable to the one obtained in Baek et al. [2020]. Estimating the phase is challenging.

Interestingly, the quality of the estimation based on CFW-C(M,L) filters is much stable with respect

to the phase values. Indeed, even when the phase value increases, the bias remains constant.

d bias std RMSE PR/Real

( 0.2 , 0.2 ) Ω1,1 0.0087 0.0227 0.0243 0.5089
Ω1,2 0.0076 0.0204 0.0218 0.5509
Ω2,2 0.0092 0.0229 0.0247 0.5184

correlation 4e-04 0.0057 0.0057 0.9702
phase 1e-04 0.0081 0.0081 .

( 0.2 , 0.4 ) Ω1,1 0.0082 0.0229 0.0243 0.4919
Ω1,2 0.0028 0.0206 0.0208 0.4883
Ω2,2 0.0146 0.0231 0.0273 0.3142

correlation -0.0063 0.0058 0.0085 0.6079
phase 0.1879 0.0083 0.1880 .

( 0.2 , 0.8 ) Ω1,1 -0.0184 0.0365 0.0409 0.8883
Ω1,2 -0.086 0.0292 0.0908 0.4163
Ω2,2 -0.1145 0.0352 0.1198 2.1877

correlation -0.0342 0.0083 0.0351 0.1788
phase 0.2790 0.017 0.2795 .

Table 3: Results for the estimation of matrices Θ with CFW-PR(4,4) filters on ARFIMA processes.
j0 = 1 for d ∈ {(0.2, 0.2), (0.2, 0.4)} and j0 = 2 for d ∈ {(0.2, 0.8)}.

We can be observe that estimation with CFW-C(4,4) filters has a lower bias and higher variance

than estimation with CFW-PR(4,4) filters. The higher j0, the lower the bias, but the higher the

variance. For the estimation of d, the main difficulty is to control the variance depending on the

choice of j0. Since the bias for the phase estimation is critical, higher j0 for CFW-PR(4,4) filters

can be considered. Moreover, as illustrated in Figure 4, the quality of the approximation of the

imaginary part of the correlation is not accurate for the three highest scales. Hence, to ensure a
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d bias std RMSE C/PR

( 0.2 , 0.2 ) Ω1,1 0.0488 0.175 0.1817 7.5165
Ω1,2 0.0367 0.1252 0.1305 6.0138
Ω2,2 0.0451 0.1685 0.1744 7.1674

correlation 0.0012 0.0173 0.0173 2.9994
phase 8e-04 0.0367 0.0367 4.5335

( 0.2 , 0.4 ) Ω1,1 0.0469 0.1726 0.1789 7.3547
Ω1,2 0.0124 0.1198 0.1205 5.7810
Ω2,2 -0.0086 0.1628 0.1630 5.9735

correlation -3e-04 0.0172 0.0172 2.0196
phase 0.0225 0.0364 0.0428 0.2278

( 0.2 , 0.8 ) Ω1,1 0.0476 0.1715 0.178 4.3507
Ω1,2 -0.0266 0.1156 0.1186 1.3064
Ω2,2 -0.0973 0.1499 0.1787 1.4916

correlation -0.0026 0.0175 0.0177 0.5036
phase 0.0645 0.0357 0.0737 0.2637

Table 4: Results for the estimation of matrices Θ with CFW-C(4,4) filters on ARFIMA processes.
j0 = 4. C/PR denotes the ratio between the RMSE given by CFW-C(4,4) filter and the RMSE
given by CFW-PR(4,4) filter.

good approximation and consequently a good estimation for the correlation and the phase, it seems

more appropriate to remove the three first scales and to consider j0 = 4 also for CFW-PR(M,L).

Table 5 and Table 6 display the results when considering j0 = 4, with CFW-PR(M,L), respectively

for the long-run dependence parameter d and for the long-run correlation and the phase. Results

for the long-run covariance are omitted, for simplicity. Table 5 shows that even if the bias of d̂

increases, it has a similar order of magnitude. Interestingly, Table 6 highlights that the quality of

estimation of CFW-C(4,4) and CFW-PR(4,4) filters are then very similar. In particular, the bias

of the phase and of the correlation decrease, as illustrated in Table 3. With j0 = 4, the RMSE is

significantly lower than Baek et al. [2020]’s Fourier-based local Whittle estimator. This approach,

hence, improves significantly the estimation of the phase with respect to others procedures. Observe

that it is nevertheless sensitive to the choice of j0.
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d bias std RMSE PR/Real

0.2 -0.002 0.0412 0.0412 1.1056
0.2 -0.0037 0.0419 0.0421 1.1177

0.2 -0.0029 0.041 0.0411 1.0477
0.4 -0.0035 0.0418 0.0419 1.056

0.2 -0.0054 0.0409 0.0412 0.9472
0.8 -0.0078 0.0423 0.0430 0.9049

Table 5: Results for the estimation of long-memory parameters d with CFW-PR(4,4) filters on
ARFIMA processes. For real filter, j0 = 1 for d ∈ {(0.2, 0.2), (0.2, 0.4)} and j0 = 2 for d ∈
{(0.2, 0.8)}. For CFW-PR(4,4) filter, j0 = 4. PR/Real denotes the ratio between the RMSE given
by CFW-PR(4,4) filter and the RMSE given by Daubechies’ real filter.

d bias std RMSE

( 0.2 , 0.2 ) correlation 8e-04 0.0166 0.0166
phase 0 0.0340 0.0340

( 0.2 , 0.4 ) correlation 2e-04 0.0164 0.0164
phase 0.0241 0.0345 0.0421

( 0.2 , 0.8 ) correlation -0.0033 0.0169 0.0172
phase 0.0654 0.0341 0.0738

Table 6: Results for the estimation of matrices Θ with CFW-PR(4,4) filters on ARFIMA processes
with j0 = 4.

5.2 Multivariate fractional Brownian motions

We now consider a multivariate fractional Brownian motion (mFBM). Since mFBM are not station-

ary, Fourier-based estimation is not available (without a differentiation). A specificity of mFBM is

that it does not have a linear representation, even if it can be seen as the limit process of a linear

representation, see Amblard et al. [2013].

The p-multivariate fractional Brownian motion (X(t))t∈R of long-memory parameter d, for any

d ∈ (0.5, 1.5)p is a process satisfying the three following properties:
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• X(t) is Gaussian for any t ∈ R;

• X is self-similar with parameter d− 1/2, i.e. for every t ∈ R and a > 0, (X1(at), . . . , Xp(at))

has the same distribution as (ad1−1/2X1(t), . . . , adp−1/2Xp(t));

• the increments are stationary.

Another usual parametrization is the one with Hurst parameters, equal to d− 1/2.

We introduce the following quantities, for 1 6 `,m 6 p:

σ` = E[X`(1)2]1/2

r`,m = rm,` = Cor(X`(1), Xm(−1))

η`,m = −ηm,` = (Cor(X`(1), Xm(−1))− Cor(X`(−1), Xm(1)))/c`,m

with c`,m =

2(1− 2d`+dm−1) if d` + dm 6= 1,

2 log(2) if d` + dm = 1,

where Cor(X1, X2) denotes the Pearson correlation between variables X1 and X2. The quan-

tities (η`,m)`,m=1,...,p measure the dissymmetry of the process. A mFBM is time reversible if

the distribution of X(−t) is equal to the distribution of X(t) for every t. Didier and Pipiras

[2011] established that zero-mean multivariate Gaussian stationary processes X is equivalent to

E[X`(t)Xm(s)] = E[X`(s)Xm(t)] for all (s, t), which corresponds to the definition of time reversibil-

ity used in Kechagias and Pipiras [2014]. A mFBM is time-reversible if and only if η`,m = 0 for all

(`,m).

Coeurjolly et al. [2013] characterize the spectral behaviour of the increments of a mFBM. If f
(1,1)
`,m

denotes the cross-spectral density of (LX`,LXm), then

f
(1,1)
`,m (λ) = 2 Ω`,m

1− cos(λ)

|λ|d`+dm
eiφ`,m ,
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with

Ω`,m =

σ`σmΓ(d` + dm)
(
r2
`,m cos2(π2 (d` + dm)) + η2

`,m sin2(π2 (d` + dm))
)1/2

if d` + dm 6= 2

σ`σmΓ(d` + dm)
(
r2
`,m + η2

`,m
π2

4

)1/2
if d` + dm = 2

φ`,m =

atan
(
η`,m
r`,m

tan(π2 (d` + dm))
)

if d` + dm 6= 2

atan
(
η`,m
r`,m

π
2

)
if d` + dm = 2.

