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Abstract

The notion of long-memory is considered in the case of multivariate time series, not necessarily
Gaussian nor stationary. The long-memory characteristics are defined by the long-memory
parameters describing the autocorrelation structure of each process and the long-run covariance
measuring the coupling between time series. A phase term is present in the model to widen the
classes of models. We introduce a representation of the time series by quasi-analytic wavelets for
inference in this setting. We first show that the covariance of the wavelet coefficients provides
an adequate estimator of the covariance structure of the processes, including the phase term.
Consistent estimators are then proposed which is based on a Whittle approximation. Simulations
highlight a satisfactory behavior of the estimation on finite samples on some linear time series and
on multivariate fractional Brownian motions. An application on a real dataset in neuroscience is
displayed, where long-memory and brain connectivity are inferred.

Keywords. Multivariate processes, long-range memory, covariance, phase, wavelets, cerebral
connectivity

1 Introduction

Multivariate processes are often observed nowadays thanks to the recordings of multiple sensors
simultaneously. Numerous examples can be cited such as hydrology [Whitcher and Jensen, 2000],
finance [Gençay et al., 2001] or neuroscience [Achard and Gannaz, 2016]. When in addition the time
series have also the property of long-range dependence, the definition of the model gets complicated
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and several definitions can be proposed. A simple model is to fix the long memory parameter for
each univariate process with a covariance structure added between the processes [Robinson, 1995a].
However phenomena such as co-integration cannot be modeled using this simple definition. An
alternative was proposed by Robinson [2008], Kechagias and Pipiras [2014], where a phase-term is
added to the covariance structure.

Following Kechagias and Pipiras [2014], consider a multivariate long-range dependence process

X(t) =
[
X1(t) . . . Xp(t)

]T
, t ∈ Z with long memory parameters d = (d1, d2, . . . , dp). Let ∆

denote the difference operator, (∆X)t = Xt+1 −Xt. The k-th difference operator, ∆k, k ∈ N, is
defined by k recursive applications of ∆. For any D > d − 1/2, we suppose that the multivariate
process Diag

(
∆D` , ` = 1, . . . , p

)
X is covariance stationary with a spectral density matrix given by

(M-1) f∆(λ) = (D(λ) Ω D(λ)) ◦ fS(λ), for all λ > 0,

where ◦ denotes the Hadamard product,

D(λ) = Diag
(
|λ|−d

S
1 , . . . , |λ|−d

S
p

)
.

and dSm = dm −Dm for all m. When the multivariate time series is already second order stationary,
Dm = 0 for all m, and our definition is equivalent to the one of Kechagias and Pipiras [2014]. Writing
the model as (M-1) enables us to consider non-stationary processes. This is particularly adequate
for handling multivariate fractional Brownian motion [Coeurjolly et al., 2013].

The function fS(·) deals with short-range memory. We assume that fS(0) = 1 to ensure
identifiability. We also need an assumption on its regularity:

(M-2) There exists Cf > 0 and β > 0 such that

sup
0<λ<π

sup
`,m=1,...,N

∣∣∣fS`,m(λ)− 1
∣∣∣

λβ
6 Cf .

The major interest of this model is the introduction of the matrix Ω. Let the bar above denote the
conjugate operator. The matrix Ω satisfies ΩT = Ω since fT (·) = f(·). More generally, let

Ω`,m = ω`,meiφ`,m ,

with (ω`,m)`,m=1,...,p real symmetric non-negative semi-definite matrix and Φ = (φ`,m)`,m=1,...,p anti-
symmetric. By symmetry of f(·), f(−λ) = f(λ)T ,

f(λ) = (D(λ) ΩT D(λ)) ◦ fS(λ) , for all λ < 0,
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which is not equal to (D(λ) Ω D(λ)) ◦ fS(λ) if Φ 6= 0. Let ‖Ω‖ denote the infinity norm, that is,
‖Ω‖ = max`,m=1,...,p |Ω`,m|. This is a generalisation of multivariate long range dependence models
used in Lobato [1997], Shimotsu [2007], Achard and Gannaz [2016], where the phase term was taken
depending on the difference of long memory parameter, that is, φ`,m = π(d` − dm)/2.

In the classical case of univariate setting, the main parameter of interest is the long-memory
parameter or equivalently the Hurst parameter. In this particular case, three main families of Fourier-
based estimation can be encountered for univariate estimation: the average periodogram estimation
[Robinson, 1994], the log periodogram regression [Geweke and Porter-Hudak, 1983, Robinson, 1995a]
and semiparametric estimation based on Whittle approximation [Künsch, 1987, Robinson, 1995b].
Estimation with a wavelet representation of time series was proposed in Abry and Veitch [1998] with
a log-scalogram approach similar to log-periodogram estimation and in Moulines et al. [2008] with
a wavelet-based Whittle estimation.

In a multivariate setting, estimation procedures are also following these different classes depending
on the choice of the model. For a general phase term, Sela and Hurvich [2012] proposed an estimation
based on the average periodogram and Robinson [2008] and Baek et al. [2020] developed a Fourier-
based Whittle estimation. For a fixed phase term, φ`,m = π(d` − dm)/2, estimation of both the
covariance structure and the long-memory was proposed by Lobato [1999] and Shimotsu [2007],
with a Fourier-based Whittle estimation, and by Achard and Gannaz [2016] with a similar procedure
based on a wavelet representation.

The objective of this work is to propose an estimation procedure in the general framework described
above, with a general phase, based on a wavelet representation of the processes rather than a Fourier
representation. Introducing wavelets is motivated by their flexibility for real data applications. It
enables in particular to consider non stationary processes thanks to an implicit differentiation. The
introduction of a general phase term challenges the choice of the wavelet filters. The particular
definition of the generalized spectral density satisfying (M-1) imposes the use of analytic filters.
Quasi-analytic wavelet filters are described in Section 2. Main properties of the filters are displayed
and an approximation of the covariance of wavelet coefficients is derived. Section 3 recalls the wavelet
Whittle estimators and gives their consistency and their convergence rate. Section 4 reports some
simulation results, on ARFIMA linear models and on multivariate fractional Brownian motions.
Section 5 provides an empirical application on neuroscience data. Proofs are collected in Appendix.

2 Transform of the multivariate process

We first define the filters used to transform the multivariate time series {X(t), t ∈ Z} for estimation.
Throughout the paper, we adopt the convention that large values of the scale index j correspond to
coarse scales (low frequencies).
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Let (h(L), h(H)) and (g(L), g(H)) denote two pairs of respectively low-pass and high-pass filters. Let
(φh(·), ψh(·)) be respectively the father and mother wavelets associated to (h(L), h(H)). They can be
defined through their Fourier transforms as

φ̂h(ω) =
∞∏
j=1

[
2−1/2ĥ(L)(ei2−jω)

]
,

ψ̂h(ω) = 2−1/2ĥ(H)(eiω/2) φ̂h(ω/2).

We define similarly (φg, ψg) the father and the mother wavelets associated with the wavelet filters
g(L) and g(H). The complex father and mother wavelets (φ(·), ψ(·)) are then defined by

φ̂(ω) = φ̂h + i φ̂g,

ψ̂(ω) = ψ̂h + i ψ̂g.

2.1 Selesnick’s common factor filters

We cannot obtain analytic FIR filters. We choose here to consider quasi-analytic filters introduced
by Thiran [1971], Selesnick [2002]. The common-factor wavelets of Selesnick [2002] are parametrized
by a degree L on the analytic property of the derived complex wavelet. We refer to Selesnick [2001,
2002], Achard et al. [2020] for a detailed description of the construction of the wavelets and their
properties.

Let d̂L(λ) be
d̂L(λ) = eiλ(−L/2+1/4)

[
cos(λ/4)2L+1 + i (−1)L+1 sin(λ/4)2L+1

]
. (1)

Next, filters ĥ(L), ĥ(L), are defined by

ĥ(L)(λ) =
√

2

(
1 + e−iλ

2

)M
q̂L,M (λ) d̂L(λ)

and
ĥ(H)(λ) = ĥ(L)(λ+ π)e−iλ ,

with q̂L,M (λ) a real polynomial of (e−iλ) such that q̂L,M (0) = 1. All the same, we define

ĝ(L)(λ) =
√

2

(
1 + e−iλ

2

)M
q̂L,M (λ) d̂L(λ)e−iλL

and
ĝ(H)(λ) = ĝ(L)(λ+ π)e−iλ.
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We finally introduce
τ̂j(λ) = ĥj(λ) + i ĝj(λ), (2)

where

ĥj(λ) = ĥ(H)(2j−1λ)

j−2∏
`=0

ĥ(L)(2`λ),

ĝj(λ) = ĝ(H)(2j−1λ)

j−2∏
`=0

ĝ(L)(2`λ).

Quantities {τj(s), s ∈ Z} are defined by τ̂j(λ) =
∑

s∈Z τj(s)e
−i s λ.

Common factor wavelets of Selesnick [2001] are introduced with q̂L,M such that the filters τ̂j satisfy
the perfect reconstruction condition. In that case, q̂L,M is defined as a solution of

|q̂L,M (λ)|2 s(λ) + |q̂L,M (λ+ π)|2 s(λ+ π) = 1 , (3)

where we have set s(λ) = 2−M (1 + cos(λ))M
∣∣∣d̂L(λ)

∣∣∣2. Achard et al. [2020] proved that the existence

of q̂L,M is acquired.

Another possibility is to consider that q̂L,M is a constant equal to 1. Perfect reconstruction is not
ensured but it is not necessary for estimation procedures. The properties of filters are then easier to
establish, since q̂L,M does not have an explicit expression with perfect reconstruction.

Definition 1 (Common Factor Wavelets (CFW)). Let M , L be strictly positive integers. Let
(τj)j∈N be a family of Common Factor filters defined by equation (2). If filter q̂L,M satisfies perfect
reconstruction condition (3), (τj)j∈N will be denoted as CFW-PR(M,L) filters. If q̂L,M is a constant
polynomial equal to 1, (τj)j∈N will be denoted as CFW-C(M,L) filters.

