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Abstract. We prove that the quantum graph algebra and the quantum moduli algebra
associated to a punctured sphere and complex semisimple Lie algebra g are Noetherian rings
and finitely generated rings over C(q). Moreover, we show that these two properties still

hold on C[q, q−1] for the integral version of the quantum graph algebra. We also study the
specializations Lǫ

0,n of the quantum graph algebra at a root of unity ǫ of odd order, and show
that L

ǫ
0,n and its invariant algebra under the quantum group Uǫ(g) have classical fraction

algebras which are central simple algebras of PI degrees that we compute.
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1. Introduction

This paper is the second part of our work, initiated in [31], on the quantum graph algebra
Lg,n(g) and the quantum moduli algebra Mg,n(g), which are associated to a surface Σg,n+1

of genus g with n+1 punctures and a complex semisimple Lie algebra g. As in [31] we focus
in this paper on punctured spheres (g = 0, n ≥ 1). From now on we fix g, and when no
confusion may arise we omit it from the notations of the various algebras.
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The algebras Lg,n and Mg,n are defined over the field C(q). They were introduced in
the mid ′90s by Alekseev-Grosse-Schomerus [2, 3] and Buffenoir-Roche [32, 33] by a method
called combinatorial quantization. By this method, the pair formed by Lg,n and Mg,n appear
naturally as a q-deformation of the Fock-Rosly [56] lattice model of the algebra of functions

on the “classical” moduli space Mcl
g,n of flat g-connections on the surface Σg,n+1.

In [31] we showed that both L0,n and M0,n have integral forms LA0,n and MA
0,n defined

over the ring A = C[q, q−1]; one can thus consider the specializations of these algebras at

q = ǫ ∈ C∗, which we denote by Lǫ0,n and MA,ǫ
0,n respectively. The algebra LA0,n is endowed

with an action of the Lusztig integral form U resA = U resA (g) of the quantum group Uq = Uq(g),

and MA
0,n is the subalgebra of invariant elements under this action. Therefore

MA
0,n := (LA0,n)

Ures
A , M0,n := L

Uq

0,n = MA
0,n ⊗A C(q).

The definition of LA0,n is based on the original combinatorial quantization method, together
with twists of module-algebras and Lusztig’s theory of canonical basis of quantum groups [76].

This allows us to address the structure and representation theory of LA0,n and MA
0,n by means

of quantum groups, following ideas of classical invariant theory. In particular, we obtained
that L0,n and Lǫ0,n have no non trivial zero divisors (and therefore do as well the subalgebras

M0,n, L
A
0,n, M

A
0,n, and (Lǫ0,n)

Ures
ǫ , where U resǫ is the specialization of U resA at q = ǫ). Also, by

extending the quantum coadjoint action of De Concini-Kac-Procesi [41, 42, 43], we described
in the sl(2) case an action by derivations of the center Z(Lǫ0,n) of L

ǫ
0,n on Lǫ0,n, and we defined

a subalgebra Z(Lǫ0,n)
G ⊂ Z(Lǫ0,n) which is a finite extension of the ring of regular functions

on the character variety of the sphere with (n+1) punctures (see Corollary 7.20 and Theorem

8.8 of [31]). Moreover, from these results we derived an action by derivation of Z(Lǫ0,n)
G on

MA,ǫ
0,n(sl(2)).

Representations of a quotient (the semisimplification) of MA,ǫ
g,n were already constructed

and classified in [4]; they involve only the irreducible representations of the finite dimensional

“small” quantum group uǫ(g). Moreover, [4] deduced from these representations of MA,ǫ
g,n a

family of representations of the mapping class group of surfaces, that is equivalent to the
one associated to the Witten-Reshetikin-Turaev TQFT [97, 89]. Recently, representations

of another, larger quotient of MA,ǫ
g,n, and the corresponding representations of the mapping

class groups of surfaces, were constructed in [52, 53]. These representations are equivalent
to those previously obtained by Lyubashenko-Majid [78], and are associated to the so called
non-semisimple TQFT defined by Geer, Patureau-Mirand and their collaborators (see eg.
[48, 49]). In the sl(2) case they involve the irreducible and also the principal indecompos-
able representations of the small quantum group uǫ(sl(2)). The related link and 3-manifold
invariants coincide with those of [80] and [20].

In general, the representation theory ofMA,ǫ
g,n is by now far from being understood. Because

MA,ǫ
g,n deforms the classical moduli space Mcl

g,n, it is natural to expect that its representa-
tion theory provides (2 + 1)-dimensional TQFTs for 3-manifolds endowed with general flat
g-connections, extending the known TQFTs based on quantum groups (where purely topo-
logical ones correspond to the trivial connection). A family of such invariants, called quantum
hyperbolic invariants, has already been defined for g = sl(2) by means of certain 6j-symbols,
Deus ex machina; they are closely connected to classical Chern-Simons theory, provide gen-
eralized Volume Conjectures, and contain quantum Teichmüller theory (see [13]–[19]). It is
part of our present program, initiated in [9], to shed light on these invariants and to generalize

them to arbitrary g by developing the representation theory of MA,ǫ
g,n.
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The quantum moduli algebras have also been recognized as central objects from the view-
points of factorization homology [21], multiplicative quiver varieties [58] and (stated) skein
theory [23, 54, 37, 29]. In another direction, one may expect that the equivalence proved in
[79] between combinatorial quantisation for the Drinfeld double D(H) of a finite-dimensional
semisimple Hopf algebra H, and Kitaev’s lattice model in topological quantum computation,
can be extended to the setup of quantum moduli algebras.

In the present paper we study L0,n, its integral form LA0,n, and the specialization Lǫ0,n of L
A
0,n

at q = ǫ a primitive root of unity of odd order. We study also the subalgebras of invariant

elements M0,n = L
Uq

0,n and (Lǫ0,n)
Ures
ǫ . Our results hold for every complex semisimple Lie

algebra g. The main ones are proofs that L0,n, L
A
0,n and M0,n are Noetherian and finitely

generated rings (Theorem 1.1), and that the classical fraction algebras of Lǫ0,n and (Lǫ0,n)
Ures
ǫ

are central simple algebras of PI degrees lnN and lN(n−1)−m respectively (Theorem 1.3). Here,
m and N are the rank and the number of positive roots of g.

In the sequel [29] to this paper, in collaboration with M. Faitg, we extend Theorem 1.1
to the algebras Lg,n and Mg,n, associated to arbitrary finite type surfaces (arbitrary genus
and number of punctures). Also, we show that Mg,n is isomorphic to the g-skein algebra of

Σg,n+1, and Lg,n to the stated skein algebra of the compact surface Σg,n+1 with one boundary
component and one marked point on the boundary component. This was proved for g = sl(2)
in [54].

By using the analysis developed in the present paper for LA0,n, one can define the integral

form LAg,n as well, and show that it is a Noetherian and finitely generated ring. We do not

have a proof yet of these properties for the algebra MA
0,n, which seems to be much more

difficult to handle. We note that there is a strict inclusion

MA,ǫ
0,n ⊂ (Lǫ0,n)

Ures
ǫ .

This is discussed after Theorem 1.2. In [30] we study further properties of (Lǫg,n)
Ures
ǫ , and we

consider also the subalgebra MA,ǫ
g,n.

1.1. Statement of results. Let us recall a few notations and facts from [31]. Let Uq be the
simply-connected quantum group of g, defined over the field C(q). From Uq one can define a
Uq-module algebra L0,n, called (quantum, daisy) graph algebra, where Uq acts by means of a
right coadjoint action. The set of invariant elements of L0,n for this action is an algebra; we
denote it

M0,n := L
Uq

0,n

and call it quantum moduli algebra. As a C(q)-module L0,n is just O⊗n
q , where Oq = Oq(G)

is the standard quantum function algebra of the connected and simply-connected Lie group
G with Lie algebra g. The product of L0,n is obtained by twisting both the product of each
factor Oq and the product between them. It is equivariant with respect to a (right) coadjoint
action of Uq, which defines the structure of Uq-module of L0,n.

The module algebra L0,n has an integral form LA0,n, which is defined over A = C[q, q−1], and
endowed with an (coadjoint) action of the Lusztig [75] integral form U resA of Uq. It is obtained
by replacing Oq in the construction of L0,n with the restricted dual OA of the integral form
U resA , or equivalently with the restricted dual of the integral form Γ of Uq defined by De
Concini-Lyubashenko [45]. Since U resA contains the De Concini-Kac [41] integral form UA,

and UA has the same set of invariant elements in LA0,n, we systematically denote the latter

MA
0,n := (LA0,n)

UA(= (LA0,n)
Ures
A ).
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We call MA
0,n the integral quantum moduli algebra.

A cornerstone of the theory of M0,n is a map Φn originally due to Alekseev [1], building on
works of Drinfeld [39] and Reshetikhin and Semenov-Tian-Shansky [86]. In [31] we showed
that Φn eventually provides isomorphisms of module algebras and algebras respectively,

Φn : L0,n → (U⊗n
q )lf ,Φn : M0,n → (U⊗n

q )Uq

where U⊗n
q is endowed with a right adjoint action of Uq, and (U⊗n

q )lf is the subalgebra of

locally finite elements with respect to this action. When n = 1 the algebra U lfq has been
studied in great detail by Joseph-Letzter [62, 63, 61]; we will use simplified proofs of their
results, obtained in [96].

All the material we need about the results discussed above is described in [31], and recalled
in Section 2.1-2.2.

Our first result, proved in Section 3, is:

Theorem 1.1. L0,n, M0,n and the integral form LA0,n are Noetherian rings, and finitely
generated rings.

It follows immediately from the theorem that the specializations Lǫ0,n, ǫ ∈ C \ {0, 1}, are
Noetherian and finitely generated rings as well. In [31] we proved that all these algebras (and

therefore MA
0,n and MA,ǫ

0,n) have no non-trivial zero divisors.

After we finished this work we discovered that [46] already proved that L0,1(gl(n)) and
L0,n(gl(2)) are Noetherian and finitely generated rings. Our approach here is completely
different. For L0,n we adapt the proof given by Voigt-Yuncken [96] of a result of Joseph [61],

which asserts that U lfq is a Noetherian ring (Theorem 3.1). For M0,n we deduce the result
from the one for L0,n, by following a line of proof of the Hilbert-Nagata theorem in classical
invariant theory (Theorem 3.2).

The result for LA0,n follows the same line, but uses also in a crucial way the Kashiwara-
Lusztig theory of canonical bases of quantum groups. We describe the background material
on this theory in Section 2.2.2; we have tried to make the exposition pedestrian and self-
contained, so as to be accessible to non experts.

At present we do not have a proof that MA
0,n is a Noetherian and finitely generated ring

for arbitrary g and n ≥ 1, though it is natural to expect it is the case. Indeed, in the case
g = sl(2), MA

0,n(sl(2)) is isomorphic to the skein algebra of a sphere with n+1 punctures (see
Theorem 8.6 in [31]), which is finitely generated and Noetherian by results of [12] and [82], or
by the particular case g = sl(2) of the results in [29]. In our general situation, key arguments
in the proof of Theorem 1.1 for M0,n depend on the existence of a Reynolds operator on the

Uq-module L0,n, and one can easily show there is no Reynolds operator on LA0,n. This follows
from the corresponding fact for the integral quantum coordinate ring OA (see Remark 2.14).

From Section 4 we consider the specializations Lǫ0,n of LA0,n at q = ǫ, a primitive root
of unity of odd order l (and coprime to 3 if g has G2 components). In [45], De Concini-
Lyubashenko introduced a central subalgebra Z0(Oǫ) of Oǫ isomorphic to the coordinate

ring O(G), and proved that the Z0(Oǫ)-module Oǫ is projective of rank ldimg. As observed
by Brown-Gordon-Stafford [27], Bass’ Cancellation theorem in K-theory and the fact that
K0(O(G)) ∼= Z, proved by Marlin [84], imply that this module is free. Alternatively, this
follows also from the fact that Oǫ is a cleft extension of O(G) by the dual of the Hopf algebra
uǫ(g), as proved by Andruskiewitsch-Garcia (see [6], Remark 2.18(b), and also Section 3.2 of
[22]; this argument was explained to us by K. A. Brown).

The section 4 proves the analogous property for Lǫ0,n. Namely:
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Theorem 1.2. Z0(Oǫ)
⊗n is a central subalgebra of Lǫ0,n, and Lǫ0,n is a free Z0(Oǫ)

⊗n-module

of rank ln.dimg, isomorphic to the Z0(Oǫ)
⊗n-module O⊗n

ǫ .

In the sequel we systematically denote

Z0(L
ǫ
0,n) := Z0(Oǫ)

⊗n.

We prove the first and third claims of Theorem 1.2 in Proposition 4.1. The arguments use
results of De Concini-Kac [41], De Concini-Procesi [42, 43], and De Concini-Lyubashenko
[45], that we recall in Section 2.3-2.5. Let us stress that the algebra structures of Lǫ0,n and

O⊗n
ǫ are completely different.
Since Z0(Oǫ) ∼= O(G), we may deduce the second claim of Theorem 1.2 from the first and

third claims together with the results of [45] and [84], or [6], recalled above. Nevertheless we

give a self-contained proof that Lǫ0,1 is finite projective of rank l
dimg over Z0(L

ǫ
0,1), by adapting

the original arguments of Theorem 7.2 of De Concini-Lyubashenko [45]. In particular we
study the coregular action of the braid group of g on Lǫ0,1; by the way, in the Appendix
we provide different proofs of some technical facts shown in [45]. Of course, it remains
an exciting problem to describe the centralizing extension O(G)⊗n ⊂ Lǫ0,n (and similarly

O(G)⊗n ⊂ (Lǫ0,n)
Uǫ below), aiming at generalizing the results of [6] and finding a direct,

more structural proof of freeness in Theorem 1.2.
Also, we note that basis of Lǫ0,n over Z0(L

ǫ
0,n) are complicated. The only case we know is

for Oǫ(sl(2)), described in [47], and it is far from being obvious (see (103)).

In Section 5 we turn to fraction rings. As mentioned above Lǫ0,n has no non-trivial zero
divisors. Therefore its center Z(Lǫ0,n) is an integral domain. Denote by Q(Z(Lǫ0,n)) its

fraction field. Denote by (Lǫ0,n)
Uǫ the subring of Lǫ0,n formed by the invariant elements of

Lǫ0,n with respect to the right coadjoint action of Uǫ. The center Z(Lǫ0,n) of L
ǫ
0,n is contained

in (Lǫ0,n)
Uǫ (this follows from [31], Proposition 6.19). Note also that we trivially have an

inclusion MA,ǫ
0,n ⊂ (Lǫ0,n)

Uǫ , and these two algebras are distinct in general. For instance, when

n = 1 we have (Lǫ0,1)
Uǫ = Z(Lǫ0,1), which is a finite extension of Z0(Oǫ) ∼= O(G) (see Lemma

5.1). On another hand, MA,ǫ
0,1 is the specialization at q = ǫ of Z(LA0,1), a polynomial algebra

in rk(g) variables, which may be identified via Φ1 with the center Z(UA) of the integral form
UA.

Consider the rings

Q(Lǫ0,n) = Q(Z(Lǫ0,n))⊗Z(Lǫ
0,n)

Lǫ0,n

and

Q((Lǫ0,n)
Uǫ) = Q(Z(Lǫ0,n))⊗Z(Lǫ

0,n)
(Lǫ0,n)

Uǫ .

In general, given a ring A with center Z(A) an integral domain we reserve the notation Q(A)

to the central localization of A, ie. Q(A) := Q(Z(A))⊗Z(A)A. Though the center Z((Lǫ0,n)
Uǫ)

of (Lǫ0,n)
Uǫ is larger than Z(Lǫ0,n), the notation Q((Lǫ0,n)

Uǫ) is valid, for Z((Lǫ0,n)
Uǫ) is an

integral domain finite over Z(Lǫ0,n), and hence the central localization of (Lǫ0,n)
Uǫ coincides

with Q((Lǫ0,n)
Uǫ) as defined above. Throughout the paper, unless we mention it explicitly we

follow the conventions of Mc Connell-Robson [85] as regards the terminology of ring theory;
in particular, for the notions of central simple algebras and PI degrees, see in [85] the sections
5.3 and 13.3.6-13.6.7.

Denote by m the rank of g, and by N the number of its positive roots. In section 5 we
prove:
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Theorem 1.3. (1) Q(Lǫ0,n) is a division algebra and a central simple algebra of PI degree

lnN .
(2) Q((Lǫ0,n)

Uǫ), n ≥ 2, is a division algebra and a central simple algebra of PI degree

lN(n−1)−m.

The second claim of (1) means that Q(Lǫ0,n) is a complex subalgebra of a full matrix algebra

Matd(F), where d = lnN and F is a finite extension of Q(Z(Lǫ0,n)) such that

F⊗Q(Z(Lǫ
0,n))

Q(Lǫ0,n) =Matd(F).

That Q(Lǫ0,n) is a division algebra and a central simple algebra follows from Theorem 1.2
and the fact that Lǫ0,n has no non trivial zero divisors (proved in [31]). The computation

of d = lnN uses a lower bound coming from the representation theory of Uǫ, and a lower
bound for the degree of Q(Z(Lǫ0,n)) as a field extension of Q(Z0(L

ǫ
0,n)), obtained by using

specializations to q = ǫ of certain central elements in L0,n (for q generic). In this computation
a main role is played by results of De Concini-Kac [41].

We deduce (2) from (1), the double centralizer theorem for central simple algebras, a few
results of [31] and [45], and Theorem 1.2 again.

Acknowledgements. We are grateful to M. Faitg for many valuable discussions on the
subject, especially concerning the filtration arguments in the proof of Theorem 1.1, and the
use of the partial order � in the proof of Theorem 1.1. We also thank K. A. Brown for
pointing out the references [6] and [22] (see the comments before Theorem 1.2).

1.2. Basic notations. Given a ring R, we denote by Z(R) its center. When R is commu-
tative and has no non-trivial zero divisors, Q(R) denotes its fraction field.

Given a Hopf algebra H with product m and and coproduct ∆, we denote by Hcop (resp.
Hop) the Hopf algebra with the same algebra (resp. coalgebra) structure asH but the opposite
coproduct ∆cop := σ ◦∆ (resp. opposite product m ◦ σ), where σ(x ⊗ y) = y ⊗ x, and the
antipode S−1. We use Sweedler’s coproduct notation, ∆(x) =

∑
(x) x(1) ⊗ x(2), x ∈ H, and

we set ∆(1) := id, ∆(2) := ∆, and ∆(n) := (∆⊗id)∆(n−1) for n ≥ 3 (this is not the convention
used in [31]).

The results of this paper hold true for any finite dimensional complex semisimple Lie
algebra g, but unless we state it differently, we will assume g is simple. We will denote its
rank by m, and its Cartan matrix by (aij). We fix a Cartan subalgebra h ⊂ g and a basis of
simple roots αi ∈ h∗R, and denote by b± the Borel subalgebras associated to it. We denote by
N the number of positive roots of g, and by ρ half the sum of the positive roots.

We denote by d1, . . . , dm the unique coprime positive integers such that the matrix (diaij)
is symmetric, and ( , ) the unique inner product on h∗R such that diaij = (αi, αj). For any

root α the coroot is α̌ = 2α/(α,α); in particular α̌i = d−1
i αi. The root lattice Q is the

Z-lattice in h∗R defined by Q =
∑m

i=1 Zαi. The weight lattice P is the Z-lattice formed by
all λ ∈ h∗R such that (λ, α̌i) ∈ Z for every i = 1, . . . ,m. So P =

∑m
i=1 Z̟i, where ̟i is the

fundamental weight dual to the simple coroot α̌i, which satisfies (̟i, α̌j) = δi,j . Note that
(λ, α) ∈ Z for every λ ∈ P , α ∈ Q. We denote by D the cardinal of the quotient lattice P/Q.
Then D is the smallest positive integer such that D(λ, µ) ∈ Z for every λ, µ ∈ P , that is,
such that DP ⊂ Q.

We denote by P+ :=
∑m

i=1 Z≥0̟i the cone of dominant integral weights, and we put
Q+ :=

∑m
i=1 Z≥0αi. Though Q ⊂ P , it is not true that Q+ ⊂ P+, but we have DP+ ⊂ Q+.

This last property is not trivial, and follows from the classical fact that the inverse of the
Cartan matrix (aij) has coefficients in D−1N.
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We will use the standard partial order relation ≤ on P , defined by: λ, µ ∈ P satisfy λ ≤ µ
if µ − λ ∈ Q+. In section 3, we will also use the partial order relation � on P defined by:
λ � µ if µ− λ ∈ D−1Q+.

We denote by B(g) the braid group of g; we recall its standard defining relations in the
Appendix (Section 6.1).

We denote by G the connected and simply-connected algebraic group with Lie algebra
g, and by TG the maximal torus of G with Lie algebra h; N(TG) is the normalizer of TG,
W = N(TG)/TG is the Weyl group, B± are the Borel subgroups of G with Lie algebra b±,
and U± ⊂ B± are their unipotent subgroups.

We denote by O(G) the coordinate ring of G. It is a commutative Hopf algebra, which
can be identified with the restricted dual of the universal enveloping algebra U(g) (see [69],
and also [77]). Similarly we denote by O(B±) the coordinate ring of B±.

We let q be an indeterminate, set A = C[q, q−1], qi = qdi , qβ = q(β,β)/2 for β ∈ Q, and
given integers p, k with 0 ≤ k ≤ p we put

[p]q =
qp − q−p

q − q−1
, [0]q! = 1 , [p]q! = [1]q[2]q . . . [p]q ,

[
p
k

]

q

=
[p]q!

[p− k]q![k]q!