Let Θ be given by Θ = (Ω`,me
iφ`,m)`,m=1,...,p. When λ tends to 0, the spectral density f

(1,1)
`,m (λ) is

equivalent to Θ`,m|λ|−(d`+dm−2). Thus, assumption (M-1) holds. Assumption (M-2) is satisfied for

any 0 < β < 2. We can verify easily that time-reversibility is still equivalent to φ`,m = 0 in this

setting.

Note that the set of parameters {d`, σ`, r`,m, η`,m, `,m = 1, . . . , p} is not identifiable. Indeed, for

0 < a < 1, {d`, σ`, r`,m, η`,m, `,m = 1, . . . , p} and {d`,
√
a σ`, r`,m/a, η`,m/a, `,m = 1, . . . , p} lead to

the same expressions of f
(1,1)
`,m (·). It thus seems reasonable to parameterize the fractional Brownian

motion by {d`,Θ`,m, `,m = 1, . . . , p}.

We consider two mFBM, both with parameters σ1 = σ2 = 1 and d = (1, 1.2).

Case 1. η1,2 = 0.9, r1,2 = 0.6.

The phase φ1,2 is approximately equal to π/7 and Ω '

(
1.000 0.699

0.699. 1.005

)
, giving a long-run

correlation ρ ' 0.70.

Case 2. η1,2 = −0.6, r1,2 = 0.2.

The phase φ1,2 is approximately equal to −π/4 and Ω '

(
1.000 0.293

0.293 1.005

)
, giving a long-run

correlation ρ ' 0.29.

Simulations were done using R functions provided by J-F Coeurjolly at https://sites.google.

com/site/homepagejfc/software.

Figure 5 represents the boxplots of CFW-PR(4,4) wavelet correlations at different scales in Case

1 and in Case 2. The good behavior of approximation is observed except for highest frequencies.
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Identical observations are obtained for CFW-C(4,4) filters, hence the figure is not displayed here.

We now consider the local Whittle estimation of the parameters. Based on the discussion of

Section 5.1, and on Figure 5, we fix j0 = 4. Table 7 and Table 8 highlight the good behavior

of the estimation of long-memory parameters d respectively for CFW-PR(4,4) and CFW-C(4,4)

filters. Again, when considering j0 = 4 for both of them, estimation procedures are equivalent for

both common-factor wavelets. By comparison to the real wavelet-based estimation (with j0 = 2 as

suggested by Achard and Gannaz [2019]), the RMSE is increased. This is mainly due to the choice

of the hyperparameter j0.

d bias std RMSE ratio PR/Real

Case 1 1 -0.0065 0.0464 0.0469 1.5577
1.2 -0.0059 0.0475 0.0478 2.0886

Case 2 1 -0.0051 0.0510 0.0513 1.6812
1.2 -0.0035 0.0515 0.0516 1.9884

Table 7: Results for the estimation of long-memory parameters d with CFW-PR(4,4) filter on
mFBMs. Hyperparameter j0 satisfies j0 = 4 for CFW-PR(4,4) and j0 = 2 for real filters.
PR/Real denotes the ratio between the RMSE given by CFW-PR(4,4) filter and the RMSE given
by Daubechies’ real filter.

d bias std RMSE ratio C/PR

Case 1 1 -0.0155 0.0409 0.0437 0.9323
1.2 -0.0133 0.0402 0.0423 0.8849

Case 2 1 -0.0177 0.0448 0.0482 0.9397
1.2 -0.0116 0.0473 0.0487 0.9441

Table 8: Results for the estimation of long-memory parameters d with CFW-C(4,4) filter on
mFBMs. Hyperparameter j0 satisfies j0 = 4. C/PR denotes the ratio between the RMSE given by
CFW-C(4,4) filter and the RMSE given by CFW-PR(4,4) filter.

Table 9 and Table 10 give the results obtained for the estimation of the covariance structure, that

is, Ω, ρ and φ. It is not possible to compare our results with alternative non parametric procedures

because real wavelet-based estimation cannot estimate the long-run covariance or correlation but

only its real part, and Fourier-based estimations are not valid for non-stationary time series.
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Figure 5: Boxplots of correlation between CFW-PR(4,4) coefficients at different scales for the
simulated mFBM in Case 1 (left column–(a)) and in Case 2 (right column–(b)). First row gives
the real part of the correlations and second row gives the imaginary part. Horizontal red lines
correspond to the approximation given by Proposition 4, that is, ρ cos(φ)rK for the real part and
ρ sin(φ)rK for the imaginary part, with rK = K(d1 + d2)/

√
K(2 d1)K(2 d2).

The results of CFW-PR(4,4) and CFW-C(4,4) are similar. We observe a high bias and high

standard deviation for the estimation of Ω. On the other hand, we observe good quality for the

estimation of ρ and of φ are .
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bias std RMSE

Case 1 Ω1,1 -0.1999 0.1544 0.2526
Ω1,2 -0.1592 0.0925 0.1841
Ω2,2 -0.2471 0.1504 0.2892

correlation 0.0971 0.0243 0.1001
phase 0.0039 0.0526 0.0528

Case 2 Ω1,1 -0.2048 0.1654 0.2633
Ω1,2 -0.0647 0.0501 0.0818
Ω2,2 -0.2508 0.1588 0.2969

correlation 0.0967 0.0434 0.1059
phase -0.0087 0.1549 0.1551

Table 9: Results for the estimation of matrices Θ with CFW-PR(4,4) filter on mFBMs. Hyperpa-
rameter j0 satisfies j0 = 4.

bias std RMSE ratio C/PR

Case 1 Ω1,1 -0.1548 0.1501 0.2156 0.8537
Ω1,2 -0.1305 0.0865 0.1565 0.8501
Ω2,2 -0.2088 0.1365 0.2495 0.8625

correlation 0.0965 0.0245 0.0995 0.9940
phase 0.0043 0.0493 0.0495 0.9376

Case 2 Ω1,1 -0.1427 0.1632 0.2168 0.8235
Ω1,2 -0.052 0.0527 0.074 0.9043
Ω2,2 -0.2107 0.1596 0.2643 0.8905

correlation 0.0936 0.045 0.1039 0.9805
phase -0.0061 0.156 0.1561 1.0064

Table 10: Results for the estimation of matrices Θ with CFW-C(4,4) filter on mFBMs. Hyperpa-
rameter j0 satisfies j0 = 4. C/PR denotes the ratio between the RMSE given by CFW-C(4,4) filter
and the RMSE given by CFW-PR(4,4) filter.

6 Application on a neuroscience dataset

We applied our framework on fMRI data acquired on rats. We use functional Magnetic Resonance

images (fMRI) of both dead and live rats. Our aim is to estimate the brain connectivity, that is, the
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significant correlations between brain regions where fMRI signals are recorded. For this data set,

we know that for dead rats the recordings are only noise, as no legitimate functional activity should

be detected. Thus, the estimated graphs should be empty. We also expect non-empty graphs for

live rats under anesthetic, as brain activity keeps on during anesthetic. The dataset are freely

available at https://10.5281/zenodo.2452871 [Becq et al., 2020a,b].

6.1 Description of the dataset

Functional Magnetic Resonance Images (fMRI) were acquired for both dead and live rats (complete

description is available in Becq et al. [2020b]). 25 rats were scanned and identified in 4 different

groups: DEAD, ETO L, ISO W and MED L. The first group contain dead rats and the three last

groups correspond to different anesthetics. The duration of the scanning was 30 minutes with a time

repetition of 0.5 second so that N = 3600 time points were available at the end of experience. After

preprocessing as explained in Becq et al. [2020b], p = 51 time series for each rat were extracted.

Each time series captures the functioning of a given region of the rat brain based on an anatomical

atlas.

For each rat, we compute the estimators of

• the vector of long-memory parameters, d̂,

• the magnitude of the correlations, ρ̂ = {ρ̂`,m, 1 6 ` < m 6 p} with ρ̂`,m =
Ω̂`,m√

Ω̂`,`Ω̂m,m
,

• the phases, φ̂ = {φ̂`,m, 1 6 ` < m 6 p}.

Estimation was done with CFW-PR(4,4) filters. Densities of the estimators are represented on the

figures using R default kernel-based estimation.