Recall the main results established in Achard et al. [2020].

For all λ ∈ R, for all q̂L,M real polynomial of (e−iλ),

τ̂∞(λ) = ĥ∞(λ) + i ĝ∞(λ) =
(

1− eiηL(λ)
)
ĥ∞(λ) , (4)

with

αL(λ) = 2(−1)L atan
(
tan2L+1(λ/4)

)
, (5)

ηL(λ) = −αL(λ/2 + π) +

∞∑
j=1

αL(2−j−1λ) .

In equation (5), we use the convention atan(±∞) = ±π/2 so that αL is well defined on R. We
deduce the following result.
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Theorem 2 (Achard et al. [2020]). We have, for all q̂L,M real polynomial of (e−iλ), for all λ ∈ R,∣∣∣τ̂∞(λ)− 21R+(λ) ĥ∞(λ)
∣∣∣ = UL(λ)

∣∣∣ĥ∞(λ)
∣∣∣ ,

where UL is a R→ [0, 2] function satisfying, for all λ ∈ R,

UL(λ) 6 2
√

2

(
log2

(
max(4π, |λ|)

2π

)
+ 2

) (
1− δ(λ, 4πZ)

max(4π, |λ|)

)2L+1

.

and, for all λ ∈ R and A ⊂ R, δ(λ,A) denotes the distance of λ to A defined by

δ(λ,A) = inf {|λ− x| , x ∈ A} .

2.2 Properties of the filters

We introduce the following properties:

(A-a) Finite support. For each j, {τj(s)}s∈Z has finite support.

(A-b) Vanishing moments. There exist M > 0 and Cm > 0 such that for all j > 0 and λ ∈ R,∣∣∣2−j/2 τ̂j(2−jλ)
∣∣∣ 6 Cm |λ|M ,

with Cm possibly depending of L and M .

(A-c) Uniform smoothness. There exist α > 1 and Cs > 0 such that for all λ ∈ R,∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣ 6 Cs

(1 + |λ|)α
and |τ̂∞(λ)| 6 Cs

(1 + |λ|)α
.

with Cs possibly depending of L and M .

(A-d) Asymptotic behavior. There exist γ > 0 and Ca depending of L and M such that for all j > 1,

sup
|λ|6π

∣∣∣∣∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣2 − |τ̂∞(λ)|2

∣∣∣∣ 6 Ca 2−γ j |λ|2M .

(A-e) Quasi-analyticity. There exist γ > 0 and Ca depending of L and M such that for all j > 1,

sup
|λ|6π

∣∣∣∣∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣2 − 21R+(λ)

∣∣∣ĥ∞(λ)
∣∣∣2∣∣∣∣ 6 Ca 2−γ j |λ|2M .

6



Notice that if (τ̂j)j∈Z denotes the real Daubechies’ wavelet filters with M vanishing moments, then
Assumptions (A-a) to (A-d) are satisfied, with γ = 2 in (A-d). We refer to Proposition 3 of Moulines
et al. [2007].

We shall now discuss about the properties for CFW-PR(M,L) and CFW-C(M,L) filters. First, by
construction, the filters h(L) and h(H), g(L) and g(H) have length M + L + 1. Then τj has finite
length and (A-a) holds.

Exact analyticity corresponds to filters τ̂∞ satisfying

sup
λ∈R

∣∣∣τ̂∞(λ)− (1 + sign(λ)) ĥ∞(λ)
∣∣∣ = 0.

CFW-PR(M,L) and CFW-C(M,L) filters are not exactly analytic but only approximately analytic.
Indeed, as stated by Selesnick [2001], assumption (A-a) and exact analyticity cannot hold
simultaneously. Thus we made a weaker assumption for analyticity, namely assumption (A-e).

Assumptions (A-b) to (A-d) are acquired for CFW-C(M,L) as stated in the following proposition.

Proposition 3. Let L > 1 and M > 1. Then Assumptions (A-a) to (A-d) are satisfied by CFW-
C(M,L) filters with α = M + 2L+ 1 and γ = 1.

Proofs are given in Section 2.2. Notice that the fact that CFW-C(M,L) filters do not enable a perfect
reconstruction is not an obstacle for estimation.

Next for CFW-PR(M,L) filters, verifying assumptions is much more challenging. Indeed, no explicit
expression of filter q̂(·) satifying the Bezout equation (3) can be given. For instance, (A-c) cannot
be proved for CFW-PR(M,L) filters. Yet we have an estimation of the Sobolev exponent which may
justify the assumption. That is, we cannot prove it but it is satisfied numerically, see Section 5.3 of
Achard et al. [2020]. The study of assumptions (A-b) to (A-d) is not detailed in the manuscript for
CFW-PR(M,L) filters.

The regularity parameter α may depend of L and M , as in Proposition 3. It is reasonable to suppose
that for CFW-PR(M,L) filters it is also an increasing function of M and L. Remark e.g. that for
Daubechies’ wavelet, which corresponds to CFW-PR(M,0) filters, α is increasing with M . An exact
expression of α for CFW-PR(M,L) filters is utopian when perfect reconstruction conditions holds.
It yet can be checked on simulations that indeed the Sobolev exponent increases with respect to L
and with respect to M (see Table 1 of Achard et al. [2020]).
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2.3 Moments approximations of the wavelet coefficients

Denote {Wj,k, j > 0, k ∈ Z} the wavelet coefficients of the process X associated to filters
{τj(·), j ∈ Z}. For given j > 0 and k ∈ Z, Wj,k is a p-dimensional vector Wjk =(
Wj,k(1) Wj,k(2) . . . Wj,k(p)

)
, where

Wj,k(`) =
∑
s∈Z

τj(2
jk − s)X`(s), j > 0, k ∈ Z .

We are interested in the behavior of Cov(Wjk), which can be expressed as

Cov(Wjk) = E
[
WjkW

H
jk

]
=

∫ π

−π
f(λ) |τ̂j(λ)|2 dλ .

We suppose that the filters are regular enough with respect to the spectral density, that is, we
introduce the assumption

(C-a) −α+ β/2 + 1/2 < d` < M + 1/2 for all ` = 1, . . . , p and 0 < β < γ.

Recall that M and α measure the regularity of the filters and are defined respectively in (A-b), (A-d),
(A-c). Parameters (d`)`=1,...p and β characterize the dependence in the spectral domain (M-1)-(M-2).

The regularity of the filters first allows to obtain the following approximation.

Proposition 4. Let X be a p-multivariate long range dependent process with long memory
parameters d1, . . . , dp with normalized spectral density f(·) satisfying (M-1) with short-range behavior
(M-2). Suppose that (A-a), (A-b), (A-c), (A-d) and (C-a) hold. Then we have, for all j > 0, k ∈ Z,∣∣∣∣Cov(Wjk(`),Wjk(m))− 2j(d`+dm)ω`,m

∫ ∞
−∞
|λ|−d`−dm esign(λ)φ`,m |τ̂∞(λ)|2 dλ

∣∣∣∣
6 C1 ‖Ω‖ 2j (d`+dm−β) ,

where C1 is a constant only depending on α,M,L and Cf , β, ‖Ω‖ , {d`, ` = 1, . . . , p}.

This result corresponds to Proposition 2 of Achard and Gannaz [2016]. It holds for real wavelets.
For example, Daubechies’ wavelets basis satisfy assumptions (A-a), (A-b), (A-c) and (A-d).

Next, the quasi-analytic property of the filter τ∞ given by (A-e) implies the following proposition.
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Proposition 5. Let X be a p-multivariate long range dependent process with long memory
parameters d1, . . . , dp with normalized spectral density satisfying (M-1)–(M-2). Suppose that (A-
a), (A-b), (A-c), (A-d), (A-e) and (C-a) hold. Then we have, for all j > 0, k ∈ Z,∣∣∣∣Cov(Wjk(`),Wjk(m))− 4 2j(d`+dm)Ω`,m

∫ ∞
0
|λ|−d`−dm

∣∣∣ĥ∞(λ)
∣∣∣2 dλ

∣∣∣∣ 6 C2 ‖Ω‖ 2j (d`+dm−β) , (6)

where C2 is a constant only depending on α,M,L and Cf , β, ‖Ω‖ , {d`, ` = 1, . . . , p}.

Inequality (6) can be written as follows: for all `,m = 1, . . . , p,∣∣∣Cov(Wjk(`),Wjk(m))− 2j(d`+dm) Ω`,mK(d` + dm)
∣∣∣ 6 C2 ‖Ω‖ 2j (d`+dm−β) , (7)

with

K(δ) = 4

∫ ∞
0
|λ|−δ

∣∣∣ĥ∞(λ)
∣∣∣2 dλ .

With CFW-PR(L,M) filters, (A-e) may not hold and the control of quasi-analyticity is given by
Theorem 2. But it leads to a similar result:

Proposition 6. Let X be a p-multivariate long range dependent process with long memory
parameters d1, . . . , dp with normalized spectral density fS(·) satisfying (M-1)–(M-2). Suppose that
we consider CFW-C(M,L) filters and that

(C-b) −M/2 + β/2− 1 < d` < M + 1/2 for all ` = 1, . . . , p and 0 < β < 1.

Then for all j > 0 there exists Lj > 1 such that for all L > Lj, for all k ∈ Z, inequality (7) holds,
with C2 constant only depending on M,Cf , β, ‖Ω‖ , {d`, ` = 1, . . . , p}.

Assumption (C-b) corresponds to Assumption (C-a) with α = M/2 + 3/2 and γ = 1. It is stronger
than the assumption on parameters needed in Proposition 5 where we could consider α = M+2L+1.
This is due to technical conditions in the proof, and also to the fact that we choose not to write
assumptions with a dependence on the scales j. Yet, notice that (C-b) does not seem restrictive.

Result of Proposition 6 justifies the use of (quasi-)analytic wavelets. It should be compared to
Proposition 3 of Achard and Gannaz [2016]. With real wavelets, the phase term appears in the
approximation of the covariance as a cosine term. That is, we would obtain in this framework an
approximation of the form∣∣∣Cov(Wjk(`),Wjk(m))− 2j(d`+dm) ω`,m cos(φ`,m)K(d` + dm)

∣∣∣ 6 C ‖Ω‖ 2j (d`+dm−β).