(p)q =
qp − 1

q − 1
, (0)q! = 1 , (p)q! = (1)q(2)q . . . (p)q ,

(
p
k

)

q

=
(p)q!

(p− k)q!(k)q!
.

We denote by A0 ⊂ C(q) the ring of functions regular at q = 0; this ring is used only in
Section 2.2.2.

We denote by ǫ a primitive l-th root of unity such that ǫ2di 6= 1 is also a primitive l-th root
of unity for all i ∈ {1, . . . ,m}. This means that l is odd, and coprime to 3 if g is G2.

In this paper we use the definition of the unrestricted integral form UA(g) given in [43],
[45]; in [31] we used the one of [41], [42]. The two are (trivially) isomorphic, and have the
same specialization at q = ǫ. Also, we denote here by Li the generators of Uq(g) we denoted
by ℓi in [31].

In order to facilitate the comparison with the results of [45] we note that their generators

denoted Ki, Ei and Fi, that we will denote by K̃i, Ẽi and F̃i, can be written as Ki,K
−1
i Ei

and FiKi in our notations. They satisfy the same algebra relations.

2. Background results

2.1. On Uq, Oq, L0,n, M0,n, and Φn. Except when stated differently, we refer to [31],
Sections 2-4 and 6, and the references therein for details about the material of this section.
We stress that the simply-connected quantum group, that we denote Uq below, was denoted

Ũq in [31]. Also, the adjoint quantum group Uadq was denoted Uq.

The simply-connected quantum group Uq = Uq(g) is the Hopf algebra over C(q) with

generators Ei, Fi, Li, L
−1
i , 1 ≤ i ≤ m, and defining relations

LiLj = LjLi , LiL
−1
i = L−1

i Li = 1 , LiEjL
−1
i = q

δi,j
i Ej , LiFjL

−1
i = q

−δi,j
i Fj

EiFj − FjEi = δi,j
Ki −K−1

i

qi − q−1
i

1−aij∑

r=0

(−1)r
[
1− aij
r

]

qi

E
1−aij−r
i EjE

r
i = 0 if i 6= j

1−aij∑

r=0

(−1)r
[
1− aij
r

]

qi

F
1−aij−r
i FjF

r
i = 0 if i 6= j
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where for λ =
∑m

i=1mi̟i ∈ P we set Kλ =
∏m
i=1 L

mi

i , and Ki = Kαi
=

∏m
j=1 L

aji
j . The

coproduct ∆, antipode S, and counit ε of Uq are given by

∆(Li) = Li ⊗ Li , ∆(Ei) = Ei ⊗Ki + 1⊗ Ei , ∆(Fi) = Fi ⊗ 1 +K−1
i ⊗ Fi

S(Ei) = −EiK
−1
i , S(Fi) = −KiFi , S(Li) = L−1

i
ε(Ei) = ε(Fi) = 0, ε(Li) = 1.

We fix a reduced expression si1 . . . siN of the longest element w0 of the Weyl group of g. It
induces a total ordering of the positive roots,

β1 = αi1 , β2 = si1(αi2), . . . , βN = si1 . . . siN−1
(αiN ).

The root vectors of Uq with respect to such an ordering are defined by

(1) Eβk = Ti1 . . . Tik−1
(Eik) , Fβk = Ti1 . . . Tik−1

(Fik)

where Ti is the Lusztig algebra automorphism of Uq associated to the simple root αi ([76, 75],
see also [38], Ch. 8). The braid group B(g) acts on Uq by means of the Lusztig automor-
phisms. In the Appendix we recall the relation between Ti and the generator ŵi of the
quantum Weyl group, which we will mostly use. Let us just recall here that the monomials
F r1β1 . . . F

rN
βN
KλE

tN
βN
. . . Et1β1 (ri, ti ∈ N, λ ∈ P ) form a basis of Uq, the PBW basis.

Uq is a pivotal Hopf algebra, with pivotal element

ℓ := K2ρ =
∏m
j=1 L

2
j .

So ℓ is group-like, and S2(x) = ℓxℓ−1 for every x ∈ Uq.

The adjoint quantum group Uadq = Uadq (g) is the Hopf subalgebra of Uq generated by the

elements Ei, Fi (i = 1, . . . ,m) and Kα with α ∈ Q; so ℓ ∈ Uadq . When g = sl(2), we simply
write the above generators E = E1, F = F1, L = L1, K = K1.

We denote by Uq(n+), Uq(n−) and Uq(h) the subalgebras of Uq generated respectively by
the Ei, the Fi, and the Kλ (λ ∈ P ), and by Uq(b+) and Uq(b−) the subalgebras generated
by the Ei and the Kλ, and by the Fi and the Kλ, respectively (they are the two-sided ideals

generated by Uq(n±)). We do similarly with Uadq , where now Uadq (h) is generated by the Kλ

with λ ∈ Q.
The Hopf algebra Uadq is not braided in a strict sense, but it has braided categorical

completions. Let us recall briefly what this means and implies. For details we refer to the
sections 2 and 3 of [31] (see also [96], Section 3.10, where Uq below is formulated in terms of
multiplier Hopf algebras).

A Uadq -module V is said of type 1 if it has finite dimension and the generators Ki are

diagonalizable on V with eigenvalues in qZi . We denote by C the category of Uadq -modules of
type 1, by V ect the category of finite dimensional C(q)-vector spaces, and by FC : C → V ect
the forgetful functor. The category C is semisimple. The simple objects are highest weight
Uadq -modules; we denote by Vµ the simple module with highest weight µ ∈ P+. Note that
Vµ is canonically endowed with a structure of Uq-module of type 1, the generators Li being

diagonalizable with eigenvalues in q
Z/D
i . The categorical completion Uadq of Uadq is the set

of natural transformations FC → FC . An element of Uadq is a collection (aV )V ∈Ob(C), where
aV ∈ EndC(q)(V ) satisfies FC(f) ◦ aV = aW ◦ FC(f) for any objects V,W of C and any arrow

f ∈ HomUad
q
(V,W ). It is not hard to see that Uadq inherits from C a natural structure of

(completed) Hopf algebra such that the map

(2)
ι : Uadq −→ Uadq

x 7−→ (πV (x))V ∈Ob(C)
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is a morphism of Hopf algebras, where πV : Uadq → End(V ) is the representation associated
to a module V in C. It is a theorem that this map is injective. From now on, let us extend

the coefficient ring of the modules and morphisms in C to C(q1/D). Put

Uq = Uadq ⊗C(q) C(q
1/D).

The map ι above extends to an embedding of Uq in Uq. The category C, with coefficients

extended to C(q1/D), is braided and ribbon; we postpone a discussion of that fact to Section
2.3, where it will be developed. As a consequence, we can regard Uq as a quasitriangular and
ribbon Hopf algebra in a generalized sense (see [31]). The R-matrix of Uq is the family of
morphisms

R = (RV,W )V,W∈Ob(C)

where RV,W ∈ End(V ⊗W ) is the endomorphism defined by the action of Drinfeld’s universal
R-matrix on V ⊗W . The ribbon element of Uq is defined similarly by Drinfeld’s universal

ribbon element. One defines the categorical tensor product U⊗̂2
q similarly as Uq; in particular

it contains all the infinite series of elements of U⊗2
q having only a finite number of non-zero

terms when evaluated on a given module V ⊗W of C. There is an expansion of R as an

infinite series in U⊗̂2
q . Adapting Sweedler’s coproduct notation ∆(x) =

∑
(x) x(1) ⊗ x(2) we

find convenient to write this series as

(3) R =
∑

(R)

R(1) ⊗R(2).

We put R+ := R, R− := (σ ◦ R)−1 where σ is the flip map x⊗ y 7→ y ⊗ x. We will not use
any explicit formula of R, but the following factorization formula

(4) R = ΘR̂

where
Θ = q

∑m
i,j=1(B

−1)ijHi⊗Hj ∈ U⊗̂2
q ,

with B ∈Mm(Q) the matrix with entries Bij := d−1
j aij , and

R̂ =
∑

(R̂)

R̂(1) ⊗ R̂(2) ∈ Uq(n+)⊗̂Uq(n−)

(see [31], Section 3.2, and for details eg. [38], Theorem 8.3.9, or [96], Theorem 3.108). If x, y

are weight vectors of weights µ, ν respectively, then Θ(x⊗ y) = q(µ,ν)x⊗ y. Moreover, R̂ has

weight 0 for the adjoint action of Uq(h); that is, complementary components R̂(1) and R̂(2)

have opposite weights.

Recall that we denote by G the connected and simply-connected algebraic group with Lie
algebra g. The quantum function Hopf algebra Oq = Oq(G) is defined as the restricted dual

of Uadq with respect to the category C, that is, the set of C(q)-linear maps f : Uadq → C(q)
such that Ker(f) contains a cofinite two sided ideal I (ie. such that I ⊕M = Uq for some
finite dimensional vector space M), and

∏r
s=−r(Ki − qsi ) ∈ I for some r ∈ N and every i (see

eg. [24], Chapter I.7).

The space Oq is a Hopf algebra, with structure maps defined dually to those of Uadq .
We denote by ⋆ its product. The algebras Oq(TG), Oq(U±), Oq(B±) are defined similarly, by

replacing Uadq with Uadq (h), Uadq (n±), U
ad
q (b±) respectively. As a vector space, Oq is generated

by the functionals x 7→ w(πV (x)v), x ∈ Uadq , for every object V ∈ Ob(C) and vectors v ∈ V ,

w ∈ V ∗. Such functionals are called matrix coefficients. Because the morphism ι : Uadq → Uq
is injective (see (2)), the Hopf duality pairing 〈., .〉 : Oq × Uadq → C(q) is non degenerate. By
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extending the coefficient ring from C(q) to C(q1/D), we can uniquely extend it to a bilinear
pairing

〈., .〉 : (Oq ⊗C(q) C(q
1/D))× Uq → C(q1/D)

such that the following diagram is commutative:

Oq ⊗ Uadq
〈.,.〉

//

id⊗ι
��

C(q)

��

(Oq ⊗C(q) C(q
1/D))⊗ Uq

〈.,.〉
// C(q1/D)

This pairing is defined by

〈Y φ
w
v , (aX)〉 = w(aY v)

for every (aX) ∈ Uq and Y φ
w
v ∈ Oq. It is non degenerate.

The maps

(5)

Φ± : Oq −→ U copq

α 7−→ (α⊗ id)(R±) =
∑

(R±)

〈α,R±
(1)〉R

±
(2)

are well-defined morphisms of Hopf algebras. Here we stress that it is the simply-connected
quantum group U copq that is the range of Φ±. This will be explained with more details in
Section 2.3.

Let us make two simple observations, for future reference. Firstly, because Oq is spanned
by the matrix coefficients of the objects of C, and C is semisimple with simple objects the
Uadq -modules Vµ, µ ∈ P+, there is a decomposition of Uq-bimodule

(6) Oq =
⊕

µ∈P+

C(µ),

where C(µ) = V ∗
µ ⊗Vµ, the space of matrix coefficients of Vµ, is endowed with the left action

on the factor Vµ and the right action on V ∗
µ , and Oq has the left and right coregular actions

✁ and ✄, defined by

x✄ α :=
∑

(α)

α(1)〈α(2), x〉, α✁ x :=
∑

(α)

〈α(1), x〉α(2)

for all x ∈ Uq and α ∈ Oq. Here we recall that each Uadq -module Vµ can be regarded as a
Uq-module, so the above expressions make sense. The decomposition (6) is the Peter-Weyl
decomposition of Oq. It will be refined in Section 2.2.2.

Moreover, the algebra Oq is generated by the matrix coefficients of the simple Uadq -modules
V̟k

with heighest weights the fundamental weights ̟k, k = 1, . . . ,m; see eg. Proposition
I.7.8 of [24] for a proof. This relies on the standard fact that, for any µ, ν ∈ P+ we have a
direct sum decomposition of modules (where m(λ) ∈ N)

(7) Vµ ⊗ Vν = Vµ+ν ⊕
⊕

λ<µ+ν

V
⊕m(λ)
λ .

In particular, this decomposition implies that, up to scalar multiples, there is a unique non
zero morphism Vµ+ν → Vµ ⊗ Vν , which is injective and splits. Dually, this means that,
applying the product in Oq followed by the projection onto the subspace C(µ+ ν) we get a
canonical projection map

(8) C(µ)⊗ C(ν) → C(µ+ ν).
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The loop algebra L0,1 = L0,1(g) is defined by twisting the product ⋆ of Oq, keeping the same
underlying linear space. The new product is equivariant with respect to the right coadjoint
action coadr of Uq, defined by

coadr(x)(α) =
∑

(x)

S(x(2))✄ α✁ x(1)

for all x ∈ Uq and α ∈ Oq. By equivariant we mean that L0,1 is a Uq-module algebra. Let us
spell out its product and equivariance property. Using the fact that Uq can be regarded as a
subspace of Uq, the actions ✁ and ✄ extend naturally to actions of Uq, and the product of
L0,1 is expressed in terms of ⋆ by the formula ([31], Proposition 4.1):

(9) αβ =
∑

(R),(R)

(R(2′)S(R(2))✄ α) ⋆ (R(1′) ✄ β ✁R(1)),

where
∑

(R)R(1)⊗R(2) and
∑

(R)R(1′)⊗R(2′) are expansions of two copies of R ∈ U⊗̂2
q . Note

that the sum in (9) has only a finite number of non zero terms. By using that R∆ = ∆copR,
this product can equivalently be expressed as

(10) αβ =
∑

(R),(R)

(β ✁R(1)R(1′)) ⋆ (S(R(2))✄ α✁R(2′)).

This product gives L0,1 (like Oq) a structure of Uq-module algebra for the actions ✄, ✁, but
also for coadr (which is not the case of Oq). Spelling this out for coadr, this means

coadr(x)(αβ) =
∑

(x)

coadr(x(1))(α)coad
r(x(2))(β).

The relations between Oq, L0,1 and Uq are encoded by the map

(11)
Φ1 : Oq −→ Uq

α 7−→ (α⊗ id)(RR′)

where R′ = σ ◦R, and as usual σ : x⊗ y 7→ y ⊗ x. Note that

(12) Φ1 = m ◦ (Φ+ ⊗ (S−1 ◦Φ−)) ◦∆.

We call Φ1 the RSD map, for Drinfeld, Reshetikhin and Semenov-Tian-Shansky introduced
it first (see [39, 86],[83]). It is a fundamental result of the theory (see [35, 61, 11]) that Φ1

affords an isomorphism of Uq-modules

Φ1 : Oq → U lfq .

For full details on that result we refer to Section 3.12 of [96]. Here, U lfq is the set of locally
finite elements of Uq, endowed with the right adjoint action adr of Uq. It is defined by

U lfq := {x ∈ Uq | rkC(q)(ad
r(Uq)(x)) <∞}

and

adr(y)(x) =
∑

(y)

S(y(1))xy(2)

for every x, y ∈ Uq. The action adr gives in fact U lfq a structure of right Uq-module algebra.

It is also a right coideal, that is ∆(U lfq ) ⊂ U lfq ⊗Uq. Moreover, Φ1 affords an isomorphism of
Uq-module algebras

(13) Φ1 : L0,1 → U lfq .
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It is a fact that Φ1 affords an isomorphism between the centers Z(L0,1) of L0,1 and Z(Uq) of

Uq ([31], Proposition 6.24). Since Φ1 is an isomorphism of Uq-modules and Z(Uq) = U
Uq
q , it

follows that Z(L0,1) = L
Uq

0,1.

Let us recall a few fundamental results about U lfq that we will meet again later. Denote by
T ⊂ Uq the multiplicative Abelian group formed by the elements Kλ, λ ∈ P , and by T2 ⊂ T
the subgroup formed by the elements Kλ, λ ∈ 2P . Consider the subset T2− ⊂ T2 formed by
the elements K−λ, λ ∈ 2P+. Clearly T2 = T−1

2− T2− and Card(T/T2) = 2m.

Theorem 2.1. (1) U lfq = ⊕λ∈2P+ad
r(Uq)(K−λ).

(2) Uq = T−1
2−U

lf
q [T/T2], so Uq is a free T−1

2−U
lf
q -module of rank 2m.

(3) The ring U lfq is (left and right) Noetherian.

These results were proved by Joseph-Letzter in Theorem 4.10 of [63], Theorem 6.4 of [62],
and Theorem 7.4.8 of [61], respectively (see also the sections 7.1.6, 7.1.13 and 7.1.25 in [61]).
For (1) and (3) we refer also to Theorem 3.113 and 3.137 in [96], which provides simpler
proofs. For instance, in the sl(2) case we have

Uq(sl(2)) = Uq(sl(2))
lf [K]⊕ Uq(sl(2))

lf [K].L.

The actual values of Φ1 are complicated in general (see Theorem 2.15 and the comments
thereafter). However, there is a simple important one, that we describe now. Let V−λ be the

type 1 simple Uadq -module of lowest weight −λ ∈ −P+ (ie. the highest weight Uadq -module
V−w0(λ) of highest weight −w0(λ), where w0 is the longest element of the Weyl group; note
that −w0 permutes the simple roots). Let v ∈ V−λ be a lowest weight vector, and v∗ ∈ V ∗

−λ be

such that v∗(v) = 1 and v∗ vanishes on a Uadq (h)-invariant complement of v. Define ψ−λ ∈ Oq

by 〈ψ−λ, x〉 = v∗(xv), x ∈ Uq. From the definition (11) it is quite easy to see that

(14) Φ1(ψ−λ) = K−2λ.

In particular Φ1(ψ−ρ) = ℓ−1, where as usual ℓ is the pivotal element of Uq.

Remark 2.2. Since L0,1 = Oq as a vector space, we still denote by C(µ), µ ∈ P+, the linear

subspace generated by the matrix coefficients of Vµ, the U
ad
q -module of type 1 and highest

weight µ. It can be proved (see Section 7.1.22 in [61], or page 156 of [96], where different
conventions are used) that Φ1 yields an isomorphism of Uq-modules

(15) Φ1 : C(−w0(µ)) → adr(Uq)(K−2µ).

Therefore, the summands in (1) are finite-dimensional Uq-modules, and the action adr is

completely reducible on U lfq . In fact, U lfq is the socle of adr on Uq.

Remark 2.3. Because ℓ =
∏m
j=1 L

2
j and Φ1(ψ−ρ) = ℓ−1, a natural question is the factoriza-

tion of ψ−ρ in L0,1 (see Corollary 2.18). This question is considered in [64], where L0,1(g) for
g = gl(r + 1) is analysed and quantum minors are extensively studied. Let us review here
some of their results in relation with ψ−ρ.

First note that for for g = sl(r+1) the irreducible representation V−ρ of lowest weight −ρ
is isomorphic to the representation of highest weight Vρ because −w0(ρ) = ρ. By the Weyl

formula the dimension of this representation is
∏
α>0

(2ρ,α)
(ρ,α) = 2N . In [73] a presentation of

Uq(gl(r+1)) is given, which differs from our presentation of Uq(sl(r+1)) only by its subalgebra
Uq(h), generated by r + 1 elements K1, ...,Kr+1. The inclusion Uq(sl(r + 1)) ⊂ Uq(gl(r + 1))

is such that Ki = K2
iK

−2
i+1, i = 1, ..., r. The quantum minors, properly defined in [64], of the

matrix of matrix elements of the natural representation of Uq(gl(r+1)) are denoted detq(A≥k)
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for k = 1, ..., r + 1. We have detq(A≥1) = 1 in the case of sl(r + 1). Then [64] proves that

detq(A≥k) = (Kk...Kr+1)
2, and there exists an element K ∈ Uq(gl(r + 1)) such that

K−2ρ = detq(A≥1)
−rdetq(A≥2)...detq(A≥r+1).

This has to be interpreted in the sl(r + 1) case as K−2ρ = Φ1(detq(A≥2)...detq(A≥r+1)). As
a result this gives the equality

ψ−ρ = detq(A≥2)...detq(A≥r+1).

The (quantum) graph algebra L0,n = L0,n(g) is the braided tensor product of n copies of
L0,1 (considered as a Uq-module algebra). As a linear space and Uq-bimodule with actions ✁
and ✄, it coincides with L⊗n

0,1 , and thus with O⊗n
q . It is also a right Uq-module algebra, with

the following action of Uq (extending coad
r on L0,1):

coadrn(y)(α
(1) ⊗ . . .⊗ α(n)) =

∑

(y)

coadr(y(1))(α
(1))⊗ . . .⊗ coadr(y(n))(α

(n))(16)

for all y ∈ Uq and α
(1)⊗. . .⊗α(n) ∈ L0,n. The product of L0,n can be explicited as follows. For

every 1 ≤ a ≤ n define ia : L0,1 → L0,n by ia(x) = 1⊗(a−1) ⊗ x⊗ 1⊗(n−a); ia is an embedding
of Uq-module algebras. We will use the notations

(17) L
(a)
0,n := Im(ia) , (α)

(a) := ia(α).