6.2 Results and group comparisons

Figure 6 shows the empirical distribution of the estimated empirical estimators d̂. As expected, the

long-memory parameters for dead rats are close to zero. The distributions are centered around zero,

with a Gaussian-like shape. For rats under anesthetics, densities are not centered around zero and

the variance between brain regions are higher than what is observed for dead rats. Long-memories

for rats under anesthetic ISO W are higher than under other anesthetics.
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Figure 6: Plot of the empirical distribution of the long memory parameters d̂ obtained for the 4
groups of rats. Each color corresponds to a rat.

Distributions of magnitude and phases of the estimated correlations, ρ and φ, for each rats are

displayed respectively in Figure 7 and Figure 8. First, as expected, the magnitudes obtained

for the dead rats seem significantly different from live rats. For dead rats, distributions have a

small support, that is, only 9 on the 5100 values (0.18%) satisfy ρ̂ > 0.3. Note also that no major

differences are observed between rats. Next, ISO W and ETO L present quite similar distributions,

with possibly high magnitudes. By contrast, correlations for MED L anesthetic are lower. These

results tend to show that MED L anesthetic is stronger than the other anesthetics, leading to less

connections between brain regions.

The phase parameter can be interpreted as an asymmetry in the properties at large lags among the

components of the signals for each brain regions (a null phase is equivalent to time-reversibility).

Distributions displayed in Figure 8 correspond to the empirical densities of the upper triangular

matrices of phases, {φ`,m, 1 6 ` < m 6 p}. This explains why the distributions are not symmetric.

For the dead rats, we observe mainly uniform distributions. For the live rats, Figure 8 shows

that the distributions have heavy tails. The tails are heavier for MED L anesthetic than for other
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Figure 7: Plot of the empirical distribution of the correlation magnitudes ρ̂ obtained for the 4
groups of rats. Each color corresponds to a rat.

anesthetics. This can be explained by the fact that the phase is non-informative when the magnitude

is close to zero. To illustrate this fact, Figure 9 shows the distributions of the estimated phases φ

corresponding to magnitudes satisfying ρ > 0.3 (this choice is motivated by the observation on the

support of dead rats’ correlations above). Distributions then have smallest tails. It can be observed

that the support of the phases are larger for live rats than for dead rats. Next, the 95%-quantiles of

absolute values (i.e. q such that 95% of absolute values of phases are lower than q) are respectively

2.95, 1.90, 1.89, 1.61 for Dead rats, ISO W, ETO L and MED L. It seems that ISO W has a higher

support, meaning that shifts appear in the connections between brain region, with respect to other

anesthetics. Yet, we have not tested whether the difference is significant.

6.3 Graphs with correlations and phases

We first compute the adjacency matrix obtained for each rat within each group. Edges correspond

to a magnitude higher than 0.3. The value of the threshold is motivated by the observation of the

supports obtained for dead rats. We then select the edges which are present in all the graphs of
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the rats of the group. One graph is then obtained per group. For each group, we then compute the

average of the estimated phase for each detected edge. Figure 10 illustrates the graphs obtained

for the 4 different groups.

We colored each edge based on the average phase when it satisfies |φ`,m| > 1.1|φ∗`,m| where φ∗`,m =

−π
2 (d` − dm), (`,m) ∈ {1, . . . , p}2. The value φ∗`,m corresponds to the phase of causal linear

representations with power-law coefficients [Kechagias and Pipiras, 2014] and to the ARFIMA

modelling used in Achard and Gannaz [2016] with similar data. The more colored edges, the more

the phase behavior differs from the previous modelling.

The DEAD group has indeed no edges. The MED L group has less edges than the two other

groups of anesthetic. It hence seems that MED L anesthetic inhibits more the activity. Next

ETO L group and ISO W group have a similar number of edges (respectively 133 and 145), but the

phases differ. More than half of mean phases are outside the interval [−1.1|φ∗|, 1.1|φ∗|] for ETO L

and ISO W group, with similar proportions. This observation is interesting since it illustrates that

the modelling of these data is complex. The introduction of a general phase enables to take into

account this complexity. Concerning the physical interpretation, no easy conclusion can be given.

As it was mentioned in Buxton [2013], the time scale of BOLD (Blood oxygenation level dependent)

response is very small in comparison to the neuronal activity, the delay is observed to be equal

to a few seconds. Considering the different time scales involved in the production of the BOLD

response, we may hypothesize that lags are not the underlying phenomenon that produces phase

differences in the fMRI signals. However, as stated in Buxton [2013], the time scale can vary in the

same subject depending on the physiological baseline state, which is known to be modified under

anesthetization.

7 Conclusion

This work was motivated by a neuroscience application, namely the inference of fractal connectivity

from fMRI recordings. We studied the local Whittle estimators for multivariate time series pre-

senting long-memory. Our modelling allows a complex covariance structure with phase components

which can be interpreted as shifts in the coupling between time series. We introduced quasi-analytic

wavelet filters to handle the possible non-stationarity of the real data application. The resulting

procedures offer a consistent estimation of the main parameters of the model. Indeed, we estab-
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lished that so called Common-Factor wavelets are an efficient tool for recovering the long-memory

structure as well as the covariance structure, including magnitude and phase. A simulation study

on linear processes and on multivariate Brownian motions illustrate the good performance of the

proposed procedure. The real data application highlights the ability of the procedure to distinguish

dead rats from live rats. We also show the differences between three anesthetics and the fact that

one of them slows down more intensively the brain activity.
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A Expression of the CFW-C(M,L) filter

This section aims at giving the expression of the CFW-C(M,L) filters which are used to compute

the wavelet coefficients. Let first recalls the expression of common-factor wavelets.

A.1 Expression of the CFW-C(M,L) pair

Let us recall the expression of the low-pass filter ĥ(L) and the high-pass filter ĥ(H)(λ):

ĥ(L)(λ) =
√

2

(
1 + e−iλ

2

)M
q̂L,M (λ) d̂L(λ) and ĥ(H)(λ) = ĥ(L)(λ+ π)e−iλ ,

All the same,

ĝ(L)(λ) =
√

2

(
1 + e−iλ

2

)M
q̂L,M (λ) d̂L(λ)e−iλL and ĝ(H)(λ) = ĝ(L)(λ+ π)e−iλ.
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Let us now explicit ϕ̂(·). We have ϕ̂(·) = ϕ̂h(·) + iϕ̂g(·) with

ϕ̂h(λ) = 2−1/2
∞∏
j=1

2−1/2ĥ(L)(2−jλ) = 2−1/2
∞∏
j=1

(1 + e−i2−jλ

2

)M
q̂L,M (2−jλ)d̂L(2−jλ),

and ϕ̂g(λ) = 2−1/2
∞∏
j=1

(1 + e−i2−jλ

2

)M
q̂L,M (2−jλ)d̂L(2−jλ)e−i2−jλL.

When q̂ = 1, the expressions above become

ϕ̂h(λ) =
∞∏
j=1

(1 + e−i2−jλ

2

)M
d̂L(2−jλ), (15)

ϕ̂g(t) =
∞∏
j=1

(1 + e−i2−jλ

2

)M
d̂L(2−jλ)e−i2−jλL. (16)

Next, we can explicit ψ̂(·). We have ψ̂(·) = ψ̂h(·) + iψ̂g(·) with

ψ̂h(λ)

= 2−3/2ĥ(H)(λ/2)

∞∏
j=2

2−1/2ĥ(L)(2−jλ)

= 2−1
(1− eiλ/2

2

)M
q̂L,M (λ/2 + π)d̂L(λ/2 + π)e−iλ/2

∞∏
j=2

(1 + e−i2−jλ

2

)M
q̂L,M (2−jλ)d̂L(2−jλ),

and

ψ̂g(λ) = −2−1/2
(1− e−iλ/2

2

)M
q̂L,M (λ/2 + π) d̂L(λ/2 + π)e+i(λ/2+π)Le−iλ/2

∞∏
j=2

(1 + e−i2−jλ

2

)M
q̂L,M (2−jλ)d̂L(2−jλ)e−i2−jλL.
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When q̂ = 1, the expressions above become

ψ̂h(λ) = 2−1/2
(1− e−iλ/2

2

)M
d̂L(λ/2 + π)e−iλ/2

∞∏
j=2

(1 + e−i2−jλ

2

)M
d̂L(2−jλ)

ψ̂g(λ) = −2−1/2
(1− e−iλ/2

2

)M
d̂L(λ/2 + π)e+i(λ/2+π)Le−iλ/2

∞∏
j=2

(1 + e−i2−jλ

2

)M
d̂L(2−jλ)e−i2−jλL.