Consequently, parameters {ω`,m, φ`,m} are not identifiable. Estimation is derived in Achard and
Gannaz [2016] in the case of a parametric phase, φ`,m = π

2 (d` − dm). Common factor wavelets, as
stated by Proposition 6, have the ability of recovering simultaneously the magnitude and the phase.
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3 Estimation

Let (φ(·), ψ(·)) be respectively a father and a mother wavelets defined by respectively by filters
h(L) + i g(L) and h(H) + i g(H). At a given resolution j > 0, for k ∈ Z, we define the dilated and
translated functions φj,k(·) = 2−j/2φ(2−j ·−k) and ψj,k(·) = 2−j/2ψ(2−j ·−k). The Fourier transform
is τ̂j(λ) =

∫∞
−∞ ψ(t)e−iλtdt with filter τ̂j(·) defined in Section 2. CFW-PR(M,L) and CFW-C(M,L)

filters will be considered.

In practice, the process X, is observed on discrete time points X(1), . . .X(N). Let X̃(t) =∑N
s=1 X(s)φ(t− s). The empirical wavelet coefficients of the process X are defined by

Wj,k =

∫
R

X̃(t)ψj,k(t)dt j > 0, k ∈ Z.

Equivalently,

Wj,k =

N∑
s=1

X(s)τj(2
jk − s) j > 0, k ∈ Z.

For given j > 0 and k ∈ Z, Wj,k is a p-dimensional vector Wjk =
(
Wj,k(1) Wj,k(2) . . . Wj,k(p)

)
,

where Wj,k(`) =
∫
R X̃`(t)ψj,k(t)dt.

Since the wavelets have a compact support only a finite number nj of coefficients are non null at
each scale j. Suppose without loss of generality that the support of ψ(·) is included in [0, Tψ] with
Tψ > 1. For every j > 0, define

nj := max (0, 2−j(N − Tψ + 1)).

Then for every k < 0 and k > nj , the coefficients Wj,k are set to zero because all the observations

are not available. In the following, n =
∑j1

j=j0
nj denotes the total number of non-zero coefficients

used for estimation.

Let jU > jL > 1 be respectively the upper and the lower resolution levels that are used
in the estimation procedure. The estimation is based on the vectors of wavelets coefficients
{Wj,k, jL 6 j 6 jU , k ∈ Z}. Let nj be the number of non-zero coefficients {Wj,k, k ∈ Z} for a
given scale j > 0. The njs are finite since the filter is finite (assumption (A-a)).

3.1 Estimation procedure

The estimation procedure is similar than the one developped in Achard and Gannaz [2016]. The
wavelet Whittle approximation of the negative log-likelihood is denoted by L(·). It is based on
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approximation (7). The wavelet Whittle criterion is defined as

L(G,d) =
1

n

jU∑
j=jL

[
nj log det (Γj(d) G Γj(d)) +

nj∑
k=0

WH
j,k (Γj(d) G Γj(d))−1 Wj,k

]
with G the matrix with elements G`,m = Ω`,mK(d` + dm), 1 6, `,m 6 p. The exponent H denotes
the conjugate transpose operator. We have

L(G,d) =
1

n

jU∑
j=jL

[
nj log det (Γj(d) G Γj(d)) + trace

(
(Γj(d) G Γj(d))−1 I(j)

)]
, (8)

where I(j) =
∑nj

k=0 Wj,kW
H
j,k denotes the (non-normalized) empirical scalogram at scale j.

Remark that when G is an Hermitian positive definite matrix, for all j > 0, for all d,
det(Γj(d) G Γj(d)) is real and strictly positive and trace

(
(Γj(d) G Γj(d))−1Ij

)
is real. The criterion

L(G,d) is hence well-defined for G in the set of Hermitian matrices and for all d ∈ Rp, and it takes
its values in R.

Differentiating expression (8) with respect to the matrix G yields to

∂L
∂G

(G,d) =
1

n

jU∑
j=jL

[
njG

−1 −G−1Γj(d)−1I(j)Γj(d)−1G−1
]T
,

where the exponent T denotes the transpose operator. Some keys for complex matrix differentiation
can be found in Hjorungnes and Gesbert [2007]. Hence, the minimum for fixed d is attained at

Ĝ(d) =
1

n

jU∑
j=jL

Γj(d)−1I(j)Γj(d)−1.

Remark that Shimotsu [2007] and Baek et al. [2020], in the Fourier based approach, consider a
real matrix G(d) and complex valued matrices Γj(d), including the phases

(
φ`,m

)
`,m=,,...,p

. They
are estimated in a second step, together with parameter d, minimizing the criterion obtained when
replacing G by Ĝ(d) in (8). In Shimotsu [2007] the resulting criterion only depends of d since
the phases are parametric while Baek et al. [2020] deal with a general form of phases. A similar
approach can be derived in our context. Yet, our procedure enables to estimate the magnitude of
the correlation even when the phase if equal to π/2, leading to imaginary terms in G.

Replacing G by Ĝ(d), the objective criterion is defined as

R(d) := L(Ĝ(d),d)− p = log det(Ĝ(d))− 1

n

jU∑
j=jL

nj log(det (Γj(d)Γj(d)) .

11



Since Γj(d) = Diag
(
2−jd

)
, we obtain

R(d) = log det(Ĝ(d)) + 2 log(2)

 1

n

jU∑
j=jL

jnj

( p∑
`=1

d`

)
.

The vector of the long-memory parameters d is estimated by d̂ = argmindR(d).

In a second step of estimation we define Ĝ(d̂), estimator of G. And we recover an estimation of Ω
by

Ω̂`,m = Ĝ`,m(d̂) /K(d̂` + d̂m) .

3.2 Asymptotic behaviour

Following Moulines et al. [2008] and Achard and Gannaz [2016], we introduce an additional condition
on the variance of the scalogram {I(j)}. Examples of linear processes satisfying this condition can
be found in Proposition 4 of Achard and Gannaz [2016].

Condition (C)

For all `,m = 1, . . . , p, sup
n

sup
j>0

|Var (I`,m(j))|
nj22j(d`+dm)

< ∞ .

Let d0, G0 and Ω0 denote the true values of the parameters. Consistency of the estimators can be
established as in Achard and Gannaz [2016].

Theorem 7. Suppose that assumptions of Proposition 5 or of Proposition 6 hold. Assume that
Condition (C) is satisfied. If j0 and j1 are chosen such that 2−j0β+N−1/22j0/2 → 0 and j0 < j1 6 jN
with jN = max{j, nj > 1}, then

d̂− d0 = oP(1).

If j0 and j1 are chosen such that log(N)2(2−j0β +N−1/22j0/2)→ 0 and j0 < j1 6 jN then

d̂− d0 = OP(2−j0β +N−1/22j0/2),

∀(`,m) ∈ {1, . . . , p}2, Ĝ`,m(d̂)−G`,m(d0) = OP(log(N)(2−j0β +N−1/22j0/2)),

Ω̂`,m − Ω0
`,m = OP(log(N)(2−j0β +N−1/22j0/2)).

Taking 2j0 = N1/(1+2β),
d̂− d0 = OP(N−β/(1+2β)).

12



The proofs are very similar to the real case and they are omitted. Remark that a key of the proof
is Oppenheim’s inequality, which holds for complex matrices, see Horn and Johnson [1990].

4 Simulation study

In this section, we verify the accuracy of the covariance approximation given in Proposition 6 and the
consistency of the parameters estimates provide in Proposition 7 on simulated data. We consider
1000 Monte-Carlo simulations of bivariate long-memory processes X observed at X(1), . . . ,X(N)
with N = 212. For each process we compute the wavelet coefficients using CFW-PR(4,4) and CFW-
PR(4,4) filters. We also compare to quality of estimation of parameters d to the one given by real
wavelets, namely Daubechies’ wavelets with 4 vanishing moments.

The estimated parameters are d = (d1, d2), the magnitude of the long-run covariance |Ω|, the phase

φ = φ1,2 and the long-run correlation ρ =
|Ω1,2|√
|Ω1,1||Ω2,2|

. For each parameter, we will evaluate the

quality of estimation by the bias, the standard deviation (std) and the Root Mean Squared Error,

RMSE =
√

bias2 + std2.

Two models are considered: models admitting a linear representation called ARFIMA and
multivariate fractional Brownian motions (mFBM).

4.1 ARFIMA models

We first provide an estimation example on linear time series. Let ξ be a p-dimensional white noise
with E[ξ(t) | Ft−1] = 0 and E[ξ(t)ξ(t)T | Ft−1] = Σ with Σ positive definite, where Ft−1 is the σ-field
generated by {ξ(s), s < t}. The spectral density of ξ satisfies fξ(λ) = Σ.

Let (Ak)k∈N be a sequence in Rp×p with A0 the identity matrix and
∑∞

k=0 ‖Ak‖2 < ∞. Let A(·)
be the discrete Fourier transform of the sequence, A(λ) =

∑∞
k=0 Ake

ikλ. We assume |A(L)| has all
its roots outside the unit circle which ensures that A(·)−1 is defined and smooth on R. We are also
given (Bk)k∈N be a sequence in Rp×p with B0 the identity matrix and

∑∞
k=0 ‖Bk‖2 < ∞. Let B(·)

be the discrete Fourier transform of the sequence, B(λ) =
∑∞

k=0 Bke
ikλ.

Define the process X as

A(L) Diag
(

(1− L)d
)

Xt = B(L)ξt. (9)

The spectral density satisfies

f(λ) = (1− e−iλ)−dA(e−iλ)−1B(e−iλ)fξ(λ)B(eiλ)TA(eiλ)T
−1

(1− eiλ)−d.
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In particular
f`,m(λ) ∼λ→0+ G`,me

−iπ/2(d`−dm)λ−(d`+dm) ,

with G = A(0)−1B(0)fξ(λ)B(0)TA(0)T
−1

= A(0)−1B(0)ΣB(0)TA(0)T
−1

with is a real valued
matrix. Condition (M-2) is satisfied with β = min`(d`). In this case f(0+) = f(0−).