Take (α)(a), (α′)(a) ∈ L
(a)
0,n and (β)(b), (β′)(b) ∈ L

(b)
0,n with a < b. Then the product of L0,n is

given by the following formula (see [31], section 6):

(18)

(
(α)(a) ⊗ (β)(b)

) (
(α′)(a) ⊗ (β′)(b)

)

=
∑

(R1),...,(R4)

(
α
(
S(R3

(1)R
4
(1))✄ α′

✁R1
(1)R

2
(1)

))(a)

⊗
((
S(R1

(2)R
3
(2))✄ β ✁R2

(2)R
4
(2)

)
β′
)(b)

where Ri =
∑

(Ri)R
i
(1) ⊗Ri(2), i ∈ {1, 2, 3, 4}, are expansions of four copies of R ∈ U⊗̂2

q , and

on the right-hand side the product is componentwise that of L0,1. Later we will use the fact
that the product of L0,n is obtained from the standard (componentwise) product of L⊗n

0,1 by

a process that may be inverted. Indeed, (18) can be rewritten as

(19)
(
(α)(a) ⊗ (β)(b)

)(
(α′)(a) ⊗ (β′)(b)

)
=

∑

(F )

(α)(a)
(
(α′)(a) · F(2)

)
⊗

(
(β)(b) · F(1)

)
(β′)(b)

where F =
∑

(F ) F(1) ⊗ F(2) := (∆ ⊗∆)(R′), and the symbol “·” stands for the right action

of U⊗̂2
q on L0,1 that may be read from (18). The tensor F is known as a twist. Then, by

replacing F with its inverse F̄ = (∆⊗∆)(R′−1), one can express the product of L⊗n
0,1 in terms

of the product of L0,n by

(20) (α)(a)(α′)(a) ⊗ (β)(b)(β′)(b) =
∑

(F̄ )

(
(α)(a) ⊗

(
(β)(b) · F̄(1)

))((
(α′)(a) · F̄(2)

)
⊗ (β′)(b)

)
.

We call quantum moduli algebra and denote by

M0,n = L
Uq

0,n

the subalgebra of L0,n formed by the Uq-invariant elements.
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The map Φ1 can be extended to L0,n as follows. Consider the following action of Uq on
the tensor product algebra U⊗n

q , which extends adr on Uq:

(21) adrn(y)(x) =
∑

(y)

∆(n)(S(y(1)))x∆
(n)(y(2))

for all y ∈ Uq, x ∈ U⊗n
q . This action gives U⊗n

q a structure of right Uq-module algebra. In [1]

Alekseev introduced a morphism of Uq-module algebras Φn : L0,n → U⊗n
q which extends Φ1.

In Proposition 6.7 of [31] we showed that Φn affords isomorphisms

(22) Φn : L0,n → (U⊗n
q )lf , Φn : M0,n → (U⊗n

q )Uq

where (U⊗n
q )lf is the set of adrn-locally finite elements of U⊗n

q . We call Φn the Alekseev map;
we do not recall here the definition of Φn, for we will not use it. It is a key argument of the
proof of (22) that the set of locally finite elements of U⊗n

q for (adr)⊗n ◦∆(n) coincides with

(U lfq )⊗n; this follows from the main result of [72]. Using that the map

(23) ψn = Φn ◦ (Φ
−1
1 )⊗n : (U lfq )⊗n → (U⊗n

q )lf

is surjective and intertwines the actions (adr)⊗n ◦∆(n−1) and adrn, we deduced that Im(Φn) =

(U⊗n
q )lf .

Remark 2.4. We have (U lfq )⊗n 6= (U⊗n
q )lf , and in fact there is not even an inclusion. Indeed

let Ω = (q− q−1)2FE+ qK+ q−1K−1 be the Casimir element of Uq(sl(2)). We trivially have

∆(Ω) ∈ (U⊗2
q )lf but

∆(Ω) = (q − q−1)2(K−1E ⊗ FK + F ⊗ E) + Ω⊗K +K−1 ⊗ Ω− (q + q−1)K−1 ⊗K

and therefore ∆(Ω) /∈ (U lfq )⊗2, since K /∈ U lfq (see eg. Theorem 2.1 (2)). This reflects the

fact that U lfq is only a right coideal (and not a subcoalgebra).

As in Remark 2.2, denote by C(µ), µ ∈ P+, the linear subspace of L0,1 generated by the
matrix coefficients of Vµ. For every tuple [µ] = (µ1, . . . , µn) ∈ Pn+ put

(24) C([µ]) = C(µ1)⊗ . . . ⊗ C(µn)

Then L0,n =
⊕

[µ]∈Pn
+
C([µ]). Each space C([µ]) is a finite dimensional Uq-module under the

action coadrn, whence it is completely reducible. Therefore

(25) L0,n = M0,n ⊕ I

as Uq-modules, where I the sum of non trivial isotypical components of L0,n. The C(q)-linear
projection map

(26) R : L0,n → M0,n, Ker(R) = I

is called the Reynolds operator. For all α ∈ M0,n, β ∈ L0,n it satisfies

(27) R(αβ) = αR(β).

This property will be crucial in the sequel, so let us recall a (classical) proof of it. We can
write β = R(β)+ γ with γ ∈ I, and then we have to show αγ ∈ I. We can reduce to the case
where γ is contained in a simple summand V of I. Multiplication by the invariant element
α yields a surjective map V → αV , which is a morphism of Uq-modules. Since V is simple,
it is either the 0 map, or an isomorphism. In either cases it follows αV ⊂ I (in fact the first
case cannot happen, for L0,n has no non-trivial zero divisors, as explained after (31)).
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We can formulate the Reynolds operator in the following way. Recall that Oq has a unique
left (or right, or 2-sided) Haar integral, that is a linear map h : Oq → C(q) such that

(28) h(1) = 1 and (id⊗ h)∆(α) = h(α)1, ∀α ∈ Oq.

(See eg. [38], Proposition 13.3.6). It vanishes on all matrix coefficients except the one of the
trivial representation, to which it gives the value 1. Denote by ∆L : L0,n → L0,n ⊗ Oq the
right coaction dual to the action coadrn of Uq on L0,n. Then, in analogy with the formula

of the averaging operator C∞(G) → C∞(G)G, f → [f ] =
∫
G f(g

−1 · g)dµ(g), for a locally
compact group G with Haar measure dµ(g), it is straightforward that

(29) R = (id⊗ h)∆L.

Note that the complete reducibility of L0,n discussed after (24) follows also from Theorem
2.1 (1), since by (23) we have an isomorphism of Uq-modules

(30) L0,n
Φn−→ (Uq(g)

⊗n)lf
ψ−1
n

−→ U lfq (g)⊗n,

where lf means respectively locally finite for the action adrn of Uq(g) on Uq(g)
⊗n, and locally

finite for the action adr of Uq(g) on Uq(g). An explicit basis ofM0,n is described in Proposition
6.22 of [31].

Finally, let us point out here two important consequences of (22). First, Φn yields iso-

morphisms between centers, Z(L0,n) ∼= Z(Uq)
⊗n and Z(L

Uq

0,n)
∼= Z((U⊗n

q )Uq), where one can

show that ([31], Lemma 6.29)

(31) Z((U⊗n
q )Uq) ∼= ∆(n)(Z(Uq))⊗C(q) Z(Uq)

⊗n.

Second, L0,n (and therefore M0,n) has no non-trivial zero divisors because of the isomor-

phisms Φn : L0,n → (U⊗n
q )lf ⊂ U⊗n

q and U⊗n
q

∼= Uq(g
⊕n), and the fact that Uq(g

⊕n) has no
non-trivial zero divisors (proved eg. in [41]).

2.2. Integral forms and specializations. Let A = C[q, q−1]. We call integral form of a
(Hopf) C(q)-algebraH a (Hopf) A-subalgebra AH such that the canonical map AH⊗AC(q) →
H is an isomorphism. Note that the standard notion of integral form of C(q)-algebra uses
Z[q, q−1] instead of C[q, q−1]; our choice is made for simplicity (C[q, q−1] is a principal ideal
domain, whereas Z[q, q−1] is not).

2.2.1. Definitions. The unrestricted integral form of Uq is the A-subalgebra UA = UA(g)
introduced by De Concini–Kac–Procesi in [43], Section 12 (and in a differently normalized
form in [41] and [42]). It is the smallest A-subalgebra of Uq which contains the elements
(i = 1, . . . ,m)

(32) Ēi = (qi − q−1
i )Ei , F̄i = (qi − q−1

i )Fi , Li , L
−1
i

and is stable under the action of B(g) given by the Lusztig automorphisms (see (1)). Recall

the root vectors Eβk , Fβk defined in (1). Let us put qβ := q(β,β)/2. The algebra UA is a free
A-module with basis the monomials Ēp1β1 . . . Ē

pN
βN
KλF̄

nN

βN
. . . F̄n1

β1
, where λ ∈ P and we set

Ēβk = (qβk − q−1
βk

)Eβk , F̄βk = (qβk − q−1
βk

)Fβk .

We denote
U lfA := UA ∩ U lfq .

The unrestricted integral form of Uadq is defined similarly, as the smallest A-subalgebra UadA ⊂

UA which contains the elements Ēi, F̄i and K±1
i , for i = 1, . . . ,m, and is stable under the

Lusztig action of B(g).
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For β a positive root, we define the divided powers

E
(k)
β =

Ekβ
[k]qβ !

, F
(k)
β =

F kβ
[k]qβ !

, k ∈ N.

The Lusztig restricted integral form of Uadq ([75, 76], see also [38], Chapter 9.3) is the A-
subalgebra U resA generated by the elements (i = 1, . . . ,m, k ∈ N∗)

E
(k)
i =

Eki
[k]qi !

, F
(k)
i =

F ki
[k]qi !

, Ki , K
−1
i .

The algebra U resA is a free A-module with Poincaré-Birkhoff-Witt (PBW) basis

(33) E
(p1)
β1

. . . E
(pN )
βN

m∏

i=1

Kσi
i [Ki; ti]qiF

(nN )
βN

. . . F
(n1)
β1

where σi ∈ {0, 1}, ni, pi, ti ∈ N, and we set [Ki; 0]qi := 1 and

[Ki; t]qi =
t∏

s=1

Kiq
−s+1
i −K−1

i qs−1
i

qsi − q−si
.

The integral forms UA(h), UA(b±) and U resA (h), U resA (b±) associated to the subalgebras h,
b± ⊂ g are the subalgebras of UA and U resA , respectively, defined in the obvious way. For
instance the “Cartan” subalgebra U resA (h) = Uq(h) ∩ U

res
A is generated as a A-module by the

elements
∏m
i=1K

σi
i [Ki; ti]qi .

Denote by CA the category of U resA -modules of type 1, ie. free A-modules of finite rank

which have a basis where the elements Ki act diagonally with eigenvalues of the form qki ,

k ∈ Z (in general, finiteness of the rank imposes eigenvalues of the form ±qki , k ∈ Z). The
category CA is a rigid and tensor category. It is not semisimple, and this makes the study of CA
a complicated task; for this, see [31], and section 2.2.2 below. Every type 1 finite dimensional
simple Uq-module Vµ, µ ∈ P+, has a U

res
A -invariant full A-sublattice, that we denote by AVµ.

These U resA -modules form the simple objects of CA. Moreover CA⊗C[q1/D, q−1/D] is a ribbon
category (see Section 2.3).

The integral quantum function Hopf algebra OA = OA(G) is the (type 1) restricted dual
of U resA , that is, the A-span of the matrix coefficients x 7→ vi(πV (x)vi), x ∈ U resA , for every
module V in CA, where (vi) is an A-basis of V and (vi) the dual A-basis of the dual module
V ∗ (compare with the definition of Oq). We can also regard OA as the set of A-linear maps
f : U resA → A such that Ker(f) contains a cofinite two sided ideal I, and

∏r
s=−r(Ki − qsi ) ∈ I

for some r ∈ N and every i. Because of the inclusions of U resA (h), U resA (n±), U
res
A (b±) in U

res
A ,

there are Hopf epimorphisms from OA to the A-duals of these subalgebras, that we denote
by OA(TG), OA(U±) and OA(B±) respectively.

The algebra OA has been introduced by Lusztig in [75, 76]. It is an integral form of Oq, so

Oq = OA ⊗A C(q).

OA is also the restricted dual of the integral form Γ = Γ(g) of Uadq introduced by De

Concini-Lyubashenko in [45], Sections 2-3; Γ is the A-subalgebra of Uadq generated by the
elements (i = 1, . . . ,m)

E
(k)
i =

Eki
[k]qi !

, F
(k)
i =

F ki
[k]qi !

, (Ki; t)qi =

t∏

s=1

Kiq
−s+1
i − 1

qsi − 1
, K−1

i

where k ∈ N, t ∈ N (setting (Ki; 0)qi = 1 by convention). Note that the definition of Γ is less
symmetric than that of U resA . However, Γ contains the elements Ki, and the commutation
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relations between the generators E
(k)
i , F

(k)
i imply that the symmetrized elements [Ki; t]qi

belong to Γ. In fact, let us denote Γ(h) = Uq(h) ∩ Γ and Γ(b±) = Uq(b±) ∩ Γ. It is proved in

[45], Theorem 3.1, that Γ(h) contains U resA (h), and that the elements
∏m
i=1K

−σ(ti)
i (Ki; ti)qi ,

ti ∈ N, where σ(t) ∈ {0, 1} and σ(t) = t mod(2), is an A-basis of Γ(h). A PBW basis of Γ is
formed by the monomials

(34) E
(p1)
β1

. . . E
(pN )
βN

m∏

i=1

K
−σ(ti)
i (Ki; ti)qiF

(nN )
βN

. . . F
(n1)
β1

.

The inclusion U resA ⊂ Γ is strict, for the elements (Ki; t)qi , t 6= 0, do not belong to U resA .
However the restriction functor CΓ → CA is obviously an equivalence, where CΓ is the category
of Γ-modules of type 1, ie. free A-modules of finite rank which have a basis where the elements
Ki act diagonally with eigenvalues of the form qki , k ∈ Z. Therefore we can identify the two
categories, and OA with the (type 1) restricted dual of Γ. We will thus consider the U resA -
modules AVµ, µ ∈ P+, equally as Γ-modules. We will sometimes use Γ instead of U resA

in order to make direct the connection with results of De Concini-Lyubashenko about the
integral pairings π±A considered in Section 2.3.

The integral form LA0,1 of L0,1 is defined as the U resA -module OA endowed with the product

of L0,1. The integral form LA0,n of L0,n is the braided tensor product of n copies of LA0,1; in

particular LA0,n = O⊗n
A as U resA -modules. That the products of L0,1 and L0,n are well-defined

over A was shown in Proposition 6.9 of [31].
The integral quantum moduli algebra is

MA
0,n := (LA0,n)

Ures
A = (LA0,n)

UA .

Finally, given q = ǫ ∈ C× we define the specializations Uǫ, Γǫ, Oǫ, L
ǫ
0,n and MA,ǫ

0,n as the

C-algebras obtained by tensoring UA, Γ, OA, L
A
0,n and MA

0,n respectively with Cǫ, the A-
module C where q acts by multiplication by ǫ. Each one can also be defined as the quotient
by the ideal generated by q − ǫ. We find convenient to use the notations

(35) (U⊗n
A )UA

ǫ := (U⊗n
A )UA ⊗A Cǫ , (U

⊗n)lfǫ := (U⊗n
A )lf ⊗A Cǫ.

Let us stress here that when ǫ is a root of unity, taking the locally finite part and taking the
specialization at ǫ are non commuting operations. Indeed, as shown by Theorem 2.22 below
Uǫ is finite over Z0(Uǫ) and therefore all its elements are locally finite for adr; on another

hand U lfǫ = U lfA ⊗A Cǫ does not contain the elements Li.
Similarly, taking invariants and taking the specialization at ǫ are non commuting operations

when ǫ is a root of unity: indeed, it is easily checked that in this case (U⊗n
A )UA

ǫ and (U⊗n
ǫ )Uǫ ,

or MA,ǫ
0,n = MA

0,n ⊗A Cǫ and (Lǫ0,n)
Uǫ , are distinct spaces. When ǫ is a root of unity, we will

not consider the algebras MA,ǫ
0,n in this paper.

Arguments similar to those mentioned at the end of Section 2.1 imply that the algebras

LA0,n, M
A
0,n and Lǫ

′

0,n, M
A,ǫ′

0,n , ǫ′ ∈ C×, have no non-trivial zero divisors (see [31], Proposition

6.11 and 6.30).

2.2.2. Canonical basis and modified quantum groups. Because the category CA is not semisim-
ple, it is not clear from the above definition of OA whether or not it is a finitely generated
algebra, or if it satisfies a Peter-Weyl A-module direct sum decomposition similar to (6), if

MA
0,n is a direct summand of the A-module LA0,n, or if the projection map (8) may be refined

to a morphism between underlying A-modules.
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Such properties indeed hold true, and will play a key role later. We state them precisely
in Proposition 2.7, Theorem 2.6, Theorem 2.10 and Proposition 2.8. These results are con-
sequences of the existence of an A-basis of OA with favourable properties, which implies in
particular that OA is a free A-module. In order to introduce this A-basis it is necessary to
consider a variant of Uadq introduced by Lusztig [76], called modified quantum group, and use
the Kashiwara-Lusztig theory of canonical bases ([65, 66, 67], [76]). We are going to recall
the background material step by step.

The Lusztig modified quantum group is the C(q)-algebra
.
U obtained by replacing Uadq (h)

with the direct sum of infinitely many one-dimensional algebras, generated by orthogonal
idempotents 1λ indexed by the elements λ of the weight lattice P ([76], Chapter 23). Namely,

as a vector space
.
U=

⊕
λ′,λ′′∈P λ′

.
Uλ′′ , where

λ′
.
Uλ′′ = Uadq /(

∑

α∈Q

(Kα − q(α,λ
′))Uadq +

∑

α∈Q

Uadq (Kα − q(α,λ
′′))).

Denote by πλ′,λ′′ : U
ad
q → λ′

.
Uλ′′ the canonical projection. The product of

.
U is given by

πλ′1,λ′′1 (s)πλ′2,λ′′2 (t) = πλ′1,λ′′2 (st) if λ
′′
1 = λ′2 and zero otherwise. Set 1λ := πλ,λ(1). The algebra

.
U has not unit, but the family (1λ)λ∈P can be regarded as a substitute of it. Denote by ∆

the collection of maps ∆λ′1,λ
′
2,λ

′′
1 ,λ

′′
2
: λ′1+λ′2

.
Uλ′′1+λ

′′
2
→ λ′1

.
Uλ′′1

⊗ λ′2

.
Uλ′′2

such that

(36) ∆λ′1,λ
′
2,λ

′′
1 ,λ

′′
2
πλ′1+λ′2,λ′′1+λ′′2 = (πλ′1,λ′′1 ⊗ πλ′2,λ′′2 )∆Uad

q
,

where ∆Uad
q

is the coproduct of Uadq . We can regard ∆ as a (categorically completed) coprod-

uct ∆:
.
U→

.
U

⊗̂2. There is a natural structure of Uadq -bimodule on
.
U, defined by

(37) t′πλ′,λ′′(s)t
′′ = πλ′+ν′,λ′′−ν′′(t

′st′′)

for all s ∈ Uadq and all elements t′, t′′ ∈ Uadq of respective weights ν ′, ν ′′. This structure affords

a triangular decomposition of
.
U: given basis {b±} of Uadq (n±), the set of elements b+1λb

−

(or b−1λb
+, or b+b−1λ), where λ ∈ P , is a basis of

.
U.

Given any Uadq -module X of type 1, and any weight subspace Xλ ⊂ X of weight λ ∈ P ,

one can define the action of an element u1λ ∈
.
U, u ∈ Uadq , on X as the projection onto Xλ

followed by the action of u. This way, one can identify the category C with the one of finite

dimensional unital
.
U-modules, where unital means that all elements 1λ act as 0 but a finite

number of them, and
∑

λ∈P 1λ acts as the identity. It is proved in [76], Section 29.5.1, that

(38) Oq =

{
f :

.
U→ C(q)

∣∣∣∣
f is C(q)−linear and vanishes on some

two − sided ideal of finite codimension of
.
U

}
.

There is an analogous realization of OA, of the form (see [76], sections 23.2 and 29.5.2, and
[77])

(39) OA =

{
f :

.
UA→ A

∣∣∣∣
f is A−linear and vanishes on some

two− sided ideal of finite corank of
.
UA

}
,

where
.
UA is the A-subalgebra of

.
U generated by the elements E

(k)
i 1λ and F

(k)
i 1λ, for all

i ∈ {1, . . . ,m}, k ∈ N and λ ∈ P . It is a U resA -subbimodule of
.
U, and the coproduct restricts

to a map ∆:
.
UA→

.
UA

⊗̂2. The above identification of the category C with the one of finite

dimensional unital
.
U-modules yields an identification of the category CA of U resA -modules of

type 1 with the category of
.
UA-modules of finite rank.
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The key advantage of this realization of OA is that
.
UA can be equipped with a canonical

A-basis
.
B. The construction of

.
B is described in [76], Chapter 25. It relies on the Kashiwara-

Lusztig canonical basis of U resA (n−). This last basis, denoted byB−, is defined in [76], Chapter
14, and [65] (a review can be found in [38], Chapter 14). It enjoys the following nice properties.

Denote by − : C(q) → C(q) the field involution such that q = q−1, and by − : Uadq → Uadq the
homomorphism of C-algebras such that

Ēi = Ei F̄i = Fi , K̄λ = K−λ , fx = f̄ x̄

for all f ∈ C(q), x ∈ Uadq (Ēi and F̄i above, which will not appear elsewhere, should not be

confused with the normalized elements in (32)). The map − yields a C-algebra homomorphism
− :

.
U→

.
U. Then we have:

(1) the elements of B− are weight vectors under the adjoint action of Uadq (h);

(2) for every b ∈ B−, b̄ = b;

(3) for every b, b′ ∈ B−, bb′ =
∑

b′′∈B− N bb′

b′′ b
′′ where N bb′

b′′ ∈ N[q, q−1];

(4) for every b, b′ ∈ B−, ∆(b) =
∑

b′,b′′∈B− Cbb′b′′b
′ ⊗ b′′ where Cbb′b′′ ∈ N[q, q−1];

(5) For every µ ∈ P+, denoting by vµ the highest weight vector of the U resA -module AVµ,
the elements bvµ which are non zero, where b ∈ B−, form an A-basis of AVµ.