We shall use the following equality

∞∏
`=1

(
1 + e−i2−`λ

2

)
=

1− e−iλ

−iλ
= e−iλ/2 sin(λ/2)

λ/2
.

See e.g. [Mallat, 1999, page 245]. It yields

ϕ̂h(λ) = 2−1/2
(sin(λ/2)

λ/2

)M ∞∏
j=1

d̂L(2−jλ), (17)

ϕ̂g(t) = 2−1/2
(sin(λ/2)

λ/2

)M ∞∏
j=1

d̂L(2−jλ)e−i2−jλL, (18)

and

ψ̂h(λ) = 2−1/2 sin(λ/4)M
(sin(λ/4)

λ/4

)M
d̂L(λ/2 + π)e−iλ

∞∏
j=2

d̂L(2−jλ), (19)

ψ̂g(λ) = 2−1/2 sin(λ/4)M
(sin(λ/4)

λ/4

)M
d̂L(λ/2 + π)e+i(λ+π)Le−iλ

∞∏
j=2

d̂L(2−jλ)e−i2−jλL. (20)

A.2 A first property

The function d̂L(λ) satisfies

d̂L(λ) = eiλ(−L/2+1/4)
[
cos(λ/4)2L+1 + i (−1)L+1 sin(λ/4)2L+1

]
.

We deduce the following lemma.
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Lemma 7.

sup
λ∈R

∣∣∣d̂L(λ)
∣∣∣ = 1.

The proof is straightforward and it is thus omitted.

Using the fact that, for all λ ∈ R,
∣∣∣ sin(λ)

λ

∣∣∣ 6 1, a direct consequence is the following result.

Lemma 8.

sup
λ∈R
|ϕ̂(λ)| 6 C∞, (21)

with C∞ = 1.

A.3 Expression of the wavelet filters

Recall that

Wj,k(`) =

∫ ∞
−∞

∑
s∈Z

X`(s)ϕ(t+ s)ψj,k(t)dt.

Hence,

Wj,k(`) =
∑
s∈Z

τj(2
jk − s)X`(s), j > 0, k ∈ Z ,

with τ̂j(λ) =
∑
s∈Z

τj(2
jk − s)eiλ s =

∫ ∞
−∞

∑
`∈Z

ϕ(t+ `) e−iλ `2−j/2ψ(2−jt)dt.

B Properties of CFW-C(M,L) filters

Let us introduce the following properties.

(W1) Finite support. ϕ and ψ have finite support.

(W2) Vanishing moments. There exist M > 0 and Cm > 0 such that for all j > 0 and λ ∈ R,∣∣∣ψ̂(λ)
∣∣∣ 6 Cm |λ|M ,
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with Cm positive constant possibly depending on M .

(W3) Uniform smoothness. There exist α > 1 and Cs > 0 such that for all λ ∈ R,∣∣∣ψ̂(λ)
∣∣∣ 6 Cs

(1 + |λ|)α
,

with α and Cs depending on L and M .

(W4) Scaling function. There exist Cϕ depending on M such that, for all λ ∈ (−π, π), for all

k ∈ Z \ {0},
|ϕ̂(λ+ 2k π)| 6 Cϕ |λ|M .

Properties (W1), (W2), (W3) and (W4) correspond respectively to (W1), (W2), (W3) and (W4)

in the context of real-wavelets. We can establish that they are satisfied by CFW-C(L,M) wavelets.

Proposition 9. When M > 2, and L > 1, CFW-C(M,L) wavelets satisfy (W2), (W3) and (W4),

with α = M and constants Cm = 1, Cs = 2 · 5M and Cϕ = 2.

The proof is given in Section B.1.

A remarkable property of CFW − C(M,L) filters is that the regularity of the wavelets is only

determined by the parameter M , since all parameters and constants in the proposition above only

depend on M . All the same, the quasi-analyticity only depends on the parameter L, through

Theorem 2.

With these assumptions, we can establish some properties about wavelet filters. At a given scale

j > 0, for any k ∈ Z, wavelet coefficients Wj,k(`) of a process X`(·) can be decomposed as

Wj,k(`) =
∑
s∈Z

τj(2
jk − s)X`(s), j > 0, k ∈ Z .

See Section A.3. We recover [Moulines et al., 2007, Proposition 3]. More precisely, we can establish

the following results.

Proposition 10. Suppose (W1), (W2), (W3), and (W4) and inequality (21) hold. Then, for all
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j > 0, for all λ ∈ R, ∣∣∣τ̂j(λ)− 2j/2ϕ̂(λ)ψ̂(2jλ)
∣∣∣ 6 Cτ2j(1/2−α)|λ|M , (22)∣∣∣ϕ̂(λ)ψ̂(2jλ)
∣∣∣ 6 C∞Cm ∣∣2jλ∣∣M , (23)∣∣∣ϕ̂(λ)ψ̂(2jλ)
∣∣∣ 6 C∞Cs

(1 + 2j |λ|)α
, (24)∣∣∣2−j/2τ̂j(2−jλ)

∣∣∣ 6 Cmτ |λ|M , (25)

and, for all j, j′ > 0, for all |2−jλ| 6 π,∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣ 6 Csτ (1 + |λ|)−α, (26)∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣ 6 Cmsτ |λ|M (1 + |λ|)−α−M , (27)

with Cτ , Cmτ , Csτ , and Cmsτ positive constants only depending on α,M , Cm, Cs and Cϕ.

The proof is given in Section B.2.

The following property corresponds to (79) in [Moulines et al., 2007, Proposition 3]. In the real

wavelets context, it is a consequence of (W1) to (W4) but we prove it separately here to explicit

the constants.

Proposition 11. Consider CFW-C(M,L) wavelets, with M > 2. For all j > 1,

sup
|λ|6π

∣∣∣∣∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣2 − ∣∣∣ψ̂(λ)

∣∣∣2∣∣∣∣ 6 Ca 2−γ j |λ|2M , (28)

with γ = 2 and Ca = 2 (M + L+ 1).

The proof is given in Section B.3.

B.1 Proof of Proposition 9

We first establish that CFW-C(M,L) filters satisfy properties (W1)–(W4).
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B.1.1 Property (W1)

By definition, the filters h(L) and h(H), g(L) and g(H) have length M +L+ 1. Hence, ϕ and ψ have

finite support.

B.1.2 Property (W2)

Let λ ∈ R. Recall that ψ̂h(λ) and ψ̂g(λ) are given respectively by (19) and (20). Observe that

|sin(λ/4)|M 6 4−M |λ|M . Since sup |d̂L| = 1, assumption (W2) follows with a constant Cm = 1, for

all M > 1.

B.1.3 Property (W3)

Let λ ∈ R. Recall that ψ̂h(λ) is given by (19). Since supλ∈R

∣∣∣d̂L(λ)
∣∣∣ 6 1, we obtain

∣∣∣ψ̂h(λ)
∣∣∣ 6 |sin(λ/4)|M

∣∣∣∣sin(λ/4)

λ/4

∣∣∣∣M .

Since sin(x/4)
|x/4| (1 + |x|) =

∣∣∣ sin(x/4)
x/4

∣∣∣+ 4 |sin(x/4)| 6 5 for any x ∈ R \ {0}, it follows that

∣∣∣ψ̂h(λ)
∣∣∣ 6 |sin(λ/4)|M

(
5

1 + |λ|

)M
.

Consequently,
∣∣∣ψ̂h(λ)

∣∣∣ 6 ( 5
1+|λ|

)M
. A similar result can be proved for filter ψ̂g. By triangular

inequality, we get ∣∣∣ψ̂(λ)
∣∣∣ 6 Cs

(1 + |λ|)α
,

with α = M and a constant Cs equal to 2 · 5M .

B.1.4 Property (W4)

Let λ = ω + 2kπ, |ω| 6 π, k ∈ Z, k 6= 0. We distinguish two cases:
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• If k is odd,

Using the expressions of ϕ̂h(λ) and ϕ̂g(λ) given respectively by (15) and (16),

ϕ̂h(λ) =
(
cos(λ/4)

)M
d̂L(λ/2)

∞∏
j=2

(1 + e−i2−jλ

2

)M
d̂L(2−jλ),

ϕ̂g(λ) =
(
cos(λ/4)

)M
d̂L(λ/2)e−iλL/2

∞∏
j=2

(1 + e−i2−jλ

2

)M
d̂L(2−jλ)e−i2−jλL.