This corresponds to Model A of Lobato [1997]. It is straightforward that this model satisfies the
definition of LRD processes of Kechagias and Pipiras [2014] when fξ(λ) ∼λ→0+ Σ, which is satisfied
when ξ is a white-noise process.

We simulate {X(1), . . .X(N)} in (9) with N = 212, null Ak and Bk for k > 0. That is, there is no
short-range terms in the model. We consider three sets of values for d, d ∈ {(0.2, 0.2), (0.2, 0.4),

(0.2, 0.8)}. Matrix Σ was taken equal to

(
1 ρ
ρ 1

)
, with ρ = 0.8. The phase is equal to π(d1 − d2)/2

which is respectively equal to 0, π/10, 3π/10. Simulations were done using R package multiwave
[Achard and Gannaz, 2015].

Figure 1 displays the boxplots of the correlations between the wavelet coefficients obtained by CFW-
PR(4,4) filter at different scales. It illustrates that the approximation of Proposition 6 is accurate,
especially for the high scales (lowest frequencies), even if it has not been established theoretically
for such filters. A similar figure can be obtained with CFW-C(4,4) filter. It is not displayed here
since no difference with the CFW-C(4,4) filter can be observed. Remark that the figure shows that
the approximation of Proposition 6 is slightly more accurate for the real part of wavelet correlations
than for the imaginary part.

Results for the estimation of the long-memory parameters d are displayed respectively in Table 1
for CFW-PR(4,4) filter and in Table 2 for CFW-C(4,4) filter. They show that the estimation is
satisfactory and that its quality is similar to the Daubechies’ real wavelet-based estimation. The
quality with complex filters procedure increases with respect to real filter procedure when the
difference between the long memory parameters d1 and d2 increases. This can be explained by
the fact that we take into account the imaginary part of the matrix G in estimation, which is not
the case with real filters. Notice that CFW-PR(4,4) and CFW-C(4,4) filters give the same results.

Table 3 and Table 4 give the results for the covariance structure estimation, respectively for CFW-
PR(4,4) filter and for CFW-C(4,4) filter. Very similar results are obtained by CFW-PR(4,4) and
CFW-C(4,4) filters. Estimation is satisfactory for the covariance structure |Ω| and for the correlation
ρ. Results for the phase parameter φ are less satisfactory. A bias term, increasing as the phase φ
increases, can be observed. It has for example an order of π/10 when estimating the phase of 3π/10
corresponding to the case d = (0.2, 0.8). Yet as illustrated e.g. in the simulation study of Baek et al.
[2020], estimating the phase is challenging and our result seems comparable to Baek et al. [2020]’s
Fourier-based Whittle estimator.
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(b) d = (0.2, 0.4)
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(c) d = (0.2, 0.4)
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Figure 1: Boxplots of correlation between CFW-PR(4,4) coefficients at different scales for ARFIMA
processes. First row gives the real part of the correlations and second row gives the imaginary
part. Each column corresponds to a given value of parameter d. Horizontal red lines correspond
to the approximation given by Proposition 6, that is, ρ cos(φ) for the real part and ρ sin(φ) for the
imaginary part.

d bias std RMSE CFW-PR(4,4)/Real

0.2 0.0130 0.0110 0.0170 1.0097
0.2 0.0131 0.0109 0.0170 1.0057

0.2 0.0172 0.0111 0.0205 1.2854
0.4 -0.0041 0.0111 0.0118 0.7127

0.2 0.0203 0.0173 0.0266 0.8769
0.8 4e-04 0.0174 0.0174 0.7937

Table 1: Results for the estimation of long-memory parameters d with CFW-PR(4,4) filters on
ARFIMA processes. j0 = 1 for d ∈ {(0.2, 0.2), (0.2, 0.4)} and j0 = 2 for d ∈ {(0.2, 0.8)}. CFW-
PR(4,4)/Real denotes the ratio between the RMSE given by CFW-C(4,4) filter and the RMSE given
by Daubechies’ real filter.
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d bias std RMSE CFW-C(4,4)/CFW-PR(4,4)

0.2 0.013 0.0110 0.017 1
0.2 0.0131 0.0109 0.017 1

0.2 0.0172 0.0111 0.0205 1
0.4 -0.0041 0.0111 0.0118 1

0.2 0.0203 0.0173 0.0266 1
0.8 4e-04 0.0174 0.0174 1

Table 2: Results for the estimation of long-memory parameters d with CFW-C(4,4) filters on
ARFIMA processes. j0 = 1 for d ∈ {(0.2, 0.2), (0.2, 0.4)} and j0 = 2 for d ∈ {(0.2, 0.8)}. CFW-
C(4,4)/CFW-PR(4,4) denotes the ratio between the RMSE given by CFW-C(4,4) filter and the
RMSE given by CFW-PR(4,4) filter.

4.2 Multivariate Brownian motions

We now consider a multivariate fractional Brownian motion (mFBM). A specificity of mFBM is
that it does not have a linear representation, even if it can be seen as the limit process of a linear
representation, see Proposition 11 of Amblard and Coeurjolly [2011].

The p-multivariate fractional Brownian motion (mFBM) (X(t))t∈R of long-memory parameter d, for
any d ∈ (0.5, 1.5)p is a process satisfying the three following properties:

• X(t) is Gaussian for any t ∈ R;

• X is self-similar with parameter d− 1/2, i.e. for every t ∈ R and a > 0, (X1(at), . . . ,Xp(at))
has the same distribution as (ad1−1/2X1(t), . . . , adp−1/2Xp(t));

• the increments are stationary.

Another usual parametrization is the one with Hurst parameters, equal to d− 1/2.
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d bias std RMSE

( 0.2 , 0.2 ) |Ω1,1| 0.005 0.0232 0.0238
|Ω1,2| 0.0044 0.0208 0.0213
|Ω2,2| 0.0056 0.0233 0.024
ρ 1e-04 0.0058 0.0058
φ -8e-04 0.0138 0.0139

( 0.2 , 0.4 ) |Ω1,1| 0.007 0.0233 0.0243
|Ω1,2| 0.0246 0.0214 0.0326
|Ω2,2| 0.074 0.025 0.0781
ρ -0.0071 0.0058 0.0092
φ 0.1117 0.0143 0.1126

( 0.2 , 0.8 ) |Ω1,1| -0.0072 0.0343 0.0351
|Ω1,2| -0.0175 0.0303 0.035
|Ω2,2| 0.1114 0.0415 0.1189
ρ -0.0551 0.0083 0.0557
φ 0.3063 0.0173 0.3068

Table 3: Results for the estimation of matrices Ω with CFW-PR(4,4) filters on ARFIMA processes.
j0 = 1 for d ∈ {(0.2, 0.2), (0.2, 0.4)} and j0 = 2 for d ∈ {(0.2, 0.8)}.

We introduce the following quantitities, for 1 6 `,m 6 p:

σ` = E[X`(1)2]1/2

r`,m = rm,` = Cor(X`(1), Xm(−1))

η`,m = −ηm,` = (Cor(X`(1), Xm(−1))− Cor(X`(−1), Xm(1)))/c`,m

with c`,m =

{
2(1− 2d`+dm−1) if d` + dm 6= 1,

2 log(2) if d` + dm = 1,

where Cor(X1, X2) denotes the Pearson correlation between variables X1 and X2. The quantities
(η`,m)`,m=1,...,p measure the disymmetry of the process. The mFBM is time reversible if the
distribution of X(−t) is equal to the distribution of X(t) for every t. Didier and Pipiras [2011]
established that it is equivalent for zero-mean multivariate Gaussian stationary processes X to
E[X`(t)Xm(s)] = E[X`(s)Xm(t)] for all (s, t), which corresponds to the definition of time reversibility
used in Kechagias and Pipiras [2014]. A mFBM is time-reversible if and only if η`,m = 0 for all (`,m).

Coeurjolly et al. [2013] characterize the spectral behaviour of the increments of a mFBM. If f
(1,1)
`,m

denotes the cross-spectral density of (∆X`,∆Xm), then

f
(1,1)
`,m (λ) = 2R`,m

1− cos(λ)

|λ|d`+dm
eiφ`,m ,
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d bias std RMSE CFW-C(4,4)/CFW-PR(4,4)

( 0.2 , 0.2 ) |Ω1,1| 0.005 0.0248 0.0253 1.0641
|Ω1,2| 0.0044 0.0222 0.0226 1.0646
|Ω2,2| 0.0056 0.0248 0.0254 1.0618
ρ 4e-04 0.0058 0.0058 1.002
φ -8e-04 0.0138 0.0139 1.0000

( 0.2 , 0.4 ) |Ω1,1| 0.007 0.025 0.026 1.0673
|Ω1,2| 0.0246 0.0231 0.0337 1.0342
|Ω2,2| 0.074 0.0271 0.0788 1.0091
ρ -0.0065 0.0058 0.0088 0.9519
φ 0.1117 0.0143 0.1126 1.0000

( 0.2, 0.8 ) |Ω1,1| 0.0368 0.0357 0.0513 0.9979
|Ω1,2| 0.0172 0.0277 0.0326 0.9063
|Ω2,2| 0.1606 0.0438 0.1665 1.0007
ρ -0.0551 0.0083 0.0557 1.0000
φ 0.3063 0.0173 0.3068 1.0000

Table 4: Results for the estimation of matrices Ω with CFW-C(4,4) filters on ARFIMA processes.
j0 = 1 for d ∈ {(0.2, 0.2), (0.2, 0.4)} and j0 = 2 for d ∈ {(0.2, 0.8)}. CFW-C(4,4)/CFW-PR(4,4)
denotes the ratio between the RMSE given by CFW-C(4,4) filter and the RMSE given by CFW-
PR(4,4) filter.

with

R`,m =

σ`σmΓ(d` + dm)
(
r2
`,m cos2(π2 (d` + dm)) + η2

`,m sin2(π2 (d` + dm))
)1/2

if d` + dm 6= 2

σ`σmΓ(d` + dm)
(
r2
`,m + η2

`,m
π2

4

)1/2
if d` + dm = 2

φ`,m =

atan
(
η`,m
r`,m

tan(π2 (d` + dm))
)

if d` + dm 6= 2

atan
(
η`,m
r`,m

π
2

)
if d` + dm = 2.