In the case of g = sl(2) the elements of B− are just the divided powers F (k), k ∈ N. Formulas
in terms of PBW basis elements are known also for g = sl(3) and sl(4), and an algorithm
exists in the general case (see [57] and the references therein).

Correspondingly to B−, the set B+ = ω(B−) is a basis of U resA (n+), where ω : U
ad
q → Uadq

is the (C(q)-linear) Cartan automorphism, defined by

ω(Ei) = Fi , ω(Fi) = Ei , ω(Ki) = K−1
i

for i = 1, . . . ,m. The triangular decomposition of
.
U implies that the elements b+1λb

′−, where

b+ ∈ B+, b′− ∈ B− and λ ∈ P , form a basis of
.
U. They form in fact an A-basis of

.
UA, and

its elements are fixed by the involution − :
.
U→

.
U.

Lusztig has constructed another A-basis of
.
UA, denoted

.
B, and called the canonical basis

of
.
UA. It satisfies numerous properties that we now review. Its elements are denoted by

b♦λb
′, where b, b′ ∈ B− and λ ∈ P , and are related to the elements b+b′−1λ, where b

+ := ω(b)
and b′− := b′, by a specific trigonal change of basis with coefficients in A. Although we

always have b+1λ, b
′−1λ ∈

.
B, to our knowledge explicit formulas of the elements of

.
B as

linear combinations of elements b+1λb
′− or b′−1λb

+ are known only for g = sl(2) or sl(3) (see
[76], 25.3, and [36]). In the former case, identifying P with Z and Q with 2Z the canonical

basis
.
B is formed by the elements

(40) E(k)1−nF
(l) and F (l)1nE

(k), k, l, n ∈ N, n ≥ k + l

where E(k)1−nF
(l) = F (l)1nE

(k) for n = k + l.

We are going to review Lusztig’s construction of
.
B, its canonical partition

.
B= ∪λ∈P+

.
B[λ],

the Kashiwara’s dual basis
.
B ∗, and its dual partition ([66, 67]). The latter is stated in

Theorem 2.6 below. At first we need to recall the notions of based module and balanced
triple; for details we refer to [76], Chapter 27, and [66] (see also [68], the sections 3.15 and
3.16 in [96], or Chapter 14 in [38] for overviews).

Denote by A0 ⊂ C(q) the ring of rational functions regular at q = 0. By applying the
involution −, put

A∞ = A0.
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Since A0 is the localization of C[q] at q = 0, we may regard A∞ as the localization of C[q−1]
at q = ∞.

Let us recall briefly the definition of crystal basis (see [65]). Denote by Uadq (g)i the sub-

algebra of Uadq (g) generated by Ei, Fi and K±1
i ; thus Uadq (g)i is isomorphic to Uqi(sl(2)).

Let M be a Uadq -module of type 1. Denote M ζ the subspace of M of weight ζ ∈ P . For

every i = 1, . . . ,m we can regard M as a Uadq (g)i-module, so M ∼= ⊕jVλj for some simple

Uadq (g)i-modules Vλj . These being generated by primitive weight vectors, the PBW basis of

Uadq (g)i yields

M =
⊕

ζ∈P

⊕

0≤n≤(α̌i,ζ)

F
(n)
i (Ker(Ei) ∩M

ζ).

The Kashiwara operators ẽi, f̃i are the endomorphisms of M defined by, for every v ∈
Ker(Ei) ∩M

ζ and 0 ≤ n ≤ (α̌i, ζ),

(41) f̃i(F
(n)
i v) = F

(n+1)
i v , ẽi(F

(n)
i v) = F

(n−1)
i v.

A crystal basis of M at q = 0 consists of a pair (L,B), where:

• L is a free A0-sublattice of M such that the canonical map L ⊗A0 C(q) → M is an
isomorphism;

• B is a basis of the C-vector space L/qL;

• L = ⊕ζ∈PL
ζ and B =

∐
ζ∈P (B ∩ Lζ/qLζ), where Lζ = L ∩M ζ ;

• for every i = 1, . . . ,m the Kashiwara operators ẽi, f̃i preserve L, and the induced
maps on L/qL send B into B ∪ {0}, and satisfy b′ = f̃i(b) if and only if b = ẽi(b

′) for
every b, b′ ∈ B.

Crystal basis at q = ∞ are defined similarly, by replacing A0 with A∞.
A Uadq -module M of type 1 endowed with a C(q)-basis B is called a based module if the

following conditions hold:

(i) For every weight ζ ∈ P , the set B ∩M ζ is a basis of the weight subspace M ζ ⊂M .
(ii) The A-module AM generated by B is stable under U resA .

We will denote by LM the A0-submodule of M generated by B, and by L̄M the
A∞-submodule of M generated by B.

(iii) The C-linear involution − : M →M defined by fb = fb for all f ∈ C(q) and b ∈ B is

compatible with the action of Uadq in the sense that xm = x̄m̄ for all Uadq , m ∈M .

(iv) The A∞-submodule L̄M of M together with the image of B in L̄M/q
−1L̄M forms a

crystal basis of M at q = ∞.

If (M,B) is a based module, we will denote by B the image of B in L̄M/q
−1L̄M . From the

notion of balanced triple that we recall now, denoting by B the image of B in LM/qLM , we
see that (LM ,B) is a crystal basis at q = 0.

Indeed, consider more generally a C(q)-vector space V , finite dimensional or not, a sub-A-
module AV , a sub-A0-module A0V and a sub-A∞-module A∞V satisfying the conditions (all
isomorphisms being the canonical maps)

V ∼= C(q)⊗A AV , V ∼= C(q)⊗A0 A0V , V ∼= C(q)⊗A∞ A∞V.

Denote the C-vector space E := AV ∩ A0V ∩ A∞V . Then (AV,A0V,A∞V ) is a balanced triple
([65, 66]) if the canonical maps

(42) A⊗C E → AV , A0 ⊗C E → A0V , A∞ ⊗C E → A∞V
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are isomorphisms. Equivalently, (AV,A0V,A∞V ) is balanced if and only if the canonical map
E → A0V/qA0V is an isomorphism, if and only if the canonical map E → A∞V/q

−1
A∞V is

an isomorphism ([66], Lemma 2.1.1).
Given a based module (M,B), the elements of B are weight vectors and b = b for every

b ∈ B. Also, if an element m ∈ AM satisfies m = m and m ∈ B + q−1L̄M , then m ∈ B (see
27.1.5 in [76] for details on this fact). It follows that the canonical quotient map

(43) AM ∩ LM ∩ L̄M → L̄M/q
−1L̄M

is an isomorphism of C-vector spaces. This provides another way of viewing based modules:
by (43), (AM,LM , L̄M ) is a balanced triple, and by (42) the A-lattice AM is completely
determined by the crystal base (L̄M ,B). We will say that (L̄M ,B) (or the corresponding
crystal base (LM ,B) at q = 0) is melted into the based module (M,B).

We will indifferently apply the notion of based module to finite-dimensional unital
.
U-

modules, since they are equivalent to Uadq -modules of type 1.

Every module Vµ, µ ∈ P+, supports a structure of based module ([76], Section 14.4.10,
[65]); the corresponding basis, called canonical basis and that we will denote by Bµ, is formed

by the elements bvµ ∈ AVµ which are non zero, where b ∈ B− and vµ is the canonical

highest weight vector of Vµ, corresponding to the coset of 1 ∈ Uadq (n−) in the Verma module
construction of Vµ. Note that the involution ¯ : Vµ → Vµ defined by (iii) above is indeed an

automorphism, for the space Vµ with action of Uadq defined by x · v := x̄v, for all x ∈ Uadq ,
v ∈ Vµ, has highest weight µ, and is thus isomorphic to Vµ via the map ¯. The crystal base

(Llowµ ,Blowµ ) at q = 0 is formed by the A0-sublattice Llowµ of Vµ generated by Bµ (which is

eventually the same as the A0-sublattice generated by the vectors of the form f̃i1◦. . .◦f̃ik(vµ),

where i1, . . . , ik ∈ {1, . . . ,m}), and Blowµ is the set of non-zero images of these vectors in

Llowµ /qLlowµ .

There is the following uniqueness result ([65], Theorem 3):

Theorem 2.5. Let M be a Uadq -module of type 1, and (L,B) a crystal base at q = 0 of
M . Then there exists a C(q)-isomorphism M → ⊕jVλj by which (L,B) is A0-isomorphic to

⊕j(L
low
λj
,Blowλj ).

The based modules form a category. Given based modules (M,B) and (M ′, B′), a mor-

phism of Uadq -modules f : M →M ′ is a morphism of based modules if:

(a) f(b) ∈ B′ ∪ {0} for any b ∈ B;
(b) B ∩Ker(f) is a basis of Ker(f).

The direct sum of based modules (M,B) and (M ′, B′) is a based module (M ⊕M ′, B ∪B′);
and a submoduleM ′ of a based module (M,B) spanned over C(q) by a subset B′ of B forms
a based module (M ′, B′). The quotient module M/M ′ together with the image of B \B′ is
then a based module.

The tensor product of based modules (M,B), (M ′, B′) is also defined. Namely, consider

the C-linear map Ψ: M ⊗ M ′ → M ⊗ M ′ defined by Ψ(m ⊗ m′) = R̂−1(m̄ ⊗ m̄′), where

R̂ = Θ−1R, see (4) (note that, as we use the coproduct opposite to [76] our quasi-R-matrix

is R̂−1). It can be checked that Ψ is an involution compatible with the action of
.
U in the

sense of (iii) above. Moreover, denote by LM,M ′ the C[q−1]-submodule of M ⊗M ′ spanned
by the basis elements b⊗ b′, where b ∈ B, b′ ∈ B′. It is shown in [76], Section 27.3, that for
every couple (b, b′) ∈ B ×B′ there is a unique element b♦b′ ∈ LM,M ′ such that

(a) Ψ(b♦b′) = b♦b′,
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(b) b♦b′ − b⊗ b′ ∈ q−1LM,M ′.

Moreover, B♦ = {b♦b′, b ∈ B, b′ ∈ B′} is a basis of M ⊗ M ′, a C[q−1]-basis of LM,M ′ , a

C[q, q−1]-basis of the C[q, q−1]-module ALM,M ′ of M ⊗M ′ generated by the elements b⊗ b′,
where b ∈ B, b′ ∈ B′, and (M ⊗M ′, B♦) is a based module.

This construction of B♦ is associative. Since (Vµ,Bµ) is for every µ ∈ P+ a based module,
it follows that any tensor productM of a finite number of the simple modules Vµ is naturally
a based module. The corresponding basis is called the canonical basis of M . These canonical
basis have been computed explicitly in [55] in the case g = sl(2).

Consider now the Uadq -module ωVµ with underlying space Vµ, µ ∈ P+, and action defined

by x.ωv := ω(x)v, for every x ∈ Uadq and v ∈ Vµ (as usual ω : Uadq → Uadq is the Cartan
automorphism). Note that there are isomorphisms ωVµ ∼= V−w0(µ)

∼= V ∗
µ (endowed with the

standard left action of Uadq ). Let us denote by ωvµ the vector vµ regarded in ωVµ (ie. its

canonical lowest weight vector), and by ωBµ := {b.ω
ωvµ 6= 0, b ∈ B+} its canonical basis.

Then ωVµ′ ⊗ Vµ′′ has the canonical basis Bµ′,µ′′ := {b′♦b′′, b′ ∈ ωBµ′ , b
′′ ∈ Bµ′′}. Since b′♦b′′

is canonically determined by the elements b′, b′′ ∈ B− such that b′ = ω(b′).ω
ωvµ′ , b

′′ = b′′vµ′′ ,
following Lusztig we denote it (b′♦b′′)µ′,µ′′ .

Denote by vw0(µ) the canonical lowest weight vector of Vµ, and by ωvw0(µ) the vector vw0(µ)

regarded in ωVµ. It is a crucial observation that ωvw0(µ′)⊗vw0(µ′′) is a cyclic vector of
ωVµ′⊗Vµ′′

(see eg. [76], 23.3.6; note that ωvw0(µ′) ⊗ vw0(µ′′) plays the role of ξ−µ′ ⊗ ηµ′′ :=
ωvµ′ ⊗ vµ′′ in

[76], because we use opposite coproducts on Uadq but the factors ωVµ′ and Vµ′′ are ordered in
the same way).

We can now state the definition of the canonical basis
.
B of

.
U: each element u of

.
B belongs

to
.
UA1ζ for some (unique) ζ ∈ P , and it is then uniquely determined by the property that,

for every µ′, µ′′ ∈ P+ such that µ′′ − µ′ = ζ, we have

(44) u(ωvw0(µ′) ⊗ vw0(µ′′)) = (b′♦b′′)µ′,µ′′

for some (b′♦b′′)µ′,µ′′ ∈ Bµ′,µ′′ ([76], Chapter 25.2). We write u = b′♦ζb
′′, and as in [77]

we denote by
.
Bµ′,µ′′ the finite subset of

.
B which is in bijection with Bµ′,µ′′ under the map

u 7→ u(ωvw0(µ′) ⊗ vw0(µ′′)). So

(45)
.
B= ∪µ′,µ′′∈P+

.
Bµ′,µ′′ .

In a sense, one can view
.
U as the projective limit of an inverse system formed by the

(Uadq ⊗ Uadq )-modules ωVµ′ ⊗ Vµ′′ , where µ′, µ′′ ∈ P+; then
.
B is the basis resulting from

the corresponding inverse system of basis {
.
Bµ′,µ′′}µ′,µ′′ .

Lusztig has produced a partition of
.
B as follows. First, consider the situation of a based

module (M,B). For every λ ∈ P+ denote by M [λ] the sum of the simple submodules of M
isomorphic to Vλ (ie. its isotypical component). Set

(46) M [≥ λ] = ⊕λ′≥λM [λ′].

Then, for every base element b ∈ B there is a unique λ ∈ P+ such that b ∈ M [≥ λ] and λ is
maximal with this property ([76], 27.2). Denote by B[λ] the set of all b ∈ B that give rise to
λ ∈ P+ in this way. Clearly the sets B[λ], λ ∈ P+, form a partition of B.

Now, given b ∈
.
B, let ζ ∈ P be the unique weight such that b ∈

.
UA1ζ , and let µ′, µ′′ ∈

P+ be such that µ′′ − µ′ = ζ, and (α̌i, µ
′) is large enough for all i = 1, . . . ,m so that

u(ωvw0(µ′) ⊗ vw0(µ′′)) is non zero. This element belongs to the canonical basis Bµ′,µ′′ of
ωVµ′ ⊗ Vµ′′ , and therefore to one of the subsets Bµ′,µ′′ [λ], for a unique λ ∈ P+. It is a result
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that λ does not depend on the choice of µ′, µ′′ (see [76], 29.1.1). Hence there is a well-defined

map
.
B→ P+, b 7→ λ. Denoting by

.
B[λ] the fiber of this map, we thus obtain a partition

(47)
.
B=

∐
λ∈P+

.
B[λ].

The sets
.
B[λ] are called 2-sided cells. They are finite sets and have the following remarkable

properties. For every λ ∈ P+ denote by
.
U[≥λ] and

.
U[>λ] the subspaces of

.
U spanned by∐

λ′≥λ

.
B[λ′] and

∐
λ′>λ

.
B [λ′] respectively. Then

.
U[≥λ] (respectively

.
U[>λ]) consists of the

elements u ∈
.
U such that if u acts on Vµ by a non zero linear map, then µ ≥ λ (respectively

µ > λ) (([76], 29.1.3-29.1.4). Both
.
U[≥ λ] and

.
U[>λ] are two-sided ideals of

.
U. Moreover

the algebra homomorphism πλ :
.
U[≥λ] → End(Vλ) given by the

.
U-module structure on Vλ

descends to an algebra and Uadq -bimodule isomorphism (keeping the same notation)

(48) π̄λ :
.
U[≥λ]/

.
U[>λ] → End(Vλ)

([76], Proposition 29.2.2). Therefore End(Vλ) has a natural full A-sublattice AEnd(Vλ),

namely the A-module generated by πλ(
.
B [λ]), and this lattice is isomorphic to the A-

submodule of
.
UA generated by

.
B[λ].

For instance, when g = sl(2) the 2-sided cell
.
B [n] associated to the simple Uadq (sl(2))-

module of type 1 and dimension n+ 1 is the set ([76], 29.4.3)

(49)
.
B[n] = {E(k)1−nF

(l), n ≥ k + l} ∪ {F (l)1nE
(k), n ≥ k + l}.

As we are mainly interested in OA we are going to describe the dual partition of
.
B∗; see

Theorem 2.6. The duality with (47) is discussed after that theorem, see (59). We follow the
approach of Kashiwara [66, 67].

For every λ ∈ P+ denote by V r
λ the dual space of Vλ endowed with its natural structure of

right Uadq -module, defined by

(fx)(v) = f(xv)

for every f ∈ V r
λ , x ∈ Uadq , v ∈ Vλ. Clearly V r

λ is a simple module of highest weight λ. Let

ϕ : Uadq → Uadq be the anti-automorphism of C(q)-algebra given by ϕ(Ei) = Fi, ϕ(Fi) = Ei,

ϕ(Kλ) = Kλ. By using ϕ any right Uadq -module can be considered as a left Uadq -module. In
particular, by the Verma module construction of Vλ it follows

V r
λ
∼= Uadq /(

∑

µ∈P+

(Kµ − q(λ,µ))Uadq +
m∑

i=1

E
1+(αi,λ)
i Uadq ),

and ϕ affords an isomorphism of the right module V r
λ with the left module Vλ. We will denote

by fλ the highest weight vector of V r
λ .

The space V r
λ ⊗Vλ can be identified with End(Vλ)

∗, and thus acquires by duality a natural

structure of Uadq -bimodule (or equivalently left Uadq ⊗ (Uadq )op-module); the left and right
actions are given by

(50) x(f ⊗ v)y = fy ⊗ xv

for every x, y ∈ Uadq , f ∈ V r
λ , v ∈ Vλ. The space V r

λ ⊗ Vλ also acquires by duality a natural

“upper” crystal structure over Uadq ⊗(Uadq )op, as we explain now. Denote by 〈 , 〉λ : Vλ×Vλ →
C(q) the unique symmetric bilinear form such that

(51) 〈vλ, vλ〉λ = 1 and 〈ϕ(x)u, v〉λ = 〈u, xv〉λ

for every u, v ∈ Vλ and x ∈ Uadq . Recall the crystal base (Llowµ ,Blowµ ) at q = 0 introduced

before Theorem 2.5. In Kashiwara’s terminology ([65, 66]) the pair (Llowλ ,Blowλ ) is the lower
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crystal base of Vλ at q = 0. Applying the involution − : Vλ → Vλ one obtains the lower crystal

base (Llowλ ,Blowλ ) at q = ∞. Because the canonical bases are determined by the crystal bases
(see the discussion about (43)), we call (Vλ,Bλ) the lower based module of Vλ, and Bλ the
lower canonical basis of Vλ.

Put

AV
up
λ :={v ∈ Vλ, 〈v,AVλ〉λ ⊂ A},(52)

Lupλ :={v ∈ Vλ, 〈v,L
low
λ 〉λ ⊂ A0},

Lupλ :={v ∈ Vλ, 〈v,L
low
λ 〉λ ⊂ A∞}.

Then (AV
up
λ ,Lupλ ,L

up
λ ) is a balanced triple ([66], Lemma 4.2.1). Denote by Bupλ the basis of

Lupλ /qL
up
λ dual to Blowλ by the induced pairing 〈 , 〉λ : L

low
λ /qLupλ ×Llowλ /qLlowλ → C. The pair

(Lupλ ,B
up
λ ) is the upper crystal base of Vλ at q = 0. The weight spaces of the A0-modules Llowλ

and Lupλ are related by

(53) (Lupλ )µ = q
(λ,λ)

2
− (µ,µ)

2 (Llowλ )µ , µ ∈ P.

Correspondingly, denoting (Bupλ )µ := Bupλ ∩ (Lupλ )µ and (Blowλ )µ := Blowλ ∩ (Llowλ )µ, we have
([65], [66], eq. (4.2.9))

(Bupλ )µ = q
(λ,λ)

2
− (µ,µ)

2 (Blowλ )µ.

The A-module AV
up
λ is characterized by the following two properties ([66], eq. (4.2.10)-

(4.2.12)):

(AV
up
λ )λ = C[q, q−1]vλ

(AV
up
λ )µ = {v ∈ Vλ | U resA (n+)λ−µv ∈ C[q, q−1]vλ}

where U resA (n+)γ = {u ∈ U resA (n+) | ∀ν ∈ P, KνuK
−1
ν = q(ν,γ)u}. Denote by Bup

λ the inverse

image of Bupλ by the isomorphism AV
up
λ ∩ Lupλ ∩ Lupλ → Lupλ /qL

up
λ . By (42) the set Bup

λ is a
basis of AV

up
λ ; we call it the upper canonical basis of Vλ.

Similarly, the right module V r
λ with its canonical basis Br

λ = {fλb, b ∈ B+} \ {0} has

the lower crystal base (Lrλ
low,Brλ

low), and it supports a balanced triple (AV
r
λ
up,Lrλ

up,Lrλ
up)

defined again by duality. We denote by (Lrλ
up,Brλ

up) and Br
λ
up the corresponding crystal base

and upper canonical basis of V r
λ respectively.

It follows that (AV
r
λ
up ⊗A AV

up
λ ,Lrλ

up ⊗A0 L
up
λ ,L

r
λ
up ⊗A∞ Lupλ ) is a balanced triple; equiv-

alently V r
λ ⊗ Vλ with the bimodule structure (50) and the basis Br

λ
up ⊗ Bup

λ is a based

(Uadq ⊗ (Uadq )op)-module.