Observe that

∣∣cos(λ/4)
∣∣M = |cos(ω/4 + kπ/2)|M = |sin(ω/4)|M 6 |ω|M/4M .

With Lemma 7, we obtain that

|ϕ̂h(λ)| 6 |ω|M/4M and |ϕ̂g(λ)| 6 |ω|M/4M .

Hence,

|ϕ̂(λ)| 6 |ω|M · 2/4M .

• If k is even, k > 2,

Let us use the expressions of ϕ̂h(λ) and ϕ̂g(λ) given respectively by (17) and (18). We have,

∣∣∣sin(λ/2)

λ/2

∣∣∣M =
∣∣∣sin(ω/2)

ω/2

∣∣∣ ∣∣∣ω
λ

∣∣∣M 6 ∣∣∣ω
λ

∣∣∣M 6 ∣∣∣ω
π

∣∣∣M .
Using Lemma 7,

|ϕ̂h(λ)| 6 |ω|M/πM and |ϕ̂g(λ)| 6 |ω|M/πM .

Hence,

|ϕ̂(λ)| 6 |ω|M · 2/πM .

We deduce that (W4) follows with Cϕ = 1 when M > 1.
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B.2 Proof of Proposition 10

This section aims at recovering similar results than those given in [Moulines et al., 2007, Proposition

3] with explicit constants.

B.2.1 Proof of inequality (22)

Observe that t 7→
∑

k∈Z ϕ̂(λ + 2kπ)ei t (λ+2kπ) is 2π-periodic, integrable, and that its `-th Fourier

coefficient is 2πϕ(t− `),

1

2π

∫ ∞
−∞

(∑
k∈Z

ϕ̂(λ+ 2kπ)ei t (λ+2kπ)
)
e−i`λdλ =

1

2π

∫ ∞
−∞

ϕ̂(λ)ei(t−`)λdλ = ϕ(t− `).

It follows that ∑
`∈Z

ϕ(t− `)e−i t λ =
∑
k∈Z

ϕ̂(λ+ 2kπ)ei t (λ+2kπ).

Hence, as in [Moulines et al., 2007, p180],

τ̂j(λ) =

∫ ∞
−∞

(∑
k∈Z

ϕ̂(λ+ 2kπ)ei t (λ+2kπ)
)
2−j/2ψ(2−jt)dt

=
∑
k∈Z

ϕ̂(λ+ 2kπ)

∫ ∞
−∞

2−j/2ψ(2−jt)ei t (λ+2kπ)dt

= 2j/2
∑
k∈Z

ϕ̂(λ+ 2kπ)ψ̂(2j(λ+ 2kπ)).

We obtain

∣∣∣τ̂j(λ)− 2j/2ϕ̂(λ)ψ̂(2−jλ)
∣∣∣ = 2j/2

∣∣∣∣∣∣
∑

k∈Z,k 6=0

ϕ̂(λ+ 2kπ)ψ̂(2j(λ+ 2kπ))

∣∣∣∣∣∣ . (29)

Property (W3) yields, for all λ ∈ (−π, π),∣∣∣ψ̂(2j(λ+ 2kπ))
∣∣∣ 6 Cs
|2j(λ+ 2kπ)|α

6
Cs

(2jπ (2 |k| − 1))α
.
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Using the inequality above and (W4) in (29), we get∣∣∣τ̂j(λ)− 2j/2ϕ̂(λ)ψ̂(2jλ)
∣∣∣ 6 Cτ2j(1/2−α)|λ|M ,

with Cτ = CsCϕ2ζ(α), with ζ(·) the Riemann’s zeta-function. Since α > 1, Cτ < ∞. If α > 2,

ζ(α) 6 π2/6 < 2, and, hence, one can take Cτ = 4CsCϕ.

B.2.2 Proof of inequality (23) and inequality (24)

Using (W2), (W3) and inequality (21), inequalities (23) and (24) are straightforward.

B.2.3 Proof of inequality (25) and inequality (26)

With inequalities (22), (23) and (24), we get

|τ̂j(λ)| 6 C∞Cm
∣∣2jλ∣∣M + Cτ2j(1/2−α)|λ|M

and |τ̂j(λ)| 6 2j/2

(1 + |2jλ|)α
(
C∞Cs2

−j/2 + Cτ2−jα(1 + 2j |λ|)α|λ|M
)
.

It follows that

|τ̂j(λ)| 6 Cmτ
∣∣2jλ∣∣M

and 2−j/2
∣∣τ̂j(2−jλ)

∣∣ 6 Csτ 1

(1 + |λ|)α
when |λ| 6 π,

with Cmτ = C∞Cm + Cτ , and Csτ = C∞Cs + Cτ (1 + π)α+M .

B.2.4 Proof of inequality (27)

With (25), inequality (27) is straightforward with Cmsτ = Cmτ (1 + π)α+M .
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B.3 Proof of Proposition 11

Let |λ| 6 π. Inequalities (22) and (23) imply that∣∣∣∣∣∣∣2−j/2τ̂(2−jλ)
∣∣∣2 − ∣∣∣ϕ̂(2−jλ)ψ̂(λ)

∣∣∣2∣∣∣∣
6
∣∣∣2−j/2τ̂(2−jλ)− ϕ̂(2−jλ)ψ̂(λ)

∣∣∣ (∣∣∣2−j/2τ̂(2−jλ)
∣∣∣+
∣∣∣ϕ̂(2−jλ)ψ̂(λ)

∣∣∣)
6 Cτ2−jα

∣∣2−jλ∣∣M (Cmτ + C∞Cm) |λ|M

6 Ca1 2−γ1 j |λ|2M ,

with Ca1 = Cτ (Cmτ + CmC∞) and γ1 = M + α.

Next, ∣∣∣∣∣∣∣ϕ̂(2−jλ)ψ̂(λ)
∣∣∣2 − ∣∣∣ψ̂(λ)

∣∣∣2∣∣∣∣ 6 ∣∣∣ψ̂(λ)
∣∣∣2 ∣∣∣∣∣ϕ̂(2−jλ)

∣∣2 − 1
∣∣∣ 6 C2

m |λ|
2M
∣∣∣∣∣ϕ̂(2−jλ)

∣∣2 − 1
∣∣∣ .

The control of the right-hand side is obtained with the following result.

Lemma 12. There exists a constant CZ = (M +L+ 1) such that for all j ∈ N, for all
∣∣2−jλ∣∣ < π,∣∣∣2 ∣∣ϕ̂h(2−jλ)

∣∣2 − 1
∣∣∣ 6 CZ ∣∣2−jλ∣∣2 ,∣∣∣2 ∣∣ϕ̂g(2−jλ)

∣∣2 − 1
∣∣∣ 6 CZ ∣∣2−jλ∣∣2 .

Proof. The proof is only derived for ϕ̂h(·). It is similar for ϕ̂g(·). Recall that

21/2ϕ̂h(2−jλ) =
(sin(λ/2j+1)

λ/2j+1

)M ∞∏
`=j+1

d̂L(2−`λ).
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The triangular inequality implies that

∣∣∣2 ∣∣ϕ̂h(2−jλ)
∣∣2 − 1

∣∣∣ 6 ∣∣∣∣(sin(λ/2j+1)

λ/2j+1

)2M
− 1

∣∣∣∣ ∞∏
`=j+1

∣∣∣d̂L(2−`λ)
∣∣∣2 +

∣∣∣∣∣∣
∞∏

`=j+1

∣∣∣d̂L(2−`λ)
∣∣∣2 − 1

∣∣∣∣∣∣
6 2M

∣∣∣∣∣∣∣∣sin(λ/2j+1)

λ/2j+1

∣∣∣∣− 1

∣∣∣∣+
∞∑

`=j+1

∣∣∣∣∣∣∣d̂L(2−`λ)
∣∣∣2 − 1

∣∣∣∣ ,
where we have used the equality (xK − 1) = (x − 1)

∑K−1
m=0 x

m for all x ∈ R, K ∈ N, and the fact

that for all x ∈ R \ {0}, |sin(x)/x| 6 1 and
∣∣∣d̂L(x)

∣∣∣ 6 1.

Taylor inequality states that for all x ∈ R \ {0}, |sin(x)− x| 6 |x|3 /6. Additionally, for all∣∣2−`λ/4∣∣ 6 1, ∣∣∣∣∣∣∣d̂L(2−`λ)
∣∣∣2 − 1

∣∣∣∣ =
∣∣∣cos(2−`λ/4)2(2L+1) − 1 + sin(2−`λ/4)2(2L+1)

∣∣∣
6 (2L+ 1) sin

(
2−`λ/4

)2
+
(
2−`λ/4

)2(2L+1)

6 (2L+ 1)
(
2−`λ/4

)2
+
(
2−`λ/4

)2
.