Let G be given by: G = (R`,me
iφ`,m)`,m=1,...,p. When λ tends to 0, the spectral density f

(1,1)
`,m (λ) is

equivalent to G`,m|λ|−(d`+dm−2). Thus, assumption (M-1) holds. Assumption (M-2) is satisfied for
any 0 < β < 2. We can verify easily that time-reversibility is still equivalent to φ`,m = 0 in this
setting.

Remark that the set of parameters {d`, σ`, r`,m, η`,m, `,m = 1, . . . , p} is not identifiable. Indeed, for
0 < a < 1, {d`, σ`, r`,m, η`,m, `,m = 1, . . . , p} and {d`,

√
a σ`, r`,m/a, η`,m/a, `,m = 1, . . . , p} lead to

the same expressions of f
(1,1)
`,m (·). It thus seems reasonable to parameterize the fractional Brownian
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motion by {d`, G`,m, `,m = 1, . . . , p}.

We consider two mFBM, both with parameters σ1 = σ2 = 1 and d = (1, 1.2). Next we consider two
cases:

Case 1. η1,2 = 0.9, r1,2 = 0.6.

The phase φ1,2 is approximately equal to π/7 and R '
(

0.318 0.223
0.223 0.320

)
, giving a long-run

correlation ρ ' 0.70.

Case 2. η1,2 = −0.6, r1,2 = 0.2.

The phase φ1,2 is approximately equal to −π/4 and R '
(

0.318 0.093
0.093 0.319

)
, giving a long-run

correlation ρ ' 0.29.

Simulations were done using R functions provided by J-F Coeurjolly at https://sites.google.

com/site/homepagejfc/software.

We first check that the quality of the approximation of the wavelet correlation resulting from
Proposition 6 is satisfactory. Figure 2 represents the boxplots of CFW-PR(4,4) wavelet correlations
at different scales in Case 1 and in Case 2. In both settings, it can be seen that the approximation
holds, except for highest frequencies. As identical observations were done for CFW-C(4,4) filters the
figure is not displayed here.

We now consider the Whittle estimation of the parameters. Table 5 and Table 6 highlight the
good behavior of the estimation of long-memory parameters d respectively for CFW-PR(4,4) and
CFW-C(4,4) filters. Again, estimation procedures are equivalent for both common-factor wavelets.

d bias std RMSE ratio CFW-PR(4,4)/Real

Case 1 1 -0.0125 0.0182 0.0221 0.7254
1.2 -8e-04 0.0198 0.0198 0.8333

Case 2 1 -0.0069 0.0198 0.0210 0.6863
1.2 0.0047 0.0219 0.0224 0.9127

Table 5: Results for the estimation of long-memory parameters d with CFW-PR(4,4) filter on
mFBMs. Hyperparameter j0 satisfies j0 = 2. CFW-PR(4,4)/Real denotes the ratio between the
RMSE given by CFW-C(4,4) filter and the RMSE given by Daubechies’ real filter.

Table 7 and Table 8 give the results obtained for the estimation of the covariance structure, that is,
|Ω|, ρ and φ. Estimation of |Ω| by CFW-PR(4,4) filters is slightly more accurate than estimation
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(b) Case 2
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Figure 2: Boxplots of correlation between CFW-PR(4,4) coefficients at different scales for the
simulated mFBM in Case 1 (left column–(a)) and in Case 2 (right column–(b)). First row gives
the real part of the correlations and second row gives the imaginary part. Horizontal red lines
correspond to the approximation given by Proposition 6, that is, ρ cos(φ) for the real part and
ρ sin(φ) for the imaginary part.

with CFW-C(4,4) filters, but qualities for the estimation of ρ and of φ are equivalent. Bias as
standard deviations of the estimations of ρ and φ seem reasonable.
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d bias std RMSE ratio CFW-C(4,4)/CFW-PR(4,4)

Case 1 1 -0.0125 0.0182 0.0221 1
1.2 -8e-04 0.0198 0.0198 1

Case 2 1 -0.0069 0.0198 0.0210 1
1.2 0.0047 0.0219 0.0224 1

Table 6: Results for the estimation of long-memory parameters d with CFW-C(4,4) filter on mFBMs.
Hyperparameter j0 satisfies j0 = 2. CFW-C(4,4)/CFW-PR(4,4) denotes the ratio between the
RMSE given by CFW-C(4,4) filter and the RMSE given by CFW-PR(4,4) filter.

bias std RMSE

Case 1 |Ω1,1| 0.1617 0.0453 0.1679
|Ω1,2| 0.0753 0.0357 0.0833
|Ω2,2| 0.1370 0.0461 0.1446
ρ -0.0252 0.0126 0.0282
φ 0.0743 0.0222 0.0776

Case 2 |Ω1,1| 0.1554 0.0450 0.1618
|Ω1,2| 0.0134 0.0264 0.0296
|Ω2,2| 0.1297 0.0469 0.1379
ρ -0.0246 0.0201 0.0318
φ -0.0972 0.0802 0.1260

Table 7: Results for the estimation of matrices Ω with CFW-PR(4,4) filter on mFBMs.
Hyperparameter j0 satisfies j0 = 2.

5 Application on a neuroscience dataset

We applied our framework on fMRI data acquired on rats. We use functional Magnetic Resonance
images (fMRI) of both dead and alive rats. The aim is to estimate the brain connectivity, that is,
the significant correlations between brain regions where fMRI signals are recorded. For this data set,
we know that for dead rats we are under the full null hypothesis as no legitimate functional activity
should be detected. Thus the estimated graphs should be empty. We also expect non-empty graphs
for alive rats under anesthetic, as brain activity keeps on during anesthetic. The dataset are freely
available at https://10.5281/zenodo.2452871 [Becq et al., 2020a,b].
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bias std RMSE CFW-C(4,4)/CFW-PR(4,4)

Case 1 |Ω1,1| 0.1617 0.0511 0.1696 1.0097
|Ω1,2| 0.0753 0.0395 0.0850 1.0206
|Ω2,2| 0.1370 0.0523 0.1467 1.0145
ρ -0.0252 0.0126 0.0282 1.0000
φ 0.0743 0.0222 0.0776 1.0000

Case 2 |Ω1,1| 0.1554 0.0504 0.1633 1.0098
|Ω1,2| 0.0134 0.0326 0.0352 1.1885
|Ω2,2| 0.1297 0.0531 0.1401 1.0161
ρ -0.0246 0.0201 0.0318 1.0000
φ -0.0972 0.0802 0.1260 1.0000

Table 8: Results for the estimation of matrices Ω with CFW-C(4,4) filter on mFBMs.
Hyperparameter j0 satisfies j0 = 2. CFW-C(4,4)/CFW-PR(4,4) denotes the ratio between the
RMSE given by CFW-C(4,4) filter and the RMSE given by CFW-PR(4,4) filter.

5.1 Description of the dataset

Functional Magnetic Resonance Images (fMRI) were acquired for both dead and alive rats (complete
description is available in Becq et al. [2020b]). 25 rats were scanned and identified in 4 different
groups: DEAD, ETO L, ISO W and MED L. The first group contain dead rats and the three last
groups correspond to different anesthetics. The duration of the scanning was 30 minutes with a
time repetition of 0.5 second so that 3600 time points were available at the end of experience. After
preprocessing as explained in Becq et al. [2020b], 51 time series for each rat were extracted. Each
time series captures the functioning of a given region of the rat brain based on an anatomical atlas.

For each rat, we compute the estimators of

• the vector of long-memory parameters, d̂,

• the magnitude of the correlations, ρ̂ = {ρ̂`,m, 1 6 ` < m 6 p} with ρ̂`,m =
|Ω̂`,m|√
Ω̂`,`Ω̂m,m

,

• the phases, φ̂ = {φ̂`,m, 1 6 ` < m 6 p}.

Estimation was done with CFW-PR(4,4) filters.
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5.2 Results and group comparisons

Figure 3 shows the empirical distribution of the estimated empirical estimators d̂. As expected, the
dead rats do not present significant long-memories. The distributions are centered at zero, with a
Gaussian-like shape. Rats under anesthetics are not centered at zero and the variance between brain
regions are higher than what is observed for dead rats. Long-memories for rats under anesthetic
ISO W are higher than under other anesthetics.
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Figure 3: Plot of the empirical distribution of the long memory parameters d̂ obtained for the 4
groups of rats. Each color corresponds to a rat.

Distributions of magnitude and phases of the estimated correlations, ρ and φ, for each rats are
displayed respectively in Figure 4 and Figure 5. First, as expected, the magnitudes obtained for the
dead rats are significantly different from alive rats. For dead rats, distributions have a small support,
that is, only 1.88% of the values satisfy ρ̂ > 0.3. Remark also that no significant differences are
observed between rats. Next, ISO W and ETO L present quite similar distributions, with possibly
high magnitudes. By contrast, correlations for MED L anesthetic are lower. These results tend
to show that MED L anesthetic is stronger than the other anesthetics, leading to less connections
between brain regions.

The phase parameter can be interpreted as a shift in the connections between brain regions.
Distributions displayed in Figure 5 are the empirical densities of the upper triangular matrices
of phases, {φ`,m, 1 6 ` < m 6 p}. This explains why the distributions are not symmetric.
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Figure 4: Plot of the empirical distribution of the correlation magnitudes ρ̂ obtained for the 4 groups
of rats. Each color corresponds to a rat.