Denote again by 〈., .〉 : Oq×
.
U→ C(q) the pairing of Uadq -bimodules induced by the canon-

ical pairing 〈 , 〉 : Oq × Uadq → C(q), and let Φλ : V
r
λ ⊗ Vλ → Oq, λ ∈ P+, be the “matrix

coefficient” map, ie.

(54) 〈Φλ(f ⊗ v), x〉 = 〈fx, v〉λ

for every f ∈ V r
λ , x ∈ Uadq , v ∈ Vλ. The map Φ := ⊕λ∈P+Φλ is an isomorphism of Uadq -

bimodules, so let us use it to identify Oq with ⊕λ∈P+V
r
λ ⊗ Vλ (which is the content of the

Peter-Weyl decomposition (6)). Define

L(Oq) =
⊕

λ∈P+

Lrλ
up ⊗A0 L

up
λ , B(Oq) :=

∐

λ∈P+

Brλ
up ⊗ Bupλ

L(Oq) =
⊕

λ∈P+

Lrλ
up ⊗A∞ Lupλ , B(Oq) :=

∐

λ∈P+

Brλ
up ⊗ Bupλ .
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Theorem 2.6. (i) The triple (OA,L(Oq),L(Oq)) is balanced. Therefore, denoting by G the

inverse of the canonical map OA ∩ L(Oq) ∩ L(Oq) → L(Oq)/qL(Oq), we have

OA =
⊕

b∈B(Oq)

A.G(b).

(ii) The basis G(B(Oq)) := {G(b), b ∈ B(Oq)} coincides with the dual canonical basis
.
B

∗.

The statement (i) is Theorem 1 of [66], and (ii) is Theorem 10.1 and Proposition 10.2.2 of
[67]. The basis G(B(Oq)) is called the global basis, or canonical basis, of Oq. As an example, in

the case g = sl(2) the basis G(B(Oq)) is formed by the monomials bndmcl, where n,m, l ∈ N,
and bnamcl, where n, l ∈ N and m > 0 ([66], Proposition 9.1.1, [45], Proposition 1.3). Here
a, b, c, d are the matrix coefficients in the canonical basis (v+, v− := Fv+) of V1, the simple

Uadq (sl(2))-module of type 1 and dimension two, read from the top left to the bottom right.

In that case the upper canonical basis Br
1
up and Bup

1 coincide with the lower ones, but this
is not true in general, see Example 2.11.

Put Bup
λr ,λ = G(B(Oq)) ∩ (V r

λ ⊗ Vλ), and consider the partition

(55) G(B(Oq)) =
∐

λ∈P+

Bup
λr ,λ.

We have

(56) Bup
λr ,λ = Br

λ
up ⊗Bup

λ .

Indeed, since the canonical basis are determined by their crystal bases (see the discussion
about (43)), and the one associated to Br

λ
up ⊗ Bup

λ is Brλ
up ⊗ Bupλ , by Theorem 2.6 (ii) it is

enough to check that B(Oq) is dual to the crystal base of
.
U associated to the canonical basis

.
B. The latter is described in [67] (see also [68]); let us denote it (L(

.
U),B(

.
U)). The proof of

Theorem 2.6 (ii) in [67] exhibits an isomorphism of crystals over Uadq ⊗ (Uadq )op,

(57) ψ : B(Oq) → B(
.
U),

such that 〈G(b), G(b′)〉 = δψ(b),b′ for every b ∈ B(Oq), b
′ ∈ B(

.
U). Therefore (56) follows at

once.

For every λ ∈ P+ we will denote

(58) AC(λ) :=
⊕

b∈Bup

λr,λ

Ab.

Thus, Theorem 2.6 (i) identifies the U resA -bimodule OA with ⊕λ∈P+AC(λ). We stress that

AC(λ) is not spanned over A by the matrix coefficients of AVλ (see Remark 2.14 (b)).

Let us discuss the dual structure. Consider the pairing (V r
λ ⊗ Vλ) × End(Vλ) → C(q),

(f ⊗ v, x) 7→ f(xv), for every f ∈ V r
λ , v ∈ Vλ and x ∈ End(Vλ). It is non degenerate and

compatible with the Uadq -bimodule structures, so End(Vλ) inherits a lower crystal basis over

Uadq ⊗ (Uadq )op dual to (Lrλ
up ⊗A0 L

up
λ ,B

r
λ
up ⊗Bupλ ) ([66], Proposition 3.2.2), which melts into

a balanced triple ([66], Lemma 2.2.3). In other words, (V r
λ ⊗ Vλ,B

up
λr ,λ) is in duality with a

structure of lower based (Uadq ⊗ (Uadq )op)-module on End(Vλ). By the isomorphism (48) and

Theorem 2.6 (ii), the basis of this based module is πλ(
.
B[λ]). On another hand, it is clear

that under the standard identification of Uadq -bimodules End(Vλ) = V r
λ ⊗ Vλ the basis dual
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to Bup
λr ,λ is Bλr ,λ := Br

λ ⊗ Bλ (ie. the tensor product of lower canonical basis). Hence the

A-sublattice of End(Vλ) generated by πλ(
.
B[λ]) is just

(59) AEnd(Vλ) = AV
r
λ ⊗ AVλ.

Now recall the property (45). Consider in particular the finite subsets
.
B0,̟i

and
.
B̟i,0

associated to the fundamental weights ̟i, i = 1, . . . ,m. The map u 7→ u(ωv0⊗vw0(̟i)), u ∈
.
U,

allows one to identify
.
B0,̟i

with the canonical basis B̟i
of ωV0 ⊗ V̟i

∼= V̟i
, and therefore

with a uniquely determined finite subset B̟i
of the canonical basis B− of Uadq (n−); similarly,

one can identify
.
B̟i,0 with a uniquely determined finite subset ωB̟i

of the canonical basis

B+ of Uadq (n+). The elements of
.
B0,̟i

and
.
B̟i,0 are respectively of the form b−1̟i

and

b+1−̟i
, where b− ∈ B̟i

and b+ ∈ ωB̟i
, and we have (see [77], Proposition 3.3 and section

3.4):

Proposition 2.7. The algebra OA is finitely generated. A system of generators is provided

by the elements a∗ ∈
.
B∗, a ∈ ∪mi=1(

.
B0,̟i

∪
.
B̟i,0), defined by a∗(a′) = δa,a′ for every a′ ∈

.
B.

Note that the above system of generators of OA has 2
∑m

i=1 dim(V̟i
) elements. By Theo-

rem 2.6 (ii) and (55) these generators can be identified with elements of some sets Bup
λr ,λ. In

fact, recall that ϕ : Uadq → Uadq is the anti-automorphism given by ϕ(Ei) = Fi, ϕ(Fi) = Ei,
ϕ(Kλ) = Kλ, and denote by v−̟i

and f−̟i
the canonical lowest-weight vectors of the highest

weight modules V−w0(̟i) and V
r
−w0(̟i)

respectively.

For every b− ∈ B̟i
and b+ ∈ ωB̟i

we have

(b−1̟i
)∗ = Φ̟i

(f̟i
ϕ(b−)⊗ v̟i

)(60)

(b+1−̟i
)∗ = Φ−w0(̟i)(f−̟i

ϕ(b+)⊗ v−̟i
)(61)

In other words, (b−1̟i
)∗ and (b+1−̟i

)∗ are the matrix coefficients lying on the first and last
columns of the matrix representations in the canonical basis of the spaces V̟i

, i = 1, . . . ,m.
This can be checked by using the isomorphism (57). The key observation is that

〈Φλ(fλ ⊗ vλ), 1µ〉 = 〈fλ, 1µvλ〉λ = δλ,µ

for every λ ∈ P+, µ ∈ P , and therefore Φλ(fλ⊗ vλ) = 1∗λ. Then the computation proceeds by

using the equivariance of Φ under the action of Uadq ⊗ (Uadq )op, the fact that 〈., .〉 dualizes the

bimodules structures on Oq and
.
U, and the description of the associated Kashiwara operators

on V r
λ ⊗ Vλ and B(

.
U).

Though the A-module AVµ ⊗A AVν has no decomposition like (7), we can refine the map
C(µ) ⊗ C(ν) → C(µ + ν) in (8) to an A-linear map defined on AC(µ) ⊗A AC(ν). Indeed,
there is a unique injective morphism of U resA -modules Tµ,ν : AVµ+ν → AVµ ⊗A AVν , which is
given by Tµ,ν(vµ+ν) = vµ ⊗ vν ([76], Proposition 25.1.2 (a)-(b)). It defines a morphism of
based modules

(Vµ+ν ,Bµ+ν) → (Vµ ⊗ Vν ,Bµ♦Bν)

where Bµ♦Bν := {b♦b′, b ∈ Bµ, b
′ ∈ Bν} ([76], 27.1.7). Therefore Tµ,ν is a split A-linear

map. Similarly, the unique morphism of U resA -modules ωTµ,ν :
ω
AVµ+ν → ω

AVµ⊗A
ω
AVν is a split

injection. Define ρµ′,µ′′ :
.
UA→

ω
AVµ′ ⊗A AVµ′′ by

ρµ′,µ′′(u) = u(ωvw0(µ′) ⊗A vw0(µ′′)),

and ρµ′,µ′′,ν′,ν′′ :
.
UA

⊗̂2 → ω
AVµ′ ⊗A AVµ′′ ⊗A

ω
AVν′ ⊗A AVν′′ by

ρµ′,µ′′,ν′,ν′′(u) = u(ωvw0(µ′) ⊗A vw0(µ′′) ⊗A
ωvw0(ν′) ⊗A vw0(ν′′)).
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Define τµ′,µ′′,ν′,ν′′ :
ω
AVµ′+ν′ ⊗A AVµ′′+ν′′ →

ω
AVµ′ ⊗A AVµ′′ ⊗A

ω
AVν′ ⊗A AVν′′ by

τµ′,µ′′,ν′,ν′′ = (1⊗ R̂−1 ⊗ 1)(ωTµ′,ν′ ⊗ Tµ′′,ν′′).

It is an injective morphism of U resA -modules. Denote µ := µ′′, ν = ν ′′ ∈ P+, and take
µ′ = −w0(µ), ν

′ = −w0(µ), so that ωVµ′ ,
ωVν′ are the left modules associated to V r

µ , V
r
ν by

applying the antiautomorphism ϕ. By (58) and (59), AC(λ) is the U resA -bimodule dual to

AV
r
λ ⊗A AVλ, so the transpose of τµ,ν := τµ′,µ,ν′,ν is a surjective morphism of U resA -modules

τ tµ,ν : AC(µ)⊗A AC(ν) → AC(µ+ ν).

In Section 1.13 of [77], Lusztig proved that τµ′,µ′′,ν′,ν′′ is a split A-linear map ([77] uses R̂

instead of R̂−1, since our coproducts on Uadq are opposite), and that it satisfies

(62) τµ′,µ′′,ν′,ν′′ρµ′+µ′′,ν′+ν′′ = ρµ′,µ′′,ν′,ν′′∆

where ∆ is the coproduct of
.
UA, see (36). This implies the following statement.

Proposition 2.8. The morphism τ tµ,ν : AC(µ)⊗A AC(ν) → AC(µ+ν) is split as an A-linear
map, and it coincides with the product in OA followed by the projection onto the component

AC(µ+ ν).

Finally, we consider for any n ≥ 1 the invariant elements of O⊗n
A endowed with the action

coadrn of UA, see (16) (recall that L0,n = O⊗n
q as Uadq -module).

First note that, by definition, OA(G
n) is the restricted dual of the Hopf algebra U resA (g⊕n),

associated to its category of type 1 modules. By ordering the summands of g⊕n we get an
isomorphism U resA (g⊕n) ∼= U resA (g)⊗n, and any type 1 simple U resA (g)⊗n-module is isomorphic
to V[λ] := ⊗n

i=1Vλi endowed with the componentwise action, for some [λ] := (λ1, . . . , λn) ∈ P
n
+

(this is a classical fact; see eg. Theorem 3.10.2 in [51]). Therefore we have an isomorphism
OA(G

n) ∼= O⊗n
A .

Moreover, ⊗n
i=1(V

r
λi ⊗ Vλi ,B

r
λi
up ⊗Bup

λi
) is a based (Uadq ⊗ (Uadq )op)⊗n-module. Let us put

Bup
[λr ,λ] := ⊗n

i=1

(
Br
λi
up ⊗Bup

λi

)

AC([λ]) := ⊗n
i=1AC(λi) =

⊕

b∈Bup

[λr,λ]

Ab.(63)

Note that AC([λ]) ⊗A C(q) = C([λ]), the space defined in (24). We thus obtain a decompo-

sition into based (Uadq ⊗ (Uadq )op)⊗n-modules

(64) (O⊗n
q , G(B(O⊗n

q ))) =
⊕

[λ]∈Pn
+

(
C([λ]),Bup

[λr ,λ]

)
.

Now coadrn = (coadr)⊗n ◦∆(n−1) and coadr give structures of Uadq -modules to O⊗n
q and C(λ)

respectively. Therefore we give C(λ) the basis Br
λi
up♦Bup

λi
, and C([λ]) the basis

(65) Bup
[λ] :=

(
Br
λ1
up♦Bup

λ1

)
♦ . . .♦

(
Br
λn
up♦Bup

λn

)
.

We thus obtain a decomposition into based Uadq -modules

(66) O⊗n
q =

⊕

[λ]∈Pn
+

(
C([λ]),Bup

[λ]

)
.
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with underlying U resA -module

(67) O⊗n
A =

⊕

[λ]∈Pn
+

AC([λ]).

Finally we state the last property of based modules we need. Let (M,B) be a based
module. Recall the notations introduced around (46). It is proved in Proposition 27.1.8 of
[76] that for every λ ∈ P+ the submodule M [≥ λ] is a sub-based module of M , and that it
has the basis

(68) B ∩M [≥ λ] = ∪λ′≥λB[λ′].

ConsiderM [6= 0] := ⊕λ6=0M [λ], the largest proper submodule ofM that contains no non-zero
invariant element. Recall that the space of coinvariants of M is

MUad
q

=M/M [6= 0]

=M/C(q){um − ε(u)m,m ∈M,u ∈ Uadq }

that is, the largest quotient of M with trivial action, where ε : Uadq → C(q) is the counit. It
follows from (68) that M [6= 0] is a sub-based module of M , with the basis ∪λ6=0B[λ], and we
have (this is [76], Proposition 27.2.6):

Proposition 2.9. The quotient map π : M →MUad
q

is a morphism of based modules, where

MUad
q

is endowed with the basis BUad
q

:= π(B[0]).

As a consequence, the transpose map πt : M∗
Uad
q

→ M∗ is a monomorphism mapping the

dual basis B∗
Uad
q

to the subset B[0]∗ of B∗. The image of πt is (M∗)U
ad
q , the subspace of

Uadq -invariant elements of M∗, regarded as a right module in the natural way. Denote by

AM ⊂ M the A-module generated by B, by AM
∗ ⊂ M∗ the A-module generated by B∗,

and set AMUres
A

= π(AM). Then πt((AMUres
A

)∗) = (AM
∗)U

res
A is the A-submodule of AM

∗

generated by B[0]∗, and therefore

(69) AM
∗ = (AM

∗)U
res
A ⊕A AN

where AN ⊂ AM
∗ is the A-submodule generated by ∪λ6=0B[λ]∗. Note that, since B[0] is in

general not invariant under the action of U resA , AN need not be stable under this action.

We are now ready to draw consequences of this discussion and the previous results. As
usual denote by (O⊗n

A )U
res
A the subspace of invariant elements of O⊗n

A for the action coadrn.
In the case n = 1 it is just the center Z(OA).

Theorem 2.10. (O⊗n
A )U

res
A is a direct summand of the A-module O⊗n

A for any n ≥ 1.

Proof. By (67) it is enough to show that for every λ ∈ P+ the invariant elements of AC(λ)
form a direct summand. But this follows by applying Proposition 2.9 and the subsequent
comments to the based module (M,B) = (⊗n

i=1End(Vλi),B[λ]) dual to (C([λ]),Bup
[λ]). ✷

Example 2.11. The simplest case is already instructive. Namely, consider V1 and V2, the
simple Uadq (sl(2))-modules of type 1 and dimension two and three (we refer to [60] for the
computation of many other examples of crystal and global basis).

On V1 we have the lower canonical basis vectors v+ and v−, such thatKv+ = qv+, Ev+ = 0,
v− = Fv+. The canonical lower and upper basis of V1 are both {v+, v−}. Using the relation

(44) we see that the elements of
.
B0,1 and

.
B1,0 are 11, F11 and 1−1, E1−1 respectively; the

dual linear forms generate OA(SL2), they are the matrix coefficients a, c, d and b respectively.

By (49) we have
.
B[1] =

.
B0,1

∐ .
B1,0.
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Next consider V2. On V2 we have the canonical highest weight vector v+ of weight 2,

and lower canonical basis B2 = {v+, v0, v−}, where v0 = Fv+ and v− = F (2)v+. A direct
computation shows that 〈v+, v+〉2 = 〈v−, v−〉2 = 1 and 〈v0, v0〉2 = [2]q, so the upper canonical

basis of V2 is Bup
2 = {v+, [2]

−1
q v0, v−}. We can identify the ambient space of the right module

V r
2 with that of V2; its highest weight vector is then v+, and its canonical lower and upper

basis are Br
2 = {v+, v0, v−} and Br

2
up = {v+, [2]

−1
q v0, v−}. Now recall the pairing (54), the

morphism π2 in (48), and the 2-side cell
.
B [2] in (49). Consider the pairing (V r

2 ⊗ V2) ×

End(V2) → C(q), (f ⊗ v, x) 7→ f(xv). It is immediate that π2(
.
B[2]) is the basis of End(V2)

dual by this pairing to the upper canonical basis Bup
2r,2 = Br

2
up ⊗Bup

2 (this equality is (56)).

Under the identification End(V2) = V r
2 ⊗ V2, for an element x ∈ End(V2) of the form g ⊗ w

we have f(xv) = 〈f, g〉2〈w, v〉2, hence that dual basis End(V2) is B
r
2 ⊗B2, as expected from

(59).

Consider now the module ωV1 ⊗ V1. We have R̂ =
∑∞

n=0
(q−q−1)n

[n]q!
qn(n−1)/2En ⊗ Fn, so the

matrix of the involution Ψ = R̂−1 ◦¯ in the basis v+ ⊗ v+, v+ ⊗ v−, v− ⊗ v+, v− ⊗ v− is

(R̂−1 ◦¯)ωV1,V1 =




1 0 0 0
0 1 0 0
0 0 1 0

q−1 − q 0 0 1


 .

Therefore the canonical basis B1,1 is formed by the vectors v+♦v+ = v+ ⊗ v+ + q−1v− ⊗ v−
and v+♦v− = v+ ⊗ v−, v−♦v+ = v− ⊗ v+, v−♦v− = v− ⊗ v−. Consider the partition
B1,1 = B1,1[2]∪B1,1[0]. We have B1,1[2] = {v−♦v+, v+♦v+, , v+♦v−}, which is a basis of the
three-dimensional submodule of V1 ⊗ V1. Since B1,1 is an A-basis of ωAV1 ⊗A AV1, it follows

that the epimorphism τ t1,1 : AC(1) ⊗A AC(1) → AC(2) splits (see Proposition 2.8). The
vector v−♦v− is cyclic, so B1,1[0] = {v−♦v−}. By the definitions we have v+♦v+ = (1♦01)1,1,
v+♦v− = (1♦0F )1,1, v−♦v+ = (F♦01)1,1, v−♦v− = (F♦0F )1,1, so the corresponding elements

of
.
B1,1⊂

.
B are respectively 10, 1−2F , 12E, and F12E = E1−2F .

The invariant submodule of ωV1⊗V1 is generated by v′ = v−⊗v−−q
−1v+⊗v+; in particular

v+ ⊗ v+ = [2]−1
q (qv+♦v+ − v′) /∈ AV2 ⊕ AV1, and therefore ω

AV1 ⊗A AV1 6= AV2 ⊕ AV1 though
both sides are equal over C(q). The module of coinvariants is

(ωV1 ⊗ V1)Uad
q

= C(q){π(v− ⊗ v−)},

where as usual π : ωV1 ⊗ V1 → (ωV1 ⊗ V1)Uad
q

is the quotient map. The transpose map

πt : ((ωV1 ⊗ V1)Uad
q
)∗ → (ωV1 ⊗ V1)

∗ sends (v−♦v−)
∗ to the unique Uadq -invariant linear map

ev1 :
ωV1 ⊗ V1 → C(q) such that ev1(v− ⊗ v−) = 1.

Remark 2.12. Let (M,B), (M ′, B′) be based modules, with tensor product (M ⊗M ′, B♦).
By Proposition 2.9 the canonical basis of the space of coinvariants (M ⊗M ′)∗ is in bijection
with a subset B♦[0] ⊂ B♦. This subset is described in Proposition 27.3.8 of [76] in terms of
B and B′. This result can be applied recursively to ⊗n

i=1End(Vλi), endowed with the basis
B♦ := B[λ] dual to Bup

[λ], and the action dual to coadrn. As a result there is a complete (though

highly non trivial) characterization of the basis B♦[0]
∗ of (O⊗n

A )U
res
A . Examples can be found

in [76], 27.3.10. In the case g = sl(2), the canonical basis of the dual space End(V ⊗n
1 )∗ has

been identified in [55] with the canonical basis of the Temperly-Lieb algebra TLn(q).