We get

∣∣∣2 ∣∣ϕ̂h(2−jλ)
∣∣2 − 1

∣∣∣ 6 M

3

∣∣2−j−1λ
∣∣2 + (2L+ 1)

∣∣2−jλ∣∣2 ∞∑
`=3

2−2` +
∣∣2−jλ∣∣2 ∞∑

`=3

2−2`

6
(M

6
+
L

2
+

1

2
)
∣∣2−jλ∣∣2 .

Hence, ∣∣∣2 ∣∣ϕ̂h(2−jλ)
∣∣2 − 1

∣∣∣ 6 CZ ∣∣2−jλ∣∣2 ,
with CZ = (M + L+ 1)/2.

We deduce that∣∣∣∣∣∣∣ϕ̂(2−jλ)ψ̂(λ)
∣∣∣2 − ∣∣∣ψ̂(λ)

∣∣∣2∣∣∣∣ 6 CZ ∣∣2−jλ∣∣2 ∣∣∣ψ̂(λ)
∣∣∣2 6 Ca2 2−γ2 j |λ|2M ,

with Ca2 = C2
mCZπ

2 and γ2 = 2, when |λ| 6 π.
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We obtain inequality (28) with Ca = max{Ca1, Ca2}, γ = min{γ1, γ2}. Observe that for all M > 2

γ1 > 2, and, hence, γ = 2 and we can take Ca = 2 (M + L+ 1) > Ca2.

C Asymptotic behavior of the wavelet covariance

This section deals with the proofs of the results of Section 3. We will prove stronger results than

Proposition 3 and Proposition 4 which are stated below. To better highligth the role of the number

of vanishing moments M and the regularity α, we keep these parameters, even if, for CFW-PR(M,L)

and CFW-C(,L) filters, we have α = M by Proposition 9. Hence, we formulate here the assumption

on the parameters on both α and M .

(C-c) −α+ β/2 + 1/2 < d` < M for all ` = 1, . . . , p, M > 2 and 0 < β < 2.

Assumption (C-c) is equivalent to assumption (C-a).

Proposition 3 follows from the following proposition.

Proposition 13. Let X be a p-multivariate long range dependent process with long memory pa-

rameters d1, . . . , dp with normalized spectral density f(·) satisfying (M-1) with short-range behavior

(M-2). Consider {Wj,k(`), ` = 1, . . . , p, j > 0, k ∈ Z} the wavelet coefficients of X obtained with

CFW-C(M,L) filters, M,L > 2. Then we have, for all j > 0, k ∈ Z,

∣∣∣2−j (d`+dm)Cov(Wj,k(`),Wj,k(m))− Ω`,m

∫ ∞
−∞
|λ|−d`−dm esign(λ)φ`,m

∣∣∣ψ̂(λ)
∣∣∣2 dλ

∣∣∣
6 C ′1 max{2−jβ, L 2−2 j}.

where C ′1 is a constant only depending on M and Cf , β, ‖Ω‖ , {d`, ` = 1, . . . , p}.

Next, Proposition 4 is a consequence of the following proposition.

Proposition 14. Let X be a p-multivariate long range dependent process with long memory parame-

ters d1, . . . , dp with normalized spectral density satisfying (M-1)–(M-2). Consider {Wj,k(`), (j, k) ∈
Z, ` = 1, . . . , p} the wavelet coefficients obtained with CFW-C(M,L) filters, M,L > 2. Suppose that
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(C-c) hold and that L goes to infinity and L2−2j → 0 when j goes to infinity. Then, for all j > 0,∣∣∣∣2−j (d`+dm) Cov(Wj,k(`),Wj,k(m))− 4 Θ`,m

∫ ∞
0
|λ|−d`−dm

∣∣∣ψ̂h(λ)
∣∣∣2 dλ

∣∣∣∣
6 C2 min{2−jβ, L2−2j , L−(2M−d`−dm+1)} ,

where C2 is a constant only depending on M and Cf , β, ‖Ω‖ , {d`, ` = 1, . . . , p}.

C.1 Proof of Proposition 13

Let j > 0, k ∈ Z. The quantity Cov(Wj,k) can be decomposed as

Cov(Wj,k) = A
(+)
j + A

(−)
j , with A

(+)
j =

∫ π 2j

0
f(2−jλ) 2−j

∣∣τ̂j(2−jλ)
∣∣2 dλ ,

A
(−)
j =

∫ 0

−π 2j
f(2−jλ) 2−j

∣∣τ̂j(2−jλ)
∣∣2 dλ .

Also recall that Γj(d) is the diagonal matrix with diagonal entries 2−j d1 , . . . , 2−j dp .

We now sum up the main points for the convergence of Cov(Wj,k).

1. Behavior of A
(+)
j .

We introduce

B
(+)
j =

∫ π 2j

0
Γj(d)−1Λ(λ)ΘΛ(λ)Γj(d)−1 2−j

∣∣τ̂j(2−jλ)
∣∣2 dλ,

I
(+)inf
j =

∫ π 2j

0
Γj(d)−1Λ(λ)ΘΛ(λ)Γj(d)−1

∣∣∣ψ̂(λ)
∣∣∣2 dλ,

I
(+)sup
j =

∫ ∞
π 2j

Γj(d)−1Λ(λ)ΘΛ(λ)Γj(d)−1
∣∣∣ψ̂(λ)

∣∣∣2 dλ,

I(+) = I
(+)inf
j + I

(+)sup
j =

∫ ∞
0

Γj(d)−1Λ(λ)ΘΛ(λ)Γj(d)−1
∣∣∣ψ̂(λ)

∣∣∣2 dλ.

The steps of the convergence are:

(a) 2−j(d`+dm−β)
∣∣∣A(+)

j −B
(+)
j

∣∣∣ is bounded using the regularity of the spectral density fS(·)
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at the origin, that is, (M-2), together with inequality (25).

(b) 2−j(d`+dm−β)
∣∣∣B(+)

j − I
(+)inf
j

∣∣∣ is bounded using the convergence of the filter τj to ψ̂(.),

through property (28). We shall need inequality (25) to control the integral around zero

and inequality (26) to control the upper part.

(c) 2−j(d`+dm−β)
∣∣∣I(+)sup
j

∣∣∣ is bounded using the regularity of ψ̂(.), that is, using (W3).

All together, we shall obtain the convergence of A
(+)
j to I(+), which gives the property.

2. Behavior of A
(−)
j

We can apply the same arguments as for A
(+)
j and obtain the convergence of A

(−)
j to I(−),

with

I(−) =

∫ 0

−∞
Γj(d)−1Λ(λ)ΘΛ(λ)Γj(d)−1

∣∣∣ψ̂(λ)
∣∣∣2 dλ.

In the following, (`,m) ∈ {1, . . . , p}2 will denote two arbitrary indexes.

C.1.1 Spectral approximation,
∣∣∣A(+)

j −B
(+)
j

∣∣∣
First notice that Γj(d)−1Λ(2jλ) = Λ(λ). Hence,∣∣∣A(+)

j −B
(+)
j

∣∣∣ 6 ∫ π

0
|f(λ) −Λ(λ)ΘΛ(λ)| |τ̂j(λ)|2 dλ

6
∫ π

0
|Λ(λ)ΘΛ(λ)| ◦

∣∣fS(λ)− 1
∣∣ |τ̂j(λ)|2 dλ.

Property (M-2) gives

(
|Λ(λ)ΘΛ(λ)| ◦

∣∣fS(λ)− 1
∣∣)
`,m
6 Cf ‖Ω‖ |λ|−d`−dm+β .

With a change of variable,

∣∣∣A(+)
j −B

(+)
j

∣∣∣
`,m
6 Cf ‖Ω‖ 2j(d`+dm−β)

∫ 2jπ

0
|λ|−d`−dm+β

∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣2 dλ.
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We split the integral in two parts. First, with (25),∫ 1

0
|λ|−d`−dm+β

∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣2 dλ 6 C2

mτ

∫ 1

0
|λ|−d`−dm+β+2M dλ.

As the parameters satisfy (C-c), the integral is bounded by a constant depending on (d`, dm, β,M).

The bound is independent on L since the constant Cmτ does not depend on L.