By first approximation, the distributions can be seen as a mixture of a centered Gaussian density
and a uniform density on (−π, π). For dead rats, we observe mainly uniform distributions, while
the Gaussian-type distributions dominate for the alive rats. The uniform component is higher for
MED L anesthetic than for other anesthetics. This can be explained by the fact that the phase
is non-informative when the magnitude is close to zero. To illustrate this fact, Figure 6 shows the
distributions of the estimated phases φ corresponding to magnitudes satisfying ρ > 0.3 (this choice is
motivated by the observation on the support of dead rats’ correlations above). Only Gaussian-type
distributions remain. It can be observed that the support of the phases are larger for alive rats than
for dead rats. This shows that the phase brings information on the functional connectivity. Next,
the 95%-quantiles of absolute values (i.e. q such that 95% of absolute values of phases are lower than
q) are respectively 2.9, 2.00, 1.50, 1.53 for Dead rats, ISO W, ETO L and MED L. It seems that
ISO W has a higher support, meaning that shifts appear in the connections between brain region,
with respect to other anesthetics. Yet, we have not tested whether the difference is significant.

5.3 Graphs with correlations and phases

Taking into account the rats scanned within each group, we compute a graph to represent the
connectivity graph of the group. We first compute the adjacency matrix obtained for each rat
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Figure 5: Plot of the empirical distribution of the phases φ̂ obtained for the 4 groups of rats without
thresholding the correlations. Each color corresponds to a rat.

0

2

4

6

− π − π 2 0 π 2 π
PHASE

de
ns

ity

NAME

20160524_153000

20160609_161917

20160620_112046

DEAD

0

1

2

− π − π 2 0 π 2 π
PHASE

de
ns

ity

NAME

20160324_133310

20160325_101125

20160421_133725

20160614_095825

20160615_103000

20160615_121820

20160615_140855

ISO_W

0

1

2

− π − π 2 0 π 2 π
PHASE

de
ns

ity

NAME

20160616_103405

20160616_125755

20160616_145220

20160616_164200

20160617_121650

20160617_135425

20160617_154245

ETO_L

0

1

2

− π − π 2 0 π 2 π
PHASE

de
ns

ity

NAME

20160524_102250

20160524_131800

20160525_100645

20160525_120830

20160525_142944

20160609_095855

20160609_120340

MED_L

Figure 6: Plot of the empirical distribution of the phases obtained for the 4 groups of rats after first
thresholding the correlations. Only phases associated to correlations with a magnitude higher than
0.3 are considered. Each color corresponds to a rat.
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within each group. Edges correspond to a magnitude higher than 0.3. The value of the threshold
is motivated by the observation of the supports obtained for dead rats. We then select the edges
which are present in all the graphs of the rats of the group. One graph is then obtained per group.
For each group, we then compute the average of the estimated phase for each detected edge. Figure
7 illustrates the graphs obtained for the 4 different groups.

A color label indicates whether the phases are positive or negative. We colored each edge based
on the mean phase when it satisfies |φjk| > 1.1|φ∗jk| where φ∗jk = −π

2 (dj − dk). The value φ∗jk
corresponds to the phase of causal linear representations with power-law coefficients [Kechagias and
Pipiras, 2014] and to the ARFIMA modelling used in Achard and Gannaz [2016] with similar data.
The more colored edges, the more the phase behaviour differs from the previous modelling.

The DEAD group has indeed no edges. The MED L group has less edges than the two other groups
of anesthetic. It hence seems that MED L anesthetic inhibits more the activity. Next ETO L
group and ISO W group have a similar number of edges (respectively 133 and 145), but the phases
differ. More than half of mean phases are outside the interval [−1.1|φ∗|, 1.1|φ∗|] for ETO L and
ISO W group, with similar proportions. This observation is interesting since it illustrates that the
modelling of these data is complex. The introduction of a general phase enables to take into account
this complexity. Concerning the physical interpretation, no easy conclusion can be given. In our
case with fMRI time series, the presence of latency seems not probable because of the action of
hemodynamic function which introduces long delays of around 5 seconds.

6 Conclusion

This work was motivated by a neuroscience application, namely the inference of fractal connectivity
from fMRI recordings. We studied the local Whittle estimators for multivariate time series presenting
long-range dependence. Our modelling allows a complex covariance structure with phase components
which can be interpreted as shifts in the coupling between time series. We introduced quasi-analytic
wavelet filters to handle the possible non stationarity of the real data application. The resulting
procedures offer a consistent estimation of the main parameters of the model. Indeed, we established
that so called Common Factor wavelets are an efficient tool for recovering the long-memory structure
as well as the covariance structure, including magnitude and phase. A simulation study on linear
processes and on multivariate Brownian motions illustrate the good performance of the proposed
procedure. The real data application highlightes the ability of the procedure to distinguish dead
rats from alive rats. It also showed the differences between three anaesthetics and the fact that one
of them slows down more intensively the brain activity.
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Figure 7: Plot of the mean graphs with correlations and phases obtained for 4 groups of rats: DEAD,
ISO W, ETO L and MED L. Only edges corresponding to a mean of correlation’s magnitude higher
than 0.3 are displayed. Red edges correspond to positive means of phase higher than 1.1|φ∗|, blue
edges correspond to negative mean of phase lower than -1.1|φ∗|, and grey edges to mean of phases
between -1.1|φ∗| and 1.1|φ∗|. The quantities φ∗ are equal to φ∗j,k = −π

2 (dj − dk).
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A Properties of CFW-C(M,L) filters: proof of Proposition 3

The aim of this section is to check whether the assumptions of Section 2.2 are satisfied by CFW-
C(M,L).

Let us first give some properties of the filter d̂L defined in (1).

Lemma 8.
sup
λ∈R

∣∣∣d̂L(λ)
∣∣∣ = 1

Proof is straightforward and thus omitted.

Next, the modulus of the filter d̂L is equal to
∣∣∣d̂L(λ)

∣∣∣2 = cos(λ/4)2(2L+1)
(
1 + tan(λ/4)2(2L+1)

)
.

Recall we defined αL(·) as αL(λ) = 2 (−1)L atan
(
tan(λ/4)2L+1

)
. Then,

d̂L(λ) = cos(λ/4)2(2L+1)
(

1 + tan(λ/4)2(2L+1)
)

eiλ(−2L+1)/4−iαL(λ)/2. (10)

A direct consequence is that
∞∏
`=1

∣∣∣d̂L(2−`λ)
∣∣∣ 6 ∣∣∣∣sin(λ/4)

λ/4

∣∣∣∣2L+1

. (11)

A.1 Assumption (A-a)

By definition of the filters, the filters h(L) and h(H), g(L) and g(H) have length M + L+ 1. Then τj
has finite length.
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A.2 Assumption (A-b)

Recall that

2−j/2ĥj(λ) =

(
1− ei2j−1λ

2

)M
d̂L(2j−1λ+ π)e−i2j−1λ

j−2∏
`=0

(
1 + e−i2`λ

2

)M
d̂L(2`λ),

2−j/2ĝj(λ) =

(
1− ei2j−1λ

2

)M
d̂L(2j−1λ+ π)ei2j−1λLe−i2j−1λ

j−2∏
`=0

(
1 + e−i 2`λ

2

)M
d̂L(2`λ)e−i2`λL.

Remark that
∣∣∣1−ei2

j−1λ

2

∣∣∣M =
∣∣sin(2j−2λ)

∣∣M 6 2−2M
∣∣2jλ∣∣M . Since sup |d̂L| = 1, assumption (A-b)

follows with a constant Cm = 1.

A.3 Assumption (A-c)

Recall that

2−j/2ĥj(2
−jλ) =

(
1− eiλ/2

2

)M
e−iλ d̂L(λ/2 + π)

j∏
`=2

(
1 + e−i2−`λ

2

)M
d̂L(2−`λ)

Since supλ∈R

∣∣∣d̂L(λ)
∣∣∣ 6 1,

∣∣∣2−j/2ĥj(2−jλ)
∣∣∣ 6 |sin(λ/4)|M

∞∏
`=1

∣∣∣∣∣1 + e−i2−`λ

2

∣∣∣∣∣
M ∞∏

`=1

∣∣∣d̂L(2−`λ
∣∣∣ .

Using inequality (11) and equality∣∣∣∣∣∣
∞∏
`=1

(
1 + e−i2−`λ

2

)M ∣∣∣∣∣∣ =

∣∣∣∣1− e−iλ

−iλ

∣∣∣∣M =

∣∣∣∣sin(λ/2)

λ/2

∣∣∣∣M ,

we obtain∣∣∣2−j/2ĥj(2−jλ)
∣∣∣ 6 |sin(λ/4)|M

∣∣∣∣sin(λ/2)

λ/2

∣∣∣∣M ∣∣∣∣sin(λ/4)

λ/4

∣∣∣∣2L+1

6 |sin(λ/4)|M
∣∣∣∣sin(λ/2)

λ/2

∣∣∣∣M+2L+1

,

using the fact that x 7→ sin(x)
x decreases on R+. Since sin(x/2)

|x/2| (1 + |x|) =
∣∣∣ sin(x/2)

x/2

∣∣∣+ 2 |sin(x/2)| 6 3

for any x ∈ R \ {0}, it follows that∣∣∣2−j/2ĥj(2−jλ)
∣∣∣ 6 |sin(λ/4)|M

(
3

1 + |λ|

)M+2L+1

. (12)

29



It follows that
∣∣∣2−j/2ĥj(λ)

∣∣∣ 6
(

3
1+|λ|

)M+2L+1
. A similar result can be proved for filter ĝj . By

triangular inequality, assumption (A-c) hence holds with α = M + 2L+ 1 and a constant Cs equal
to 2 · 3M+2L+1 for filter τ̂j .

The proof for τ̂∞ is similar and thus omitted.

The constant Cs above may pose a problem, thus we can establish a similar result with a different
constant gor large λ. On (π,∞), we have(

sin(x)

x

)2

(1 + 2x) 6
1

x2
+

2

x
6

1

π2
+

2

π
6 1.

Thus we obtain the following lemma:

Lemma 9. For all |λ| > π, ∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣ 6 2

1

|1 + λ|M/2+L+1/2
.

Inequality (12) also gives a stronger result which will be useful in the proof of assumption (A-d):

Lemma 10. For all λ ∈ R,∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣ 6 2 · 3M+2L+1 |λ|M

|1 + λ|M+2L+1
.