2.2.3. Some consequences on LA0,n and MA
0,n. Recall from Section 2.2.1 the definition of the

integral forms LA0,n and MA
0,n.
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Proposition 2.13. LA0,n and MA
0,n are free A-modules, and MA

0,n is a direct summand of the

A-module LA0,n. Moreover, LA0,n is a finitely generated ring.

Proof. Since LA0,n = O⊗n
A as U resA -modules, by (67) it has the basis ∪[λ]∈Pn

+
Bup

[λ]. Therefore

LA0,n is a free A-module. Since A is a principal ideal domain, MA
0,n is a free A-submodule.

By Theorem 2.10 there is a direct sum decomposition as A-module

(70) LA0,n = MA
0,n ⊕ AN,

and the proof identifies a basis of MA
0,n as a subset of ∪[λ]∈Pn

+
Bup

[λ].

Next, consider the question of finite generation. By the formula (18) it is enough to verify

this for LA0,1, but LA0,1 = OA as an A-module, and OA is finitely generated by the matrix
coefficients of the fundamental U resA -modules AV̟k

, k ∈ {1, . . . ,m} (see Proposition 2.7).
Then our claim follows from the formula inverse to (9), expressing the product ⋆ in terms of
the product of L0,1, and the integrality properties of the R-matrix (see in [31] the formula
(4.8) and Section 3.3). �

Remark 2.14. (a) As noted in (69), the A-module AN in the decomposition (70) is in

general not a U resA -module. Therefore the A-linear projection map RA : L
A
0,n → MA

0,n such
that Ker(RA) = AN is not a Reynolds operator, for it does not satisfy the identity RA(αβ) =
αRA(β) for all α ∈ MA

0,n, β ∈ LA0,n.
(b) Recall (29). In coherence with (a) above, there is no Haar measure on OA. Indeed, by

extending scalars over C(q) it should otherwise coincide with the Haar measure h : Oq → C(q),
but in the notations of Example 2.11, a straightforward computation shows that the matrix
coefficient v∗0 ⊗v0 of the module V2 is equal to [2]qbc+1 (in particular bc cannot be expressed
as a linear combination over A of matrix coefficients in the canonical basis, which shows that
these cannot form a basis of OA). Since h(v

∗
0 ⊗v0) = 0 we have h(bc) = −1/(q+q−1), whence

h cannot be defined on OA.
(c) The Haar measure yields a well-defined A0-linear map h : L(Oq) → A0 (and analogously

A0-linear and A∞-linear maps h : L♦(O
⊗n
q ) → A0 and h̄ : L̄♦(O

⊗n
q ) → A∞ for any n ≥ 1,

where (L♦(O
⊗n
q ),Bup[λ]) is the crystal base at q = 0 underlying the based Uadq -module (66)).

Indeed, by (53) the lattice Lrλ
up⊗A0L

up
λ is generated by the matrix coefficients in the canonical

basis of V r
λ and Vλ. Since the normalisation by powers of q is vacuous on the trivial module

V ∗
0 ⊗ V0, and h vanishes on V ∗

λ ⊗ Vλ for λ ∈ P+ \ {0}, the claim follows.

2.3. Perfect pairings. We will need to restrict the morphisms Φ+, Φ− in (5) on the integral
forms OA(B+), OA(B−). We collect their properties in Theorem 2.15 and the discussion
thereafter. In order to state it, we recall first a few facts about R-matrices and related
pairings.

Recall that CA is the category of U resA -modules of type 1. In [75, 76] Lusztig proved that

CA⊗AC[q
±1/D] is braided and ribbon, with braiding given by the collection of endomorphisms

R = (RV,W )V,W∈Ob(CA).

Actually, RV,W is represented by a matrix with coefficients in qZ/DC[q±1] on the tensor
product of the lower canonical basis of V and W (see Corollary 24.1.5 of [76]).

This can be rephrased as follows in Hopf algebra terms. Denote by UΓ the categori-
cal completion of Γ, ie. the Hopf algebra of natural transformations FCA → FCA , where
FCA : CA → A-Modf is the forgetful functor towards the category A-Modf of finite rank

A-modules. Then UΓ ⊗A C[q±1/D] is quasi-triangular and ribbon with R-matrix

R ∈ U⊗̂2
Γ ⊗A C[q±1/D].
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As in (3), we can write

R± =
∑

(R)

R±
(1) ⊗R±

(2).

There are pairings of Hopf algebras naturally related to the R-matrix R, considered as an

element of U⊗̂2
q . What follows is standard (see eg. [70, 71, 74]), for details we refer to the

results 3.73, 3.75, 3.92, 3.106 and 3.107 in [96]:

• There is a unique pairing of Hopf algebras ρ : Uq(b−)
cop ⊗ Uq(b+) → C(q1/D) such

that, for every α, λ ∈ P and l, k ∈ Uq(h),

(71) ρ(Kλ,Kα) = q(λ,α) , ρ(Fi, Ej) = δi,j(qi − q−1
i )−1 , ρ(l, Ej) = ρ(Fi, k) = 0.

• The Drinfeld pairing τ : Uq(b+)
cop⊗Uq(b−) → C(q1/D) is the bilinear map defined by

τ(X,Y ) = ρ(S(Y ),X); it satisfies

(72) τ(Kλ,Kα) = q−(λ,α) , τ(Ej , Fi) = −δi,j(qi − q−1
i )−1 , τ(l, Fi) = τ(Ej , k) = 0.

• ρ and τ are perfect pairings; this means that they yield isomorphisms of Hopf algebras

i± : Uq(b±) → Oq(B∓)op (with coefficients a priori extended to C(q1/D), but see
below) defined by, for every X ∈ Uq(b+), Y ∈ Uq(b−),

〈i+(X), Y 〉 = τ(S(X), Y ) , 〈i−(Y ),X〉 = τ(X,Y ).

Since Oq(B∓)op is equipped with the inverse of the antipode of Oq(B∓), which is

induced by the antipode SOq of Oq, it follows that i± ◦ S = S−1
Oq

◦ i±.

• Denote by p± : Oq(G) → Oq(B±) the canonical projection map, ie. the Hopf algebra
homomorphism dual to the inclusion map Uq(b±) →֒ Uq(g). For every α, β ∈ Oq(G)
we have

(73) 〈α⊗ β,R〉 = τ(i−1
+ (p−(β)), i

−1
− (p+(α)).

Note that it is the use of weights α, λ ∈ P that forces the pairings ρ, τ to be defined over
C(q1/D), instead of C(q). Then, let us consider the restrictions π+q of ρ, and π−q of τ defined

by the formulas (71) and (72), where now α ∈ Q and k ∈ Uadq (h). They take values in C(q),
and define pairings

π+q : Uq(b−)
cop ⊗ Uadq (b+) → C(q) , π−q : Uq(b+)

cop ⊗ Uadq (b−) → C(q).

By the same arguments as for ρ and τ (eg. in [96], Proposition 3.92), it follows that π±q are

perfect pairings. Note also that π−q = κ ◦ π+q ◦ (κ ⊗ κ), where κ : Uq → Uq is the C-linear

automorphism extending − : Uadq → Uadq in Section 2.2.2, so defined by

(74) κ(Ei) = Fi , κ(Fi) = Ei , κ(Kλ) = K−λ , κ(q) = q−1.

In [45], De Concini-Lyubashenko described integral forms of π±q as follows. Denote by
m∗ : OA → OA(B+)⊗OA(B−) the map dual to the multiplication map Γ(b+)⊗ Γ(b−) → Γ,
so m∗ = (p+⊗p−)◦∆OA

. Let UA(G
∗) be the smallest A-subalgebra of UA(b−)

cop⊗UA(b+)
cop

which contains the elements (i = 1, . . . ,m)

1⊗K−1
i Ēi , F̄iKi ⊗ 1 , L±1

i ⊗ L∓1
i .

and is stable under the diagonal action of B(g). The reason for the notation UA(G
∗) will be

explained at the beginning of Section 2.5. Note that UA(G
∗) is free over A, a Hopf subalgebra,

and that a basis is given by the elements

(75) F̄n1
β1
. . . F̄nN

βN
Kn1β1+...+nNβNKλ ⊗K−λK−p1β1...−pNβN Ē

p1
β1
. . . ĒpNβN

where λ ∈ P and n1, ..., nN , p1, ..., pN ∈ N.
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Now, let v be a lowest weight vector of the lowest weight Γ-module AV−λ, λ ∈ P+. As after
Theorem 2.1, denote by v∗ ∈ AV

∗
−λ the dual vector, and by ψ−λ ∈ OA the matrix coefficient

defined by 〈ψλ, x〉 = v∗(xv) for every x ∈ Γ. Consider the maps j±q : Oq(B±) → Uq(b∓)
cop

defined by
〈α+,X〉 = π+q (j

+
q (α+),X) , 〈α−, Y 〉 = π−q (j

−
q (α−), Y )

where α± ∈ Oq(B±), X ∈ Uadq (b+), and Y ∈ Uadq (b−).
The following theorem summarizes results proved in the sections 3 and 4 of [45]. Denote by

OA[ψ
−1
−ρ] the localization of OA by the element ψ−ρ; this localization is well-defined, for the

set {ψn−ρ}n∈N is a left and right multiplicative Ore subset of OA (see Corollary 2.18 below for

an analogous statement for LA0,1). For the sake of clarity let us spell out the correspondence

of notations between statements: π+q , π
−
q , Uq(b∓)

cop, UA(b∓)
cop, OA(B±), UA(G

∗) and Φ are

denoted in [45] respectively by π′′, π̄′′, Uq(b∓)op, Rq[B±]
′′, Rq[B±], A

′′ and µ′′ (the definition

of j±A is implicit in the section 4.2 of [45]).

Theorem 2.15. (1) π±q restricts to a perfect Hopf pairing between the unrestricted and

restricted integral forms, π±A : UA(b∓)
cop ⊗ Γ(b±) → A.

(2) j±q yields an isomorphism of Hopf algebras j±A : OA(B±) → UA(b∓)
cop, satisfying 〈α±, x±〉 =

π±A(j
±
A (α±), x±) for every α± ∈ OA(B±), x± ∈ Γ(b±).

(3) The map Φ := (j+A ⊗ j−A ) ◦m
∗ : OA → UA(G

∗) ⊂ UA(b−)
cop ⊗ UA(b+)

cop is an embedding

of Hopf algebras, and it extends to an isomorphism Φ: OA[ψ
−1
−ρ] → UA(G

∗).

For our purposes it is necessary to reformulate this result. Consider the morphisms of Hopf
algebras Φ± : OA(B±) → UA(b∓)

cop, α 7→ (α⊗ id)(R±).

Lemma 2.16. We have Φ± = j±A .

Proof. By definitions, for every X ∈ Uq(b+)
cop, Y ∈ Uadq (b−) we have 〈i+(S

−1(X)), Y 〉 =

π−q (X,Y ), and similarly for every X ∈ Uadq (b+), Y ∈ Uq(b−)
cop we have 〈i−(S

−1(Y )),X〉 =

π+q (Y,X). By keeping these notations for X and Y , we deduce j−q (i+(S
−1(X))) = X and

j+q (i−(S
−1(Y ))) = Y , ie.

(76) j±q = S ◦ i−1
∓ .

Because S−1
Oq

◦ i± = i± ◦ S, it follows that

(77) j±q ◦ SOq = S−1 ◦ j±q .

Also, for every α− ∈ Oq(B−) we have

〈α−,Φ
+(i−(Y ))〉 = 〈i−(Y )⊗ α−, R〉 = τ(i−1

+ (α−), Y ) = π−q (j
−
q (SOq(α−)), Y ) = 〈α−, S(Y )〉

where the first equality is by definition of Φ+ (see (5)), the second is (73), the third follows
from (77), and the last from the definition of j−q . Similarly, for every α+ ∈ Oq(B+) we have

〈α+,Φ
−(i+(X))〉 = 〈i+(X)⊗ α+, R

−〉

= 〈α+ ⊗ S−1
Oq

◦ i+(X), R〉

= 〈α+ ⊗ i+(S(X)), R〉

= τ(S(X), i−1
− (α+))

= π+q (S(i
−1
− (α+)), S(X)) = π+q (j

+
q (α+), S(X)) = 〈α+, S(X)〉.

These computations imply Φ± = S ◦i−1
∓ = j±q , and the result follows by taking integral forms.

✷
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2.4. Integral form, specialization and localization of Φn. Recall the isomorphism of

Uq-module algebras Φ1 : L0,1 → U lfq , and that U lfA = UA ∩ U lfq . We have:

Corollary 2.17. The map Φ1 affords an embedding of U resA -module algebras Φ1 : L
A
0,1 → U lfA .

Proof. The only thing to be proved is that Φ1(OA) ⊂ U lfA , since LA0,1 = OA as A-module.

But Lemma 2.16 and (12) imply Φ1 = m ◦ (id⊗ S−1) ◦Φ, and Φ maps OA into UA(b−)
cop ⊗

UA(b+)
cop by Theorem 2.15. The conclusion follows. ✷

Let us denote
d = ψ−ρ ∈ LA0,1.

(The linear forms ψ−λ have been introduced before Theorem 2.15.) When g = sl(2) the
element d is one of the “standard” generators of L0,1(sl(2)) (see (104) below). In this case

we have shown in Lemma 5.7 of [31] that LA0,1 has a well-defined localization LA0,1[d
−1], and

that Φ1 : L
A
0,1[d

−1] → UadA = T−1
2−U

lf
A is an isomorphism of algebras. A generalization of these

facts to any g is provided by the following statement. As usual ℓ = K2ρ, the pivotal element.

Corollary 2.18. (1) The set {dn}n∈N is a left and right multiplicative Ore set in LA0,1. We

can therefore define the localization LA0,1[d
−1].

(2) Φ1 extends to an embedding of U resA -module algebras Φ1 : L
A
0,1[d

−1] → U lfA [ℓ], and U lfA [ℓ] =

T−1
2−U

lf
A .

Proof. (1) Because LA0,1 has no non-trivial zero divisors, d is a regular element. We have

to show that for all x ∈ LA0,1 there exists elements y, y′ ∈ LA0,1 and d′, d′′ ∈ {dn}n∈N such

that xd′ = dy and d′′x = y′d. In fact d′ = d′′ = d in the present situation. Indeed by
(14) we have Φ1(x)Φ1(d) = Φ1(x)K−2ρ = K−2ρad

r(K2ρ)(Φ1(x)), and adr(K2ρ)(Φ1(x)) =
Φ1(coad

r(K2ρ)(x)). Therefore the left Ore condition is satisfied with y = coadr(K2ρ)(x).
Similarly one finds y′.

(2) The first claim follows immediately from Corollary 2.17 and Φ1(d) = ℓ−1, which is a
regular element of UA. For the second claim, since K−2ρ =

∏m
j=1 L

−2
j , localizing in d we

obtain L2
j =

∏
k 6=j L

−2
k Φ1(d

−1) = Φ1(
∏
k 6=j ψ−̟k

d−1)) ∈ Φ1(L
A
0,1[d

−1]). Therefore T−1
2− ⊂

Φ1(L
A
0,1[d

−1]), which implies the assertion (2). ✷

We expect that the inclusion Φ1(OA) ⊂ U lfA is an equality, but have no proof yet. However,
recall Joseph-Letzter’s Theorem 2.1 (1) and (2).

Proposition 2.19. We have UA = T−1
2−U

lf
A [T/T2] = Φ1(L

A
0,1[d

−1])[T/T2], and therefore

Φ1 : L
A
0,1[d

−1] → T−1
2−U

lf
A is an isomorphism. Moreover Φ1(OA) = ⊕λ∈2P+ad

r(U resA )(K−λ).

Proof. The inclusions T ⊂ UA, U
lf
A ⊂ UA and Φ1(L

A
0,1[d

−1]) ⊂ T−1
2−U

lf
A imply

Φ1(L
A
0,1[d

−1])[T/T2] ⊂ T−1
2−U

lf
A [T/T2] ⊂ UA.

For the inverse inclusion, it is enough to show that any PBW basis vector of UA lies in
Φ1(L

A
0,1[d

−1])[T/T2]. This will follow at once if this is true of all root vectors Ēβk , F̄βk . Let

us show this explicitly for the simple root vectors Ēi and F̄i. For every positive root α define
elements ψα−λ, ψ

−α
−λ ∈ OA by the formulas, where x ∈ Γ:

〈ψα−λ, x〉 = v∗(xEαv) , 〈ψ
−α
−λ , x〉 = v∗(Fαxv).

It is shown in [45], Lemma 4.5, that

Φ(ψ−λ) = K−λ⊗Kλ , Φ(ψ
αi
−̟j

) = −δi,jqiL
−1
i ⊗LiK

−1
i Ēi , Φ(ψ

−αi
−̟j

) = δi,jq
−1
i F̄iKiL

−1
i ⊗Li.
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(Note that the generators denoted by Ei and Fi in [45] are respectively K−1
i Ei and FiKi in

our notations, which explains the factors qi, q
−1
i in the formulas below; also κ in (74) maps Ēi,

F̄i to −F̄i, −Ēi, whence the sign for the expression of Φ(ψαi
−̟j

)). Since Φ1 = m◦(id⊗S−1)◦Φ,

we have

(78) Φ1(ψ−λ) = K−2λ , Φ1(ψ
αi
−̟j

) = δi,jL
−2
i Ēi , Φ1(ψ

−αi
−̟j

) = δi,jq
−1
i F̄iKiL

−2
i .

Therefore Ēi, F̄i, L
±1
i ∈ T−1

2−Φ1(L
A
0,1)[T/T2] = Φ1(L

A
0,1[d

−1])[T/T2]. These elements do not
generate UA; it is necessary to consider general root vectors. By the stability of UA(G

∗)
under B(g) and the isomorphism OA[ψ

−1
−ρ] → UA(G

∗) of Theorem 2.15 (3), for every posi-

tive root βk we have 1 ⊗ K−1
βk
Ēβk , F̄βkKβk ⊗ 1 ∈ Φ(OA[ψ

−1
−ρ]) = Φ(LA0,1[d

−1]). Therefore

F̄βkKβk , S
−1(Ēβk)Kβk ∈ Φ1(L

A
0,1[d

−1]), and F̄βk , S
−1(Ēβk) ∈ Φ1(L

A
0,1[d

−1])[T/T2]. The sets

S−1(Ēβk)UA(h) generate the subalgebra UA(b+) of UA (in fact, let us quote that a formula of

S−1(Ēβk) is given in [98]). From the triangular decomposition UA = UA(n−)UA(h)UA(n+),

the inclusion UA ⊂ Φ1(L
A
0,1[d

−1])[T/T2] follows, whence the equality too. In particular, UA
is a free Φ1(L

A
0,1[d

−1])-module with a basis formed by representatives of the cosets in T/T2.

By the uniqueness of this free decomposition, we find Φ1(L
A
0,1[d

−1]) = T−1
2−U

lf
A . Therefore Φ1

in Corollary 2.18 (2) is surjective.
For the third claim, recall the isomorphism Φ1 : C(−w0(µ)) → adr(Uq)(K−2µ) (see (15)),

and that ψ−µ is the matrix coefficient dual to the vector ωv−µ ⊗ v−µ ∈ EndA(V−w0(µ)).
This vector is cyclic by (44), so by equivariance Φ1 : AC(−w0(µ)) → adr(U resA )(K−2µ) is an
isomorphism of U resA -modules. The second claim follows from this and (67) for n = 1. ✷

Recall from (22) the isomorphisms of Uq-module algebras Φn : L0,n → (U⊗n
q )lf and of

algebras Φn : M0,n → (U⊗n
q )Uq , and from (35) the notations for specializations. Corollary

2.17 can be extended to Φn as follows:

Corollary 2.20. The map Φn affords embeddings of module algebras Φn : L
A
0,n → (U⊗n

A )lf

and Φn : L
ǫ′
0,n → (U⊗n)lfǫ′ , q = ǫ′ ∈ C×.

Proof. For the first claim the only thing to prove is the inclusion Φn(L
A
0,n) ⊂ U⊗n

A . It follows
from Corollary 2.17 and the expression of Φn in terms of Φ1 and R-matrices (in particular,
the fact that they preserve integrality, see [31], Lemma 6.10). For the specialization at
q = ǫ′ ∈ C×, we have to justify that Φn is injective. One uses the fact, to be developed
in Theorem 2.24 below, that Φ: Oǫ → Uǫ(G

∗) is an embedding. The algebra Uǫ(G
∗) has

the basis elements (75), and the map m ◦ (id ⊗ S−1) sends this basis to a free family of Uǫ.
Therefore Φ1 : L

ǫ
0,1 → Uǫ is injective. Since Φn differs from Φ⊗n

1 by a linear isomorphism

(induced by the conjugation action of R-matrices on the components AC([λ]) of LA0,n in (67),

see equation (6.10) in [31]), Φn : Lǫ0,n → U⊗n
ǫ is an embedding as well. ✷

Remark 2.21. (1) It is a natural problem to determine the image of Φn. One may expect

that it would be (T−1
2−U

lf
A )⊗n, because this is true for n = 1, as well as for any n in the sl(2)

case, as shown in [31]. Unfortunately this is not so. This comes from the fact, eg. for n = 2,

that the matrix elements of R02R01R
′
01R

−1
02 do not belong to (T−1

2−U
lf
A )⊗2 as can be shown by

an explicit computation in the sl(3) case.

(2) In the case of g = sl(2) we defined in [31] an algebra locL
A
0,n generalizing LA0,1[d

−1]

above, containing LA0,n as a subalgebra, and such that Φn extends to locL
A
0,n and yields an

isomorphism Φn : locL
A
0,n → UadA (sl(2))⊗n. The definition of locL

A
0,n involves elements ξ(i) ∈
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LA0,n (i = 1, ..., n) such that Φn(ξ
(i)) = (K−1)(i) · · · (K−1)(n). It may be of interest to study a

similar extension of Φn for general g.