Next, using the regularity given by (26),

∫ 2jπ

1
|λ|−d`−dm+β

∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣2 dλ 6 C2

sτ

∫ ∞
1

|λ|−d`−dm+β

(1 + |λ|)2α
dλ.

Property (C-c) ensures that the right hand side is bounded by a constant depending on d`, dm, β,

α, M , and not depending on L.

C.1.2 Asymptotic of the filters,
∣∣∣B(+)

j − I
(+)inf
j

∣∣∣
This step uses the convergence of the filter τ̂j to ψ̂(.), through property (28). First,

Γj(d) 2jβ
∣∣∣B(+)

j − I
(+)inf
j

∣∣∣Γj(d) 6 2jβ
∫ 2jπ

0
Λ(λ)ΘΛ(λ)

∣∣∣∣∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣2 − ∣∣∣ψ̂(λ)

∣∣∣2∣∣∣∣ dλ.

Using (W3) and (26),∣∣∣∣∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣2 − ∣∣∣ψ̂(λ)

∣∣∣2∣∣∣∣ 6 ∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣2 +

∣∣∣ψ̂(λ)
∣∣∣2

6 (C2
sτ + C2

s ) |λ|−2α .
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Thus, (∫ 2jπ

1
Λ(λ)ΘΛ(λ) 2jβ

∣∣∣∣∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣2 − ∣∣∣ψ̂(λ)

∣∣∣2∣∣∣∣ dλ

)
(`,m)

6 ‖Ω‖ (C2
sτ + C2

s ) 2jβ
∫ 2jπ

1
|λ|−d`−dm−2α dλ

6 ‖Ω‖ (C2
sτ + C2

s )π−d`−dm−2α+1 2j(−d`−dm−2α+β+1),

where last inequality follows from the evaluation of the integral term. The right-hand side does

not depend on L, and it tends to 0 when j goes to infinity due to (C-c).

It remains to consider the integral on (0, 1). Property (28) states that

(∫ 1

0
Λ(λ)ΘΛ(λ) 2jβ

∣∣∣∣∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣2 − ∣∣∣ψ̂(λ)

∣∣∣2∣∣∣∣ dλ

)
(`,m)

6 ‖Ω‖ Ca 2j(β−γ)

∫ 1

0
|λ|−d`−dm+2M dλ.

The right-hand side tends to 0 when j goes to infinity since β < γ and max{d`, ` = 1, . . . , p} <
M + 1/2.

When M > 2, γ = 2 and Ca = 2 (M +L+ 1). With a fixed M , this term is, hence, bounded up to

a constant by max{1, L 2j(β−γ)} = max{1, L 2j(β−2)}.

C.1.3 Regularity of the filters,
∣∣∣I(+)sup
j

∣∣∣
This step uses the regularity of ψ̂. Indeed, property (W3) entails that∣∣∣I(+)sup

j,`m

∣∣∣ 6 ‖Ω‖ 2j(d`+dm)

∫ ∞
2jπ
|λ|−d`−dm

∣∣∣ψ̂(λ)
∣∣∣2 dλ

6 C2
s ‖Ω‖ 2j(d`+dm)

∫ ∞
2jπ

|λ|−d`−dm

(1 + |λ|)2α
dλ

6 C2
s ‖Ω‖ π−β 2j(d`+dm−β)

∫ ∞
2jπ
|λ|−d`−dm+β−2α dλ,
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where last inequality results from the fact that when |λ| > 2jπ, then 1 6 |λ|β2−jβπβ. Property (C-c)

thus implies that 2−j(d`+dm−β)
∣∣∣I(+)sup
j,`m

∣∣∣ is bounded by a constant depending of (d`, dm, β, ‖Ω‖ ,M).

C.2 Proof of Proposition 14

Recall that

ψ̂(λ) = ψ̂h(λ) + i ψ̂g(λ) =
(

1− eiηL(λ)
)
ψ̂h(λ) ,

with αL(λ) = 2(−1)L atan
(
tan2L+1(λ/4)

)
,

ηL(λ) = −aL(λ/2 + π) +
∞∑
j=1

aL(2−j−1λ) .

Theorem 2 states that, for all λ ∈ R,∣∣∣ψ̂(λ)− 21R+(λ) ψ̂h(λ)
∣∣∣ = UL(λ)

∣∣∣ψ̂h(λ)
∣∣∣ ,

with

UL(λ) 6 2
√

2

(
log2

(
max(4π, |λ|)

2π

)
+ 2

) (
1− δ(λ, 4πZ)

max(4π, |λ|)

)2L+1

.

We deduce from Theorem 2 the following result, which gives a similar inequality but in a form that

can be more useful in future developments.

Corollary 15. For all q̂L,M real polynomial of (e−iλ), for all |λ| 6 2π,∣∣∣∣∣∣∣ψ̂(λ)
∣∣∣2 − 41R+(λ)

∣∣∣ψ̂h(λ)
∣∣∣2∣∣∣∣ 6 18

√
2

(
1− |λ|

2π

)2L+1 ∣∣∣ψ̂h(λ)
∣∣∣2 .

Let us introduce also

Iinf
j =

∫ π 2j

−π 2j
Γj(d)−1Λ(λ)ΘΛ(λ)Γj(d)−1

∣∣∣ψ̂(λ)
∣∣∣2 dλ,

I
inf,analytic
j =

∫ π 2j

0
Γj(d)−1Λ(λ)ΘΛ(λ)Γj(d)−1 4

∣∣∣ψ̂h(λ)
∣∣∣2 dλ,

I
sup,analytic
j =

∫ ∞
π 2j

Γj(d)−1Λ(λ)ΘΛ(λ)Γj(d)−1 4
∣∣∣ψ̂h(λ)

∣∣∣2 dλ.
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Following the proof of Proposition 13, the steps of the proof are the following:

1. 2−j(d`+dm−β)
∣∣∣Cov(Wj,k)− Iinf

j

∣∣∣ is bounded, up to a constant, by L2−2j . This result was

already obtained in the proof of Proposition 13.

2. 2−j(d`+dm−β)
∣∣∣Iinf
j − I

inf,analytic
j

∣∣∣ is bounded up to a constant by max{1, L−2M−d`−dm+12jβ},
using the quasi-analyticity property, stated in Corrolary 15.

3. 2−j(d`+dm−β)
∣∣∣Isup,analytic
j

∣∣∣ is bounded. This result is straigthforward with step 1.(c) in the

proof of Proposition 13, since |ψ̂h(λ)| 6 |ψ̂h(λ)|.

Hence, it only remains to prove step 2. That is, we want to establish that the quantity

2jβ
∫ 2jπ

−2jπ
|λ|−d`−dm

∣∣∣∣∣∣∣ψ̂(λ)
∣∣∣2 − 41R+(λ)

∣∣∣ψ̂h(λ)
∣∣∣2∣∣∣∣ dλ

is bounded up to a constant by max{1, L−2M−d`−dm+12jβ}.

We decompose the integral on the sub-intervals (−1, 1), (−2jπ,−1) and (1, 2jπ).

On (−1, 1).

With assumption (W2), Corollary 15 leads to∫ 1

−1
|λ|−d`−dm

∣∣∣∣∣∣∣ψ̂(λ)
∣∣∣2 − 41R+(λ)

∣∣∣ψ̂h(λ)
∣∣∣2∣∣∣∣ dλ 6 36

√
2

∫ 1

0

(
1− |λ|

4π

)2L+1

|λ|−d`−dm+2Mdλ,

6 36
√

2B(2M − d` − dm, 2L+ 1),

where B is the Beta function. Using Stirling’s approximation, for fixed M , d`, dm, when L goes to

infinity the right-hand side is equivalent to

36
√

2 Γ(2M − d` − dm + 1) (2L+ 2)−(2M−d`−dm+1) .

Up to a constant, this term is bounded by max{1, L−(2M−d`−dm+1)}.
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On (−2jπ,−1) and (1, 2jπ).

(W3) entails that, for all λ ∈ R,∣∣∣∣∣∣∣ψ̂(λ)
∣∣∣2 − 41R+(λ)

∣∣∣ψ̂h(λ)
∣∣∣2∣∣∣∣ 6 (C2

s + 4 · C2
s ) |λ|−2α.

Thus,

2jβ
∫ 2jπ

1
|λ|−d`−dm+β

∣∣∣∣∣∣∣ψ̂(λ)
∣∣∣2 − 41R+(λ)

∣∣∣ψ̂h(λ)
∣∣∣2∣∣∣∣ dλ 6 5C2

s

∫ ∞
1
|λ|−d`−dm+β−2α dλ ,

and the same inequality holds when considering the integral on (−2jπ,−1). The integral on the

right hand side is bounded when (C-c) holds, for any L,M > 1.