A.4 Assumption (A-d)

We have

ĥ∞(λ) = 2−j/2ĥj(2
−jλ) ·

(
sin(λ/2j+1)

λ/2j+1

)M
eiλM/2j+1

 ∞∏
m=j+1

d̂L(2−mλ)


ĝ∞(λ) = 2−j/2ĝj(2

−jλ) ·
(

sin(λ/2j+1)

λ/2j+1

)M
eiλ(M+2L)/2j+1

 ∞∏
m=j+1

d̂L(2−mλ)

 .

Thus,

ĥ∞(λ) e−iλ 2−j−1(M+L) = 2−j/2ĥj(2
−jλ) · Zj(λ) (13)

ĝ∞(λ) e−iλ 2−j−1(M+L) = 2−j/2ĝj(2
−jλ) · Zj(λ), (14)
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with

Zj(λ) =

(
sin(λ/2j+1)

λ/2j+1

)M
e−iλ2−j−1L

∞∏
m=j+1

d̂L(2−mλ).

An inequality on Zj(λ) is given in the following lemma.

Lemma 11. There exists a constant CZ depending on L and M such that for all j ∈ N, for all∣∣2−jλ∣∣ < π, ∣∣∣ei Φj(λ) Zj(λ)− 1
∣∣∣ 6 CZ

∣∣2−jλ∣∣2 ,
with Φj(λ) = λ 2−j−1(2L− 1/2).

Proof. With (10), Zj(λ) can be rewritten as

Zj(λ) =

(
sin(λ/2j+1)

λ/2j+1

)M
e−iλ2−j−1L

∞∏
m=1

cos(2−m2−jλ/4)L+1/2 ei 2−m2−jλ(−2L+1)/4−αL(2−m2−jλ)/2

=

(
sin(λ/2j+1)

λ/2j+1

)M (
sin(λ/2j+2)

λ/2j+2

)L+1/2

e−i Φj(λ)− i
∑∞
m=1 αL(2−m2−jλ)/2 .

Last equality comes from the fact that for all x ∈ R sin(x)
x = sin(x/2)

x/2 cos(x/2) and thus sin(x)
x =∏∞

m=1 cos(2−mx).

We now study of the different terms.

• First, Taylor inequalities state that for all x ∈ R\{0}, |sin(x)/x| 6 1 and |sin(x)− x| 6 |x|3 /6.
Using the equality (xK − 1) = (x− 1)

∑K−1
m=0 x

m for all x ∈ R, K ∈ N,∣∣∣∣∣
(

sin(λ/2j+1)

λ/2j+1

)M
− 1

∣∣∣∣∣ 6 ∣∣2−j−1λ
∣∣2M/6

and a similar result holds for

∣∣∣∣( sin(λ/2j+1)
λ/2j+1

)L+1/2
− 1

∣∣∣∣.
• Next, ∣∣∣e−i

∑∞
m=1 αL(2−m2−jλ)/2 − 1

∣∣∣ =

∣∣∣∣∣sin
( ∞∑
m=1

αL(2−m2−jλ)

)∣∣∣∣∣ 6
∣∣∣∣∣
∞∑
m=1

αL(2−m2−jλ)

∣∣∣∣∣ .
By definition, αL(λ)/2 = (−1)L+1 atan

(
tan(λ/4)2L+1

)
, thus for |λ| < π,

|αL(λ)/2| 6 |tan(λ/4)|2L+1 6 (λ · 4/π)2L+1.
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We obtain, for
∣∣2−jλ∣∣ < π,∣∣∣e−i

∑∞
m=1 αL(2−m2−jλ)/2 − 1

∣∣∣ 6 (4/π)2L+1
∣∣2−jλ∣∣2L+1

∞∑
m=1

2−m(2L+1) 6 (4/π)2L+1
∣∣2−jλ∣∣2L+1

.

We get ∣∣∣ei Φj(λ) Zj(λ)− 1
∣∣∣ 6 C

∣∣2−j−1λ
∣∣2 ,

with C = (4M + 2L+ 1)π/192 + 42L+1/π, when
∣∣2−jλ∣∣ 6 π.

Going back to (13) and (14),∣∣∣ĥ∞(λ)e−iλ 2−j−1(M+L)+i Φj(λ) − 2−j/2ĥj(2
−jλ)

∣∣∣ 6 CZ
∣∣2−jλ∣∣2 ∣∣∣ĥ∞(λ)

∣∣∣ , (15)∣∣∣ĝ∞(λ)e−iλ 2−j−1(M+L)−i Φj(λ) − 2−j/2ĝj(2
−jλ)

∣∣∣ 6 CZ
∣∣2−jλ∣∣2 |ĝ∞(λ)| . (16)

Let

Rj(λ) = τ̂∞(λ) e−iλ 2−j−1(M+L)−i Φj(λ) − 2−j/2τ̂j(2
−jλ)

+ ĥ∞(λ)
(
ei Φj(λ) − e−i Φj(λ)

)
e−iλ 2−j−1(M+L).

Inequalities (15) and (16) and assumption (A-b) lead to

|Rj(λ)| 6 CR 2−2j |λ|M+2 ,

with CR = 4CmCZ .

We have
|τ̂∞(λ)| −

∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣ 6 |Rj(λ)|+

∣∣∣ĥ∞(λ)
∣∣∣ ∣∣∣ei Φj(λ) − e−i Φj(λ)

∣∣∣ .
With assumption (A-b),

|τ̂∞(λ)| −
∣∣∣2−j/2τ̂j(2−jλ)

∣∣∣ 6 (CR 2−j |λ|2 + Cm π(L− 1/4) |λ|
)

2−j |λ|M .

Using again assumption (A-b), Assumption (A-d) is straightforward with γ = 1.

B Properties of CFW-PR(M,L) filters

The aim of this section is to check whether the assumptions of Section 2.2 are satisfied by CFW-
PR(M,L).
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Recall that

2−j/2ĥj(λ) =
(1− ei2j−1λ

2

)M
d̂L(2j−1λ+ π)q̂L(2j−1λ+ π)e−i2j−1λ

j−2∏
`=0

(1 + e−i2`λ

2

)M
d̂L(2`λ)q̂L(2`λ),

2−j/2ĝj(λ) =
(1− ei2j−1λ

2

)M
d̂L(2j−1λ+ π)q̂L(2j−1λ+ π)ei2j−1λLe−i2j−1λ

j−2∏
`=0

(1 + e−i 2`λ

2

)M
d̂L(2`λ)q̂L(2`λ)e−i2`λL.

with
|q̂L,M (λ)|2 s(λ) + |q̂L,M (λ+ π)|2 s(λ+ π) = 1 ,

and s(λ) = 2−M (1 + cos(λ))M
∣∣∣d̂L(λ)

∣∣∣2 = (cos(λ/2))2M
∣∣∣d̂L(λ)

∣∣∣2.

We have the following lemma:

Lemma 12. For all λ ∈ R,
|q̂(λ)| 6 2M+2L+1 .

Proof. Consider the functions s : λ 7→ s(λ) and sπ : λ 7→ s(λ + π). Both functions are
4π-periodic. Based on their variations on (−2π, 2π), the minimum between the functions is
attained when they are equal, thus for −3π/2 and 3π/2. Consequently the minimum value is
2−M (cos(3π/8)4L+2 + sin(3π/8)4L+2) which is greater than 2−M−2L−1.

It is straightforward that, based on Lemma 12,

∣∣∣2−j/2ĥj(λ)
∣∣∣ 6 ∣∣∣∣∣1− ei2j−1λ

2

∣∣∣∣∣
M

q̂L(2j−1λ+ π) 6 2M+2L+1

∣∣∣∣∣1− ei2j−1λ

2

∣∣∣∣∣
M

.

Assumption (A-b) follows since
∣∣∣1−ei2

j−1λ

2

∣∣∣M 6
∣∣2jλ∣∣M , with Cm = 2M+2L+2.

C Asymptotic behaviour of the wavelet covariance

This section deals with the proofs of results of Section 2.3.
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C.1 Proof of Proposition 4

Let j > 0, k ∈ Z. The quantity Cov(Wjk) can be decomposed as:

Cov(Wjk) = A
(+)
j + A

(−)
j , with A

(+)
j =

∫ π 2j

0
f(2−jλ) 2−j

∣∣τ̂j(2−jλ)
∣∣2 dλ ,

A
(−)
j =

∫ 0

−π 2j
f(2−jλ) 2−j

∣∣τ̂j(2−jλ)
∣∣2 dλ .

We now sum up the main points for the convergence of Cov(Wjk).

1. Behaviour of A
(+)
j .

We introduce

B
(+)
j =

∫ π 2j

0
Γj(d)−1D(λ)ΩD(λ)Γj(d)−1 2−j

∣∣τ̂j(2−jλ)
∣∣2 dλ

I
(+)inf
j =

∫ π 2j

0
Γj(d)−1D(λ)ΩD(λ)Γj(d)−1 |τ̂∞(λ)|2 dλ

I
(+)sup
j =

∫ ∞
π 2j

Γj(d)−1D(λ)ΩD(λ)Γj(d)−1 |τ̂∞(λ)|2 dλ

I(+) = I
(+)inf
j + I

(+)sup
j =

∫ ∞
0

Γj(d)−1D(λ)ΩD(λ)Γj(d)−1 |τ̂∞(λ)|2 dλ

The steps of the convergence are:

(a)
∣∣∣A(+)

j −B
(+)
j

∣∣∣ is bounded using the regularity of the spectral density fS(·) at the origin,

that is, (M-2), together with assumption (A-b).

(b)
∣∣∣B(+)

j − I
(+)inf
j

∣∣∣ is bounded using the convergence of the filter τj to τ∞, through

property (A-d). We shall need assumption (A-c).

(c)
∣∣∣I(+)sup
j

∣∣∣ is bounded using the regularity of the filter τ∞, that is, using (A-c).

All together, we shall obtain the convergence of A
(+)
j to I(+), which gives the property.