2.5. Structure theorems for Uǫ and Oǫ. As usual we denote by ǫ a primitive l-th root of
unity, where l is odd, and coprime to 3 if g has G2-components.

Recall the subgroups TG, U± and B± of G. Let G0 = B+B− (the big cell of G), and define
the subgroup

G∗ = {(u+t, u−t
−1), t ∈ TG, u± ∈ U±} ⊂ Bop

+ ×Bop
−

where Bop
± is the group B± with opposite multiplication. The group G∗ can be naturally

identified with the Poisson-Lie dual of G with its standard structure.

Recall also that there is an injective homomorphism γ−1
q ◦ hq : Z(Uq) → Uq(h), defined by

means of the quantum Harish-Chandra homomorphism (see eg. [38], section 9.1.C, or [96],

Section 3.13). The image of γ−1
q ◦ hq is the set Uq(h)

W̃ of invariant elements under W̃ , the
subgroup of W ⋉ P ∗

2 generated by the conjugates σWσ of W by elements σ ∈ P ∗
2 . Here,

P ∗
2 is the group of homomorphisms P → Z/2Z, and the semidirect product W ⋉ P ∗

2 acts
on Uq(h) by the standard action of the Weyl group W , and by the action of P ∗

2 given by
σ ·Kλ := σ(λ)Kλ.

It was shown in [43], section 21.1, that the inverse map h−1
q ◦γq : Uq(h)

W̃ → Z(Uq) induces
by specializing q to ǫ a well-defined injection

Uǫ(h)
W̃ → Z(Uǫ).

We denote its image by Z1(Uǫ). For instance, when Uǫ = Uǫ(sl(2)), Z1(Uǫ) is the polynomial
algebra generated by the Casimir element Ω = (ǫ− ǫ−1)2FE + ǫK + ǫ−1K−1.

Denote by Z0(Uǫ) ⊂ Uǫ the smallest subalgebra containing the elements Eli, F
l
i , K

l
α, for

i ∈ {1, . . . m}, α ∈ P , and stable under B(g); it is also the subalgebra generated by Elβk , F
l
βk
,

L±l
i , for k ∈ {1, . . . , N} and i ∈ {1, . . . m} ([43], Section 18). We will denote by Z0(Uǫ(n−)),

Z0(Uǫ(h)) and Z0(Uǫ(n+)) the subalgebras of Z0(Uǫ) generated by the elements F lβk , K
l
λ

(λ ∈ P ), and Elβk respectively. In [41], Section 1.8-3.3-3.8, and [43], Theorem 14.1 and
Section 20-21, the following results are proved:

Theorem 2.22. (1) Uǫ has no non-trivial zero divisors, Z0(Uǫ) is a central Hopf subalgebra

of Uǫ, and Uǫ is a free Z0(Uǫ)-module of rank ldimg. Moreover the classical fraction algebra

Q(Uǫ) = Q(Z(Uǫ))⊗Z(Uǫ)Uǫ is a central simple algebra of PI degree lN , and Uǫ is a maximal
order of Q(Uǫ).
(2) Maxspec(Z0(Uǫ)) is a group isomorphic to G∗ above, and the multiplication map yields
an isomorphism Z0(Uǫ)⊗Z0(Uǫ)∩Z1(Uǫ) Z1(Uǫ) → Z(Uǫ).

By this theorem the dimension of Q(Uǫ) over its center Q(Z(Uǫ)) is l
2N , and its dimension

over Q(Z0(Uǫ)) is l
dimg = lm+2N . Therefore the field Q(Z(Uǫ)) is an extension of Q(Z0(Uǫ))

of degree lm.
Note that, because Z0(Uǫ) is an affine and commutative algebra, the maximal spectrum

Maxspec(Z0(Uǫ)), viewed as the set of characters of Z0(Uǫ), acquires by duality a structure
of affine algebraic group. Thus, the first claim of (2) in the theorem means precisely that
this group can be identified with G∗. See for instance Section 7.2.1 of [31] for an explicit
description in the sl(2) case.

In addition, Maxspec(Z0(Uǫ)) and G∗ have natural Poisson structures which correspond
one to the other under the isomorphism of (2), and we have the following identifications
(see [43], Section 21.2). The dual isomorphism O(G∗) → Z0(Uǫ) identifies O(TG) with
Z0(Uǫ)∩Uǫ(h) = C[lP ], where as usual Uǫ(h) = UA(h)⊗ACǫ. Therefore we can identify C[P ]
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withO(T̃G), the coordinate ring of the l
m-fold covering space T̃G → TG. The quantum Harish-

Chandra isomorphism identifies Z1(Uǫ) with C[2P ]W ∼= O(T̃G/(2))
W , where we denote by

(2) the subgroup of 2-torsion elements in T̃G. Consider the map

σ : B+ ×B− −→ G0

(b+, b−) 7−→ b+b
−1
− .

The restriction of σ to G∗ is an unramified covering map of degree 2m. Composing σ : G∗ →
G0 with the quotient map under conjugation, G0 →֒ G→ G//G, we get dually an embedding

of O(G//G) = O(G)G in O(G∗). Collecting these observations, we see that the isomorphism
of Theorem 2.22 (2) affords identifications

Z0(Uǫ) ∩ Z1(Uǫ) ∼= O(G)G

as a subalgebra of Z0(Uǫ) ∼= O(G∗), and

Z0(Uǫ) ∩ Z1(Uǫ) = C[2lP ]W ∼= O(T̃G/(2l))
W ∼= O(TG/(2))

W

as a subalgebra of Z1(Uǫ) ∼= O(T̃G/(2))
W .

We will use the following obvious though crucial fact.

Lemma 2.23. For every U resA -module V of type 1, the action of Z0(Uǫ) on the specialization
Vǫ := V ⊗A Cǫ is trivial.

Proof. This comes from Eli = [l]!E
(l)
i , F li = [l]!F

(l)
i and the fact that Ki acts on V by powers

of qi. Specializing to q = ǫ ends the proof. ✷

A result similar to Theorem 2.22 holds true for Oǫ. Namely, take the specializations at
q = ǫ in Theorem 2.15. Denote by Z0(Uǫ(G

∗)) the subalgebra of Uǫ(G
∗) generated by the

elements (k ∈ {1, . . . , N}, i ∈ {1, . . . m})

1⊗K−lβkE
l
βk
, F lβkKlβk ⊗ 1 , L±l

i ⊗ L∓l
i .

It is a central Hopf subalgebra. Recall that the coordinate ring O(G) can be identified as
a Hopf subalgebra with U(g)◦, the restricted dual of the envelopping algebra U(g) over C.
In [45], Section 6, De Concini-Lyubashenko introduced an epimorphism of Hopf algebras
η : Γǫ → U(g) (essentially a version of Lusztig’s “Frobenius” epimorphism in [75]), defined
by

(79)

η(E
(p)
i ) =





e
p/l
i

(p/l)!
if l divides p

0 otherwise

, η(F
(p)
i ) =





f
p/l
i

(p/l)!
if l divides p

0 otherwise

η(Ki) = 1 , η((Ki; p)qi) =





hi(hi − 1) . . . (hi − (p/l) + 1)

(p/l)!
if l divides p

0 otherwise

where p ∈ N, and ei, fi and hi, i ∈ {1, . . . ,m}, denote the standard generators of U(g). The
kernel of η is generated by the elements Ei, Fi, Ki − 1, and (Ki; p)qi where l does not divide
p. Put

(80) Z0(Oǫ) := η∗(O(G))

where η∗ : U(g)◦ → Γ◦
ǫ is the monomorphism dual to η. Let us define special matrix coeffi-

cients, analogous to those introduced in Theorem 2.15. Denote by v̟i
and vw0(̟i) a highest

weight vector and a lowest weight vector of the Γ-module AV̟i
. Denote also by v∗w0(̟i)

and
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v∗̟i
a highest and lowest weight vector of the dual module Γ-module AV

∗
̟i

∼= AV−w0(̟i).
Define the matrix coefficients b̟i

, c̟i
∈ OA by

b̟i
(x) = v∗̟i

(xvw0(̟i)) , c̟i
(x) = v∗w0(̟i)

(xv̟i
)

for all x ∈ Γ. We consider them as elements of Oǫ. Denote by Z1(Oǫ) the subalgebra of Oǫ

generated by the elements bk̟i
cl−k̟i

for 1 ≤ i ≤ m and 0 ≤ k ≤ l.

Theorem 2.24. (1) Z0(Oǫ) is a central Hopf subalgebra of Oǫ ⊂ Γ◦
ǫ , and Q(Z(Oǫ)) is an

extension of Q(Z0(Oǫ)) of degree l
m.

(2) ψ−lρ ∈ Z0(Oǫ), and Z0(Oǫ) is generated by matrix coefficients of irreducible Γ-modules
of highest weight lλ, λ ∈ P+. Moreover the multiplication map yields an isomorphism
Z0(Oǫ)⊗Z0(Oǫ)∩Z1(Oǫ) Z1(Oǫ) → Z(Oǫ), and the map Φ in Theorem 2.15 affords an algebra

embedding Z0(Oǫ) → Z0(Uǫ(G
∗)) and algebra isomorphisms Z0(Oǫ)[ψ

−1
−lρ] → Z0(Uǫ(G

∗)) and

Oǫ[ψ
−1
−lρ] → Uǫ(G

∗).

(3) Oǫ has no non-trivial zero divisors, and it is a free Z0(Oǫ)-module of rank ldimg. Moreover
the classical fraction algebra Q(Oǫ) = Q(Z(Oǫ)) ⊗Z(Oǫ) Oǫ is a central simple algebra of PI

degree lN , and Oǫ is a maximal order of Q(Oǫ).

For the proof, see in [45]: the proposition 6.4 for the first claim of (1) (where Z0(Oǫ) and
Z0(Uǫ(G

∗)) are denoted F0 and A0 respectively), the appendix of Enriquez and [50] for the
second claim of (1) and (2), the propositions 6.4-6.5 for the other claims of (2), the theorem
7.2 (where Oǫ is shown to be projective over Z0(Oǫ)) and [27] (which provides the additional
K-theoretic arguments to deduce that Oǫ is free), or Remark 2.18(b) of [6], for the second
claim of (3), and the corollary 7.3 and theorem 7.4 for the third claim. The fact that Oǫ has
no non-trivial zero divisors follows from the embedding Oǫ → Uǫ(G

∗) via Φ.
As above for Uǫ, it follows directly from (3) that Q(Z(Oǫ)) has degree l

m over Q(Z0(Oǫ)).
For a more complete description of Z(Oǫ) we refer to [50] and Enriquez’ Appendix in [45],
as well as [26].

We do not know a basis of Oǫ over Z0(Oǫ) for general G, but see [47] for the case of SL2.
We will recall the known results in this case of SL2 before Lemma 4.5.

Finally, there is a natural action of the braid group B(g) on Oǫ, that we will use. Namely,
let ni ∈ N(TG) be a representative of the reflection si ∈ W = N(TG)/TG associated to the
simple root αi. In [93, 92] Soibelman-Vaksman introduced functionals ti : Oq → C(q) which
quantize the elements ni. They correspond dually to generators of the quantum Weyl group
of g; in the Appendix we recall their main properties, in particular they map OA to A (see
also [38], Section 8.2, and [70, 93, 74, 71, 45]). Denote by ✁ the natural right action of
functionals on OA, namely (using Sweedler’s notation)

α✁ h =
∑

(α)

h(α(1))α(2)

for every α ∈ OA and h ∈ OA → A. Let us identify Z0(Oǫ) with O(G) by means of (80). We
have ([45], Proposition 7.1):

Proposition 2.25. The maps ✁ti on Oǫ preserve Z0(Oǫ), and satisfy (f ✁ ti)(a) = f(nia)
and (f ⋆ α)✁ ti = (f ✁ ti)(α✁ ti) for every f ∈ Z0(Oǫ), a ∈ G, α ∈ Oǫ.

We provide an alternative, non computational, proof of this result in the Appendix (Section
6.2).
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3. Noetherianity and finiteness

In this section we prove Theorem 1.1. Recall that by Noetherian we mean right and left
Noetherian. We begin with:

Theorem 3.1. The algebras L0,n, L
A
0,n and Lǫ

′

0,n, ǫ
′ ∈ C×, are Noetherian.

By Proposition 2.13 each of the algebras in this theorem is finitely generated.

The theorem 3.1 for L0,1 and any g follows immediately from Joseph-Letzter’s Theorem

2.1, claim (3), by identifying L0,1 with U lfq via Φ1. The method of proof uses filtration

arguments. An alternative proof in the case of sl(n), which works also for LA0,1, was obtained

by Domokos-Lenagan in [46], by exhibiting special sequences of generators of LA0,1 satisfying
polynormal relations. Here, given a Noetherian Abelian ring R and a finitely generated R-
algebra B with product ◦, we call polynormal a set of relations between generators u1, . . . , uM
of B, of the form (see [96], Proposition 3.133)

(81) ui ◦ uj − qijuj ◦ ui =

j−1∑

s=1

M∑

t=1

(
αstijus ◦ ut + βstijut ◦ us

)

for all 1 ≤ j < i ≤M , where αstij , β
st
ij ∈ R, and the elements qij ∈ R are invertible (note that

this definition is more restrictive than the more standard one, in e.g. [24], II.4.1). If such
a set of relations exists in B, then B can be endowed with an algebra filtration such that
the associated graded algebra is a quotient of a skew-polynomial algebra ([24], Proposition
I.8.17). By classical results, if the algebra filtration is well-founded, then B is a Noetherian
ring (see eg. [85], 1.2.9-1.6.9-1.6.11, or [96], Lemma 3.130-3.131). In [46], the theorem 3.1 is

also proved for any n ≥ 1 in the case of g = sl(2) by considering LA0,n(sl(2)) as an iterated
overring of L0,1(sl(2)).

The proof of Theorem 3.1 that we develop for any g and n ≥ 1 is also based on polynormal
relations. In our proof, the generating set of L0,n that we will consider is evident, as they are
matrix coefficients in the modules V̟k

, k ∈ {1, . . . ,m}; the task is then to exhibit a set of
polynormal relations between them, that hold in a certain graded algebra associated to L0,n.
Indeed, as explained above this will imply that the graded algebra is Noetherian, and that
L0,n is Noetherian as well. In the case of LA0,n, the proof is formally similar, but it needs the
use of canonical basis discussed in Section 2.2.2.

Proof of Theorem 3.1. First we develop the proof for L0,n, and then for LA0,n; the result for

Lǫ
′

0,n = LA0,n/(q−ǫ
′)LA0,n follows immediately by lifting ideals by the quotient map LA0,n → Lǫ

′

0,n.
We adapt the proof of Theorem 2.1 (3) given in Theorem 3.137 of [96]. Let us begin by

recalling these arguments. In doing this, let us stress that [96] takes on Oq and L0,1 the
product opposite to ours, and below in (88) and (89) we respect their convention.

As usual let C(µ) be the vector space generated by the matrix coefficients of Vµ, the simple

Uadq -module of highest weight µ ∈ P+. Denote by C(µ)λ ⊂ C(µ) the subspace of weight λ

for the left coregular action of Uq(h); so α ∈ C(µ)λ if Kν ✄α = q(ν,λ)α , ν ∈ P . Consider the
semigroup

Λ = {(µ, λ) ∈ P+ × P, λ is a weight of Vµ}.

Recall that the partial order � on P is defined by: µ � µ′ if and only if µ′ − µ ∈ D−1Q+.
Define � on Λ by: (µ, λ) � (µ′, λ′) if and only if µ′ − µ ∈ D−1Q+ and λ′ − λ ∈ D−1Q+.
If (µ, λ) � (µ′, λ′) and (µ, λ) 6= (µ′, λ′), we write (µ, λ) ≺ (µ′, λ′). Since L0,1 and Oq are
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isomorphic vector spaces, we have L0,1 =
⊕

µ∈P+
C(µ) =

⊕
(µ,λ)∈Λ C(µ)λ. Consider the

family of subspaces

Fµ,λ
2 :=

⊕

(µ′,λ′)�(µ,λ)

C(µ′)λ′ , (µ, λ) ∈ Λ,

F≺µ,λ
2 :=

⊕

(µ′,λ′)≺(µ,λ)

C(µ′)λ′ , (µ, λ) ∈ Λ.

We have

(82) L0,1 = ∪(µ,λ)∈ΛF
µ,λ
2 .

Indeed, clearly L0,1 =
∑

(µ,λ)∈Λ Fµ,λ
2 , so (82) follows from the following fact: for every

(µ, λ), (µ′, λ′) ∈ Λ, the element (µ′′, λ′′) := (µ + µ′, λ+ λ′) is such that

Fµ,λ
2 + Fµ′,λ′

2 ⊂ Fµ′′,λ′′

2 .

Note that in general, since Q+ * P+ (but P+ ⊂ D−1Q+), it is not true that there exists an
element (µ′′, λ′′) satisfying such an inclusion if one replaces � with the standard “product”
partial order ≤ on Λ, defined by: (µ, λ) ≤ (µ′, λ′) if and only if µ′−µ ∈ Q+ and λ′−λ ∈ Q+.
Note also that � is finer than ≤, in the sense that if µ ≤ µ′, then µ � µ′. Again, this would
not be true if we had replaced D−1Q+ by P+ in the definition of �.

The family F2 := {Fµ,λ
2 }(µ,λ)∈Λ is a filtration of the vector space L0,1, which is clearly well-

founded (ie. every subset of Λ contains a minimal element, or equivalently any decreasing
infinite sequence of elements in Λ is eventually constant).

Consider the associated graded vector space GrF2(L0,1) := ⊕(µ,λ)F
µ,λ
2 /F≺µ,λ

2 . By identify-

ing an element x ∈ C(µ)λ with its coset x̄ ∈ Fµ,λ
2 /F≺µ,λ

2 we get an equality of vector spaces
GrF2(L0,1) =

⊕
(µ,λ)∈Λ C(µ)λ. Now, one has the following facts:

(i) Taking the product in L0,1 we have

(83) αβ ∈ Fµ1+µ2,λ1+λ2
2 for α ∈ C(µ1)λ1 , β ∈ C(µ2)λ2 .

This follows from (7) and the fact that, for every ν ∈ P+ and every summand of the formula
(9), denoting by −r ∈ −Q+ the weight of the R-matrix component R(2) we have

(84) Kν ✄
(
(R(2′)S(R(2))✄ α) ⋆ (R(1′) ✄ β ✁R(1))

)

= q(ν,λ1+λ2−r)(R(2′)S(R(2))✄ α) ⋆ (R(1′) ✄ β ✁R(1)).

(Details of a similar computation are given below (94)). It follows from (83) that F2 is an
algebra filtration of L0,1, and then GrF2(L0,1) is a graded algebra.

(ii) Denote by α ◦ β the product in GrF2(L0,1) of α, β ∈ L0,1. The space C(µ1 + µ2) has
multiplicity one in C(µ1)⊗ C(µ2) (again by (7)), therefore if α ∈ C(µ1)λ1 and β ∈ C(µ2)λ2 ,
then α ◦ β is the projection of αβ onto C(µ1 + µ2)λ1+λ2 . Denote by ⋆̄ the product ⋆ of Oq

followed by the projection onto the component C(µ+ ν). Then we have

(85) C(µ) ◦ C(ν) = C(µ) ⋆̄ C(ν) = C(µ+ ν).

This follows from the formula (9), and the fact that it is given by an invertible twist of the
product ⋆.

(iii) For every µ ∈ P+ fix a basis of weight vectors eµ1 , . . . , e
µ
d(µ) of Vµ. Denote by

e1µ, . . . , e
d(µ)
µ ∈ V ∗

µ the dual basis, and by w(eµi ) the weight of eµi . Consider the matrix
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coefficients µφ
i
j(x) := eiµ(πV (x)(e

µ
j )), x ∈ Uq. By using the formula (9) and the explicit form

of the R-matrix one can check that

µφ
i
j ◦ νφ

k
l =

∑′

j′,l′

cikjlj′,l′ µφ
i
j′ ⋆̄ νφ

k
l′

= q(w(e
µ
j ),w(e

ν
l )−w(e

ν
k))µφ

i
j ⋆̄ νφ

k
l +

∑′

j′,l′

j′ 6=j,l′ 6=l

dikjlj′,l′ µφ
i
j′ ◦ νφ

k
l′(86)

where
∑′

j′,l′
is the sum over indices with weights satisfying w(eµj )+w(e

ν
l ) = w(eµj′)+w(e

ν
l′),

w(eµj′) ≤ w(eµj ) and w(eνl′) ≥ w(eνl ), and the coefficient cikjlj,l , equal to q(w(e
µ
j ),w(e

ν
l )−w(e

ν
k)), is

computed from the term Θ in the R-matrix factorization (4). In general, all the coefficients

cikjlj′,l′ and d
ikjl
j′,l′ belong to C(q) (see Proposition 4.1 of [31]); in particular q(w(e

µ
j ),w(e

ν
l
)−w(eν

k
)) ∈ qZ

since w(eνl ) − w(eνk) ∈ Q. The second equality follows by repeated use of the first and (85).
Similarly, by using (10) one gets

νφ
k
l ◦ µφ

i
j =

∑′

i′,k′

ekilji′,k′ µφ
i′

j ⋆̄ νφ
k′

l

= q(w(e
µ
i ),w(e

ν
k)−w(e

ν
l ))µφ

i
j ⋆̄ νφ

k
l +

∑′

i′,k′

i′ 6=i,k′ 6=k

ekilji′,k′ µφ
i′

j ⋆̄ νφ
k′

l

= q(w(e
µ
i ),w(e

ν
k
)−w(eν

l
))
µφ

i
j ⋆̄ νφ

k
l +

∑′

i′,k′,j′,l′

i′ 6=i,k′ 6=k

fkilji′,k′ µφ
i′

j′ ◦ νφ
k′

l′

where ekilji′,k′, f
kilj
i′,k′ ∈ C(q), and

∑′

i′,k′
is the sum over indices with weights satisfying w(eµi )+

w(eνk) = w(eµi′) + w(eνk′), w(e
µ
i′) ≤ w(eµi ) and w(e

ν
k′) ≥ w(eνk), and e

kilj
i,k = q(w(e

µ
i ),w(e

ν
k)−w(e

ν
l )).