D Asymptotic behavior of the estimators

We detail some points that are changed with the complex wavelet setting in the proofs of consistence

and of asymptotic normality, with respect to the real wavelets setting.

First, recall that, for all j > 0, nj denotes the number of non zero wavelet coefficients {Wj,k, k ∈ Z}.
Under the assumptions that 2−j0L is bounded and that 2−j0N →∞, the sequence nj is equivalent

to 2−jN when j goes to infinity. These assumptions are made in both Theorem 5 and Theorem 6.

Hence, nj behaves similarly to in Achard and Gannaz [2016] and in Gannaz [2020].

D.1 Proof of Theorem 5

For complex wavelets the approximation of the wavelet covariance does not admit the same bound

as for real wavelets. Hence, the study of the term

S
(1)
`,m(µ) =

j1∑
j=j0

njµj

[
Cov(Wj,k(`),Wj,k(m))

2j(d
0
`+d

0
m)

−G0
`,m

]
.
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defined on page 499 of Achard and Gannaz [2016] is modified. Consequently, Proposition 8 and

Proosition 9 of Achard and Gannaz [2016] do not hold anymore. They are replaced respectively by

Proposition 16 and Proposition 17 below.

Let us take ` and m in 1, . . . , p, and define, for any sequence µ = {µj , j > 0},

S`,m(µ) =
∑
j,k

µj

(
Wj,k(`)Wj,k(m)

2j(d
0
`+d

0
m)

−G0
`,m

)
=

j1∑
j=j0

µj

(
I`,m(j)

2j(d
0
`+d

0
m)
− njG0

`,m

)
.

S`,m(µ) is decomposed in two terms S
(0)
`,m(µ) and S

(1)
`,m(µ),

S
(0)
`,m(µ) =

j1∑
j=j0

µj
1

2j(d
0
`+d

0
m)

∑
k

(Wj,k(`)Wj,k(m)− Cov(Wj,k(`),Wj,k(m))) ,

S
(1)
`,m(µ) =

j1∑
j=j0

njµj

[
Cov(Wj,k(`),Wj,k(m))

2j(d
0
`+d

0
m)

−G0
`,m

]
.

Proposition 16. Assume that the sequences µ belong to the set {{µj}j>0, |µj | 6 1
nj
}. Suppose that

(C-b) holds. Under condition (C), sup{µ, |µj |6 1
nj
} S`,m(µ) is uniformly bounded by 2−j0β +L2−2j0 +

j1L
−1 +N−1/22j1/2 up to a multiplicative constant, that is,

sup
µ∈{(µj)j>0, |µj |6 1

nj
}
{S`,m(µ)} = OP(2−j0β + L2−2j0 + j1L

−1 +N−1/22j1/2).

Proof. From Proposition 14, there exists C ′ > 0 such that

|S(1)
`,m(µ)| 6 C ′

j1∑
j=j0

(
2−βj + L2−j + L−(2M−d`−dm+1)

)
nj |µj |.

Assumption(C-b) yields

|S(1)
`,m(µ)| 6 C ′

j1∑
j=j0

(
2−βj + L2−j + L−1

)
nj |µj |, (30)

with C > 0. Under the assumption |µj | 6 1
nj

, we have the inequality |S(1)
`,m(µ)| 6 C

∑j1
j=j0

(
2−βj +
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L2−j + L−1
)
. The right-hand bound is equivalent to 2−j0β + L2−2j0 + j1L

−(2M−d`−dm+1) up to a

constant.

The term S(0) is unchanged and the proposition follows as in the proof of Proposition 8 of Achard

and Gannaz [2016].

Proposition 17. Let 0 < j0 6 j1 6 jN . Suppose that (C-b) holds. Assume that the sequences µ

belong to the set

S(q, γ, c) = {{µj}j>0, |µj | 6
c

n
|j − j0 + 1|q2(j−j0)γ , ∀j = j0, . . . j1}

with 0 6 γ < 1. Under condition (C), supµ∈S(q,γ,c) S`,m(µ) is uniformly bounded by 2−j0β+L2−2j0 +

log(N)L−1 +Hγ(N−1/22j0/2) up to a constant,

sup
µ∈S(q,γ,c)

{S`,m(µ)} = OP(2−j0β + L2−2j0 + j1L
−1 +Hγ(N−1/22j0/2))

with Hγ(u) =


u if 0 6 γ < 1/2,

log(1 + u−2)q+1 u if γ = 1/2,

log(1 + u−2)q u2(1−γ) if 1/2 < γ < 1.

In particular, for any 0 6 γ < 1, under the assumptions 2−j0β + N−1/22j0/2 → 0, and L2−2j0 +

log(N)L−1 → 0, we have supµ∈S(q,γ,c){S`,m(µ)} = oP(1).

Proof. Under the assumptions of the proposition, one deduce from inequality (30) that,

sup
µ∈S(q,γ,c)

|S(1)
`,m(µ)| 6 cC 1

n

j1∑
j=j0

nj
(
2−βj + L2−j + L−(2M−d`−dm+1)

)
2γ(j−j0))(j − j0 + 1)q

6 cC 2−βj0
j1−j0∑
i=0

2−(1+β−γ)i(i+ 1)q + cC L2−j0
j1−j0∑
i=0

2−(2−γ)i(i+ 1)q

+ cC j1L
−(2M−d`−dm+1)

j1−j0∑
i=0

2−(1−γ)i(i+ 1)q.

The sum on the right-hand side of the inequality tends to 0 under the assumptions of the proposition,
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since 1− γ > 0.

The term S(0) is unchanged and the proposition follows as in the proof of Proposition 9 of Achard

and Gannaz [2016].

The rest of the proof is very similar to the real case and it is omitted. Remark that a key of the

proof is Oppenheim’s inequality, which holds for complex matrices, see Horn and Johnson [1990].

D.2 Proof of Theorem 6

The properties of wavelet filters in the proofs of Gannaz [2020] are used through Proposition 31

of Gannaz [2020]. The inequalities (I1) and (I2) in Gannaz [2020] correspond respectively to (27)

and (22) of Proposition 10. Inequality (I3) in Gannaz [2020] follows with the proof of Proposition

31 of Gannaz [2020]. The constants in (27) and (22) do not depend of L, which allows to use these

inequalities as in the proofs of Gannaz [2020].

The other property of the wavelets used in the proofs of Gannaz [2020] is the convergence of

|ϕ̂(2−jλ)| to 1 when j goes to infinity (page 29 of Gannaz [2020]). When L2−2j goes to infinity,

Lemma 12 yields

lim
j→∞

∣∣|ϕ̂(2−jλ)|2 − 1
∣∣ = 0,

which is the desired result.

Finally, the approximation of the sample wavelet covariance is changed. It is sufficient, to use

results of Proposition 4 (instead of Proposition 1 of Gannaz [2020]), to check that, for all (`,m) ∈
{1, . . . , p}2,

lim
j→∞

√
nj

∣∣∣2−j (d`+dm−β)Cov(Wj,k(`),Wj,k(m))−G`,m
∣∣∣ = 0.

Hence, based on Proposition 4, it is sufficient to have

lim
j→∞

N1/22−j/2
(
L2−2j + L−(2M−d`−dm+1)

)
= 0,

since when j goes to infinity, nj is equivalent to N2−j + 1.
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The rest of the proof does not present major changes. It is thus omitted.
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Figure 8: Plot of the empirical distribution of the phases φ̂ obtained for the 4 groups of rats without
thresholding the correlations. Each color corresponds to a rat.
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Figure 9: Plot of the empirical distribution of the phases obtained for the 4 groups of rats after
first thresholding the correlations. Only phases associated to correlations with a magnitude higher
than 0.3 are considered. Each color corresponds to a rat. For dead rats, a bar plot is provided
rather than a density plot due to the low number of values.
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Figure 10: Plot of the average graphs with correlations and phases obtained for 4 groups of rats:
DEAD, ISO W, ETO L and MED L. Only edges corresponding to an average correlation’s magni-
tude higher than 0.3 are displayed. Red edges correspond to positive average phases higher than
1.1|φ∗|, blue edges correspond to negative average phases lower than -1.1|φ∗|, and grey edges to
average phases between -1.1|φ∗| and 1.1|φ∗|. The quantities φ∗ are equal to φ∗`,m = −π

2 (d` − dm).
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