2. Behaviour of A
(−)
j

We can apply the same arguments as for A
(+)
j and obtain the convergence of A

(−)
j to I(−),

with

I(−) =

∫ 0

−∞
Γj(d)−1D(λ)ΩD(λ)Γj(d)−1 |τ̂∞(λ)|2 dλ.

In the following, (`,m) ∈ {1, . . . , p}2 will denote two arbitrary indexes.
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C.1.1 Spectral approximation,
∣∣∣A(+)

j −B
(+)
j

∣∣∣
First notice that Γj(d)−1D(2jλ) = D(λ). Hence,∣∣∣A(+)

j −B
(+)
j

∣∣∣ 6 ∫ π

0
|f(λ) −D(λ)ΩD(λ)| |τ̂j(λ)|2 dλ

6
∫ π

0
|D(λ)ΩD(λ)| ◦

∣∣fS(λ)− 1
∣∣ |τ̂j(λ)|2 dλ.

Assumption (M-2) gives:(
|D(λ)ΩD(λ)| ◦

∣∣fS(λ)− 1
∣∣)
`,m

6 Cf ‖Ω‖ |λ|−d`−dm+β .

With a change of variable,∣∣∣A(+)
j −B

(+)
j

∣∣∣
`,m

6 Cf ‖Ω‖ 2j(d`+dm−β)

∫ ∞
0
|λ|−d`−dm+β

∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣2 dλ.

We split the integral in two parts. First, with assumption (A-b),∫ π

0
|λ|−d`−dm+β

∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣2 dλ 6 C2

m

∫ π

0
|λ|−d`−dm+β+2M dλ.

As the parameters satisfy (C-a), the integral is bounded by a constant depending on (d`, dm, β,M,L).

Next, using the regularity given by assumption (A-c),∫ ∞
π
|λ|−d`−dm+β

∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣2 dλ 6 C2

s

∫ ∞
π

|λ|−d`−dm+β

(1 + |λ|)2α
dλ.

Assumption (C-a) ensures that the right hand side is bounded by a constant depending of
d`, dm, β, α,M and L.

C.1.2 Asymptotic of the filters,
∣∣∣B(+)

j − I
(+)inf
j

∣∣∣
This step uses the convergence of the filter τj to τ∞, through property (A-d). First,

Γj(d) 2jβ
∣∣∣B(+)

j − I
(+)inf
j

∣∣∣Γj(d) 6 2jβ
∫ 2jπ

0
D(λ)ΩD(λ)

∣∣∣∣∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣2 − |τ̂∞(λ)|2

∣∣∣∣ dλ.

Using (A-c),∣∣∣∣∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣2 − |τ̂∞(λ)|2

∣∣∣∣ 6 ∣∣∣∣∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣2 + |τ̂∞(λ)|2

∣∣∣∣ 6 2C2
s |λ|

−2α
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Thus, (∫ 2jπ

π
D(λ)ΩD(λ) 2jβ

∣∣∣∣∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣2 − |τ̂∞(λ)|2

∣∣∣∣ dλ

)
(`,m)

6 ‖Ω‖ 2C2
s 2jβ

∫ 2jπ

π
|λ|−d`−dm−2α dλ

6 ‖Ω‖ 2C2
s π
−d`−dm−2α+1 2j(−d`−dm−2α+β+1).

The right-hand side tends to 0 when j goes to infinity due to (C-a).

It remains to consider the integral on (0, π). Assumption (A-d) states that(∫ π

0
D(λ)ΩD(λ) 2jβ

∣∣∣∣∣∣∣2−j/2τ̂j(2−jλ)
∣∣∣2 − |τ̂∞(λ)|2

∣∣∣∣ dλ

)
(`,m)

6 ‖Ω‖ Ca 2j(β−γ)

∫ π

0
Ca |λ|−d`−dm+2M dλ

The right-hand side tends to 0 when j goes to infinity since β < γ and max{d`, ` = 1, . . . , p} <
M + 1/2.

C.1.3 Regularity of the filters,
∣∣∣I(+)sup
j

∣∣∣
This step uses the regularity of the filter τ∞. Indeed, using (A-c),∣∣∣I(+)sup

j,`m

∣∣∣ 6 ‖Ω‖ 2j(d`+dm)

∫ ∞
2jπ
|λ|−d`−dm |τ̂∞(λ)|2 dλ

6 C2
s ‖Ω‖ 2j(d`+dm)

∫ ∞
2jπ

|λ|−d`−dm

(1 + |λ|)2α
dλ

6 C2
s ‖Ω‖ π−β 2j(d`+dm−β)

∫ ∞
π
|λ|−d`−dm+β−2α dλ.

Assumption (C-a) thus implies that 2−j(d`+dm−β)
∣∣∣I(+)sup
j,`m

∣∣∣ is bounded by a constant depending of

(d`, dm, β,M,L).

C.2 Proof of Proposition 5

The proof under assumption (A-e) is identical to the proof of Proposition 4 and it is thus omitted.
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C.3 Proof of Proposition 6

We first deduce from Theorem 2 the following result, which gives a similar inequality but in a form
that can be more useful in future developments.

Corollary 13. For all q̂L,M real polynomial of (e−iλ), for all |λ| 6 π,∣∣∣∣|τ̂∞(λ)|2 − 41R+(λ)
∣∣∣ĥ∞(λ)

∣∣∣2∣∣∣∣ 6 8 (log2(2) + 2)

(
1− |λ|

4π

)4L+2 ∣∣∣ĥ∞(λ)
∣∣∣2 .

Proof. From (4),∣∣∣∣|τ̂∞(λ)|2 − 41R+(λ)
∣∣∣ĥ∞(λ)

∣∣∣2∣∣∣∣ =

∣∣∣∣∣∣∣1− eiηL(λ)
∣∣∣2 − 41R+(λ)

∣∣∣∣ · ∣∣∣ĥ∞(λ)
∣∣∣2

= 4 ·
∣∣sin(ηL(λ)/2)2 − 1R+(λ)

∣∣ · ∣∣∣ĥ∞(λ)
∣∣∣2

= 4
∣∣∣ĥ∞(λ)

∣∣∣2 ·{sin(ηL(λ)/2)2 λ < 0

cos(ηL(λ)/2)2 λ > 0
.

Since 2 cos(x/2)2 = 1 + cos(x) and 2 sin(x/2)2 = 1− cos(x) for all x ∈ R, we have∣∣∣∣|τ̂∞(λ)|2 − 41R+(λ)
∣∣∣ĥ∞(λ)

∣∣∣2∣∣∣∣ =
∣∣∣ei ηL(λ) + sign(λ)

∣∣∣2 ∣∣∣ĥ∞(λ)
∣∣∣2

=
∣∣∣ei ηL(λ) − 1 + 21R+(λ)

∣∣∣2 ∣∣∣ĥ∞(λ)
∣∣∣2 .

The function UL satisfies, for all |λ| < 2π:

UL(λ) 6 2
√

2 (log2(2) + 2)

(
1− |λ|

4π

)2L+1

,

which concludes the proof.

Since Proposition 4 holds, it remains to prove that the following integrals are bounded:

2jβ
∫ π

−π
|λ|−d`−dm

∣∣∣∣|τ̂∞(λ)|2 − 41R+(λ)
∣∣∣ĥ∞(λ)

∣∣∣2∣∣∣∣ dλ,
2jβ
∫ −π
−∞
|λ|−d`−dm

∣∣∣∣|τ̂∞(λ)|2 − 41R+(λ)
∣∣∣ĥ∞(λ)

∣∣∣2∣∣∣∣ dλ,
2jβ
∫ ∞
π
|λ|−d`−dm

∣∣∣∣|τ̂∞(λ)|2 − 41R+(λ)
∣∣∣ĥ∞(λ)

∣∣∣2∣∣∣∣ dλ.
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On (0, π).

With assumption (A-b), Corollary 13 leads to

2jβ
∫ π

0
|λ|−d`−dm

∣∣∣∣|τ̂∞(λ)|2 − 41R+(λ)
∣∣∣ĥ∞(λ)

∣∣∣2∣∣∣∣ dλ 6 Cm 2jβ
∫ π

0

(
1− |λ|

4π

)2α

|λ|−d`−dm+2Mdλ

with α = 2L+ 1 and Cm = 1.

Using Cauchy-Schwarz inequality,

2jβ
∫ π

0

(
1− |λ|

4π

)2α

|λ|−d`−dm+2Mdλ

6 2jβ

(∫ π

0

(
1− |λ|

4π

)4α

dλ

)1/2(∫ π

0
|λ|−2d`−2dm+4M dλ

)1/2

6 2jβ
1

2α1/2

(∫ π

0
|λ|−2d`−2dm+4M dλ

)1/2

.

The integral on the right hand side is bounded with parameters satisfying (C-b). Thus it is sufficient
to take

L > 22jβ.

On (π, 2jπ).

With Lemma 9 and Corollary 13,∣∣∣∣|τ̂∞(λ)|2 − 41R+(λ)
∣∣∣ĥ∞(λ)

∣∣∣2∣∣∣∣ dλ 6 Cs |λ|−2α (17)

with Cs = 1 and α = M/2 + L+ 1/2. Thus,

2jβ
∫ 2jπ

π
|λ|−d`−dm

∣∣∣∣|τ̂∞(λ)|2 − 41R+(λ)
∣∣∣ĥ∞(λ)

∣∣∣2∣∣∣∣ dλ
6 Cs 2j(β−d`−dm−M−1−2L)π−d`−dm−M−1−2Ldλ .

The integral on the right hand side is bounded under (C-b), for any L > 1.
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On (2jπ,∞).

With (17),

2jβ
∫ ∞

2jπ
|λ|−d`−dm

∣∣∣∣|τ̂∞(λ)|2 − 41R+(λ)
∣∣∣ĥ∞(λ)

∣∣∣2∣∣∣∣ dλ 6 Csπ
−β(2jπ)−2L

∫ ∞
π
|λ|β−d`−dm+M+1dλ .

The integral on the right hand side is bounded under (C-b).

The bound of the integral on (−∞,−π) is similar, with a distinction between (−∞,−2jπ) and
(−2jπ, π). It is thus omitted.
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