The third equality comes from the second and (86); the sum is over indices with weights
satisfying w(eµi ) + w(eνk) = w(eµi′) + w(eνk′), w(e

µ
i′) < w(eµi ), w(e

ν
k′) > w(eνk), w(e

µ
j′) ≤ w(eµj )

and w(eνl′) ≥ w(eνl ). By eliminating the leading term µφ
i
j ⋆̄ νφ

k
l one deduces

(87) νφ
k
l ◦ µφ

i
j − qijkl µφ

i
j ◦ νφ

k
l =

∑′

i′,k′,j′,l′

i′ 6=i,k′ 6=k

fkilji′,k′ µφ
i′

j′ ◦ νφ
k′

l′ −
∑′

j′,l′

j′ 6=j,l′ 6=l

qijkld
ikjl
j′,l′ µφ

i
j′ ◦ νφ

k
l′

where qijkl = q(w(e
µ
j )+w(e

µ
i ),w(e

ν
k)−w(e

ν
l )).

(iv) We can always always reorder the weight vectors eµ1 , . . . , e
µ
d(µ) so that w(eµi ) > w(eµj )

implies i < j; then (87) reads

νφ
k
l ◦ µφ

i
j − qijkl µφ

i
j ◦ νφ

k
l =

d(µ)∑

r=i

k∑

s=1

l−1∑

u=1

d(µ)∑

v=j+1

δijklrsuv µφ
r
v ◦ νφ

s
u(88)

−

d(µ)∑

r=i+1

k−1∑

s=1

qijklγ
ijkl
rs µφ

r
j ◦ νφ

s
l

where γijklrs , δijklrsuv ∈ C(q) are such that γijklrs = 0 unless w(eµr ) < w(eµi ) and w(eνs ) > w(eνk),

and δijklrsuv = 0 unless w(eνu) > w(eνl ), w(e
µ
v ) < w(eµj ), w(e

µ
r ) ≤ w(eµi ) and w(e

ν
s ) ≥ w(eνk). Now,
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from (88) one can extract a defining set of polynormal relations for GrF2(L0,1), as in (81).

Indeed, like L0,1 the algebra GrF2(L0,1) is generated by the matrix coefficients ̟k
φji of the

fundamental representations V̟k
. One can list these matrix coefficients, sayM in number, in

an ordered sequence u1, . . . , uM such that the following condition holds: if w(e̟s

k ) < w(e̟r

i ),

or w(e̟s

k ) = w(e̟r

i ) and w(e̟s

l ) < w(e̟r

j ), then ua := ̟rφ
i
j and ub := ̟sφ

k
l satisfy b < a.

Then denoting µφ
i
j , νφ

k
l in (88) by uj , ui respectively, and assuming uj < ui, one finds that

all terms us := µφ
r
v, µφ

r
j in the sums are < uj . Therefore, for all 1 ≤ j < i ≤ M it takes the

form:

(89) ui ◦ uj − qijuj ◦ ui =

j−1∑

s=1

M∑

t=1

αstijus ◦ ut

for some qij ∈ qZ and αstij ∈ C(q). As explained after (81) it follows that GrF2(L0,1) is a
Noetherian ring, and since the filtration F2 is well-founded, it implies that L0,1 is Noetherian
too.

We are going to extend all these facts to L0,n, n > 1. First we need to refine the filtration
F2 on L0,1. Consider the action of Uq(h) on C(µ)λ given by

(90) Kν .α := coad(K−1
ν )(α) , ν ∈ P, α ∈ C(µ)λ.

Denote by C(µ)λ,γ ⊂ C(µ)λ the subspace of weight γ for this action; so α ∈ C(µ)λ,γ if

Kν .α = q(ν,γ)α. Consider the semigroup

ΛP = {(µ, λ, γ) ∈ P+ × P 2, λ is a weight of Vµ for ✄, γ is a weight of Vµ for .}

with the partial order (µ, λ, γ) � (µ′, λ′, γ′) if and only if µ′ − µ, λ′ − λ, γ′ − γ ∈ D−1Q+.
Define

(91) [ΛP ] =
{
([µ], [λ], [γ]) ∈ Pn+ × Pn × Pn

| (µi, λi, γi) ∈ ΛP , [µ] = (µi)
n
i=1, [λ] = (λi)

n
i=1, [γ] = (γi)

n
i=1} .

Let us put the following lexicographic order on [ΛP ], starting from the tail: ([µ′], [λ′], [γ′]) �
([µ], [λ], [γ]) if (µ′n, λ

′
n, γ

′
n) ≺ (µn, λn, γn), or (µn, λn, γn) = (µ′n, λ

′
n, γ

′
n) and (µ′n−1, λ

′
n−1, γ

′
n−1) ≺

(µn−1, λn−1, γn−1),. . ., or (µk, λk, γk) = (µ′k, λ
′
k, γ

′
k) for all 1 < k ≤ n and (µ′1, λ

′
1, γ

′
1) �

(µ1, λ1, γ1). (As usual we write ([µ′], [λ′], [γ′]) ≺ ([µ], [λ], [γ]) for ([µ′], [λ′], [γ′]) � ([µ], [λ], [γ])
and ([µ′], [λ′], [γ′]) 6= ([µ], [λ], [γ]).)

Now recall that L0,n = L⊗n
0,1 = O⊗n

q as vector spaces. For every ([µ], [λ], [γ]) ∈ [ΛP ] consider

the subspace C([µ])[λ],[γ] ⊂ L0,n defined by

C([µ]) = C(µ1)⊗ . . .⊗ C(µn)

C([µ])[λ],[γ] = C(µ1)λ1,γ1 ⊗ . . .⊗ C(µn)λn,γn .

Then L0,n =
⊕

[µ]∈Pn
+
C([µ]) and C([µ]) =

⊕
([λ],[γ])C([µ])[λ],[γ]. For every ([µ], [λ], [γ]) ∈ [ΛP ]

define

F
[µ],[λ],[γ]
3 =

⊕

([µ′],[λ′],[γ′])�([µ],[λ],[γ])

C([µ′])[λ′],[γ′](92)

F
≺[µ],[λ],[γ]
3 =

⊕

([µ′],[λ′],[γ′])≺([µ],[λ],[γ])

C([µ′])[λ′],[γ′].
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Clearly L0,n is the union of the subspaces F
[µ],[λ],[γ]
3 over all ([µ], [λ], [γ]) ∈ [ΛP ], so these form

a vector space filtration of L0,n. Let us denote it F3, and define

GrF3(L0,n)[µ],[λ],[γ] = F
[µ],[λ],[γ]
3 /F

≺[µ],[λ],[γ]
3 .

This space is canonically identified with C([µ])[λ],[γ], so the graded vector space associated to
F3 is

(93) GrF3(L0,n) =
⊕

([µ],[λ],[γ])∈[ΛP ]

GrF3(L0,n)[µ],[λ],[γ] =
⊕

([µ],[λ],[γ])∈[ΛP ]

C([µ])[λ],[γ].

We claim that F3 is an algebra filtration with respect to the product of L0,n, and therefore
GrF3(L0,n) is a graded algebra.

For notational simplicity let us prove it for n = 2, the general case being strictly similar.
Recall the R-matrix factorization (4). Take tuples ([µ], [λ], [γ]) = ((µ1, µ2), (λ1, λ2), (γ1, γ2))
and ([µ′], [λ′], [γ′]) = ((µ′1, µ

′
2), (λ

′
1, λ

′
2), (γ

′
1, γ

′
2)) in [ΛP ], and elements α⊗β ∈ C([µ])[λ],[γ] and

α′ ⊗ β′ ∈ C([µ′])[λ′],[γ′]. Recall from (18) that the product of L0,2 is given by the formula

(94) (α⊗ β)(α′ ⊗ β′) =
∑

(R1),...,(R4)

α
(
S(R3

(1)R
4
(1))✄ α′

✁R1
(1)R

2
(1)

)
⊗

(
S(R1

(2)R
3
(2))✄ β ✁R2

(2)R
4
(2)

)
β′.

For every ν ∈ P and any of the components R1
(2), . . . , R

4
(2), denoting by −rj ∈ −Q+ the

weight of Rj(2) we have

Kν ✄

(
S(R1

(2)R
3
(2))✄ β ✁R2

(2)R
4
(2)

)
=

∑

(β),(β)

β(1)(R
2
(2)R

4
(2))

(
KνS(R

1
(2)R

3
(2))✄ β(2)

)

= q−(ν,r1+r3)
∑

(β),(β)

β(1)(R
2
(2)R

4
(2))

(
S(R1

(2)R
3
(2))Kν ✄ β(2)

)

= q(ν,λ2−r1−r3)
∑

(β),(β)

β(1)(R
2
(2)R

4
(2))

(
S(R1

(2)R
3
(2))✄ β(2)

)

= q(ν,λ2−r1−r3)
(
S(R1

(2)R
3
(2))✄ β ✁R2

(2)R
4
(2)

)
.

By similar computations for the action coad(K−1
ν ), and for all terms in the right-hand side

of (94), and using (83) componentwisely, we find that

α
(
S(R3

(1)R
4
(1))✄ α′

✁R1
(1)R

2
(1)

)
⊗

(
S(R1

(2)R
3
(2))✄ β ✁R2

(2)R
4
(2)

)
β′ ∈ F

[µ]+[µ′],[λ′′],[γ′′]
3 ,

where

λ′′ = (λ1 + λ′1 + r3 + r4, λ2 + λ′2 − r1 − r3)

γ′′ = (γ1 + γ′1 + r1 + r2 + r3 + r4, γ2 + γ′2 − r1 − r2 − r3 − r4).

Since r1 + r2 + r3 + r4 = 0 implies r1 = r2 = r3 = r4 = 0, by the order we have put on [ΛP ]
we deduce

(α⊗ β)(α′ ⊗ β′) ∈ F
[µ]+[µ′],[λ]+[λ′],[γ]+[γ′]
3 .

Note that the filtration F3, taking the action (90) into account, is crucial for this argument
to work. Similar arguments work for any n ≥ 2. This proves that GrF3(L0,n) is a graded
algebra. We denote its product by ◦n.



UNRESTRICTED QUANTUM MODULI ALGEBRAS, II 43

Next we show that (85) implies the analogous property for the product ◦n. For simplicity
of notations let us again assume that n = 2. Recall that the product ◦2 is defined on
homogeneous elements α⊗ β ∈ GrF3(L0,n)[µ],[λ] and α′ ⊗ β′ ∈ GrF3(L0,n)[µ′],[λ′] by

α⊗ β ◦n α′ ⊗ β′ = (α⊗ β)(α′ ⊗ β′) + F
≺[µ+µ′],[λ+λ′]
3 .

Clearly (85) gives
(
C(µ1) ◦ C(µ′1)

)
⊗

(
C(µ2) ◦ C(µ′2)

)
= C([µ+ µ′]), and (94) gives

C([µ]) ◦n C([µ′]) ⊂
(
C(µ1) ◦ C(µ′1)

)
⊗

(
C(µ2) ◦ C(µ′2)

)
.

The converse inclusion holds true as well, as one can see by expressing, reciprocally, the
(componentwise) product of L⊗n

0,1 in terms of the product of L0,n via the formula (20). In
conclusion

(95) C([µ]) ◦n C([µ′]) = C([µ+ µ′]).

We are left to show that (88) generalizes to L0,n. First note that for every 1 ≤ a ≤ n
the embedding ia : L0,1 → L0,n in (17) is a morphism of the filtered algebras (L0,1,F2)

and (L0,n,F3), in the sense that ia(F
µ,λ
2 ) ⊂

∑
γ∈P F

[µa],[λa],[γa]
3 , where by definition [µa] =

(0, . . . , 0, µ, 0, . . . , 0) with µ on the a-th entry, and similarly [λa] = (0, . . . , 0, λ, 0, . . . , 0) and
[γa] = (0, . . . , 0, γ, 0, . . . , 0). Therefore the relation (88) yields in GrF3(L0,n) similar relations
between elements of the form (matrix coefficient)⊗1, or 1⊗(matrix coefficient).

We now consider the case of “mixed” products. We give the details when n = 2, the
general case being similar. Let us write the twist F in (19) as

F =
∑

(F )

F(1) ⊗ F(2) =
∑

(F )

F(1)1 ⊗ F(1)2 ⊗ F(2)1 ⊗ F(2)2

that is, we set F(1)1 := R2
(2)R

4
(2), F(1)2 := R1

(2)R
3
(2), F(2)1 := R1

(1)R
2
(1), F(2)2 := R3

(1)R
4
(1). Put

d(µ) := dim(Vµ), µ ∈ P+, and

∆(2)(µ2φ
k2
l2
) =

d(µ2)∑

p,s=1

µ2φ
k2
p ⊗ µ2φ

p
s ⊗ µ2φ

s
l2 , ∆

(2)(µ′1φ
k′1
l′1
) =

d(µ′1)∑

p′,s′=1

µ′1
φ
k′1
p′ ⊗ µ′1

φp
′

s′ ⊗ µ′1
φs

′

l′1
.

From (94) one obtains

(96)
(
1⊗ µ2φ

k2
l2

)(
µ′1
φ
k′1
l′1

⊗ 1
)

=
∑

(F )

d(µ2)∑

p,s=1

d(µ′1)∑

p′,s′=1

(
µ′1
φp

′

s′

(
µ′1
φ
k′1
p′ (F(2)1)µ′1φ

s′

l′1
(S(F(2)2))

))

⊗
(
µ2φ

p
s

(
µ2φ

k2
p (F(1)1)µ2φ

s
l2(S(F(1)2))

))
.

It is immediate that

µ′1
φp

′

s′ ⊗ µ2φ
p
s ∈ C(µ′1)

w(e
µ′
1

s′
),w(e

µ′
1

s′
)−w(e

µ′
1

p′
)
⊗ C(µ2)w(eµ2s ),w(e

µ2
s )−w(e

µ2
p ).

As in (iv) above, for every µ ∈ P+ we order the weight vectors eµ1 , . . . , e
µ
m so that w(eµi ) >

w(eµj ) implies i < j. With such an ordering the factorization R = ΘR̂ (see (4)) implies

µ2φ
k2
p (F(1)1)µ2φ

s
l2(S(F(1)2)) = 0 unless k2 ≥ p and s ≥ l2, and µ′1

φ
k′1
p′ (F(2)1)µ′1φ

s′

l′1
(S(F(2)2) = 0

unless k′1 ≤ p′ and s′ ≤ l′1. Since s > l2 we have w(eµ2s ) ≤ w(eµ2l2 ), and if w(eµ2s ) < w(eµ2l2 )

then µ2φ
p
s ∈ F

<µ2,w(e
µ2
l2

)

2 . In this last situation the summands µ′1φ
p′

s′ ⊗ µ2φ
p
s in the sum above

vanish in GrF3(L0,2). In order to find all the non zero summands we have to consider also
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the weights with respect to the action (90). Since k2 ≥ p implies w(eµ2k2 ) ≤ w(eµ2p ), we have

w(eµ2s )−w(eµ2p ) ≤ w(eµ2l2 )−w(e
µ2
k2
). Therefore the summands which are non zero in GrF3(L0,2)

have both weights w(eµ2s ) = w(eµ2l2 ) and w(e
µ2
p ) = w(eµ2k2 ). Doing similarly with the weights of

µ′1
φp

′

s′ , we find that also w(e
µ′1
s′ ) = w(e

µ′1
l′1
) and w(e

µ′1
p′ ) = w(e

µ′1
k′1
). When all these conditions on

weights are satisfied, the corresponding components F(1)1, F(1)2, F(2)1, F(2)2 have zero weight.
Therefore the sum reduces to∑

(F )

µ2φ
k2
k2
(F(1)1)µ2φ

l2
l2
(S(F(1)2))µ′1φ

k′1
k′1
(F(2)1)µ′1φ

l′1
l′1
(S(F(2)2)

=
〈
µ2φ

k2
k2

⊗ µ2φ
l2
l2
⊗ µ′1

φ
k′1
k′1

⊗ µ′1
φ
l′1
l′1
,Θ13Θ

−1
14 Θ24Θ

−1
23

〉

= q

(
w(e

µ2
k2

)−w(e
µ2
l2

),w(e
µ′1
k′
1
)−w(e

µ′1
l′
1
)

)

.

Denoting by q′k2l2k′1l′1
this scalar, it follows

(
1⊗ µ2φ

k2
l2

)
◦2

(
µ′1
φ
k′1
l′1

⊗ 1
)
= q′k2l2k′1l′1 µ′1

φ
k′1
l′1

⊗ µ2φ
k2
l2

= q′k2l2k′1l′1

(
µ′1
φ
k′1
l′1

⊗ 1
)
◦2

(
1⊗ µ2φ

k2
l2

)
.

This is the relation analogous to (88) for mixed products in GrF3(L0,2).

Recall that in (89) we denoted by u1, . . . , uM the ordered list of matrix coefficients ̟k
φji .

Let us order in a lexicographic way the elements ui⊗uj, ie. as a sequence u
(2)
1 , . . . , u

(2)
M2 such

that the following condition holds: if ̟l′
φt

′

s′ < ̟k′
φj

′

i′ , or ̟l′
φt

′

s′ = ̟k′
φj

′

i′ and ̟l
φts < ̟k

φji ,

then u(2)a := ̟k
φji ⊗̟k′

φj
′

i′ and u
(2)
b := ̟l

φts⊗̟l′
φt

′

s′ satisfy u
(2)
b < u(2)a . Then, for this ordering

the polynormal relations (89) hold true for all 1 ≤ u
(2)
j < u

(2)
i ≤M2. As described after (81),

it follows that GrF3(L0,n) is Noetherian. The filtration F3 being well-founded, it implies that
L0,n is Noetherian too.

Finally we consider the A-algebra LA0,n, and prove it is Noetherian. We proceed in exactly
the same way as for L0,n, changing the generators and replacing key arguments of the steps
(i)–(iv) by the corresponding results over A. Let us describe these modifications step by
step.

First consider the case n = 1. Recall the full A-sublattices AC(λ) ⊂ C(λ), see (58). Con-
sider the A-modules AC(µ)λ = C(µ)λ ∩OA, and the filtration AF2 of OA by the submodules

AF
µ,λ
2 = Fµ,λ

2 ∩ OA. By Theorem 2.6 and the fact that OA = LA0,1 as an A-module we have
the A-module decomposition

Gr
AF2(L

A
0,1) =

⊕

(µ,λ)∈Λ

AC(µ)λ.

Exactly as in step (i) one proves that AF2 is an algebra filtration of LA0,1. By Proposition 2.8
the A-module AC(µ1 + µ2) has multiplicity one in AC(µ1) ⊗ AC(µ2), so as in step (ii) one
obtains that

(97) AC(µ) ◦ AC(ν) = AC(µ+ ν).

In step (iii) we fixed a basis of each space C(µ), consisting of a set of matrix coefficients
{µφ

i
j} with respect to dual basis of weight vectors of the modules Vµ and V ∗

µ . In step (iv) the
basis elements of Vµ and V ∗

µ were ordered by means of the weights, and we used the fact that
the matrix coefficients in the spaces C(̟1), . . . , C(̟m) form a generating set of the algebra
GrF2(L0,1). The only property of the matrix coefficients used in the computations was that
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they are weight vectors for the left coregular action (and later, in the case n > 1, for the
action (90)).

Now recall that any set of generators of OA generates LA0,1 as well (see the comment after
Theorem 3.1). Then, by working over A it follows from Theorem 2.6 and Proposition 2.7
that one can replace the basis {µφ

i
j} in each space C(µ) with the canonical basis Bup

µr ,µ; in
particular its elements are also weight vectors, and form a basis in each weight space. By the
integrality properties satisfied by the R-matrix and the twists, all the computations in the
proof using such basis elements eventually take place over A (see the propositions 4.10 and
6.9 in [31]). Therefore we obtain a relation like (89) with coefficients αstij ∈ A. Since A is a

Noetherian ring, again this proves Gr
AF2(L

A
0,1), whence LA0,1, are Noetherian rings.

This being done, the adaptation of the proof when n > 1 is immediate. The filtration

F3 has to be replaced with AF3 := {AF
[µ],[λ],[γ]
3 }([µ],[λ],[γ]), where AF

[µ],[λ],[γ]
3 is the A-module

defined by

AF
[µ],[λ],[γ]
3 =

⊕

([µ′],[λ′],[γ′])�([µ],[λ],[γ])

AC([µ′])[λ′],[γ′]

where AC([µ])[λ],[γ] = AC(µ1)λ1,γ1⊗ . . .⊗AC(µn)λn,γn , and AC(µ1)λ,γ = C(µ1)λ,γ∩OA. Then
the proof proceeds in exactly the same way, replacing in (96) and all subsequent computations
the matrix coefficients by the generators of OA provided by Proposition 2.7. This concludes
the proof. ✷

Theorem 3.2. The algebra M0,n = L
Uq

0,n is Noetherian and generated over C(q) by a finite
number of elements.

Our method of proof follows closely that of the Hilbert-Nagata theorem (see [40]). Let us
recall one version of this theorem. Let K be an arbitrary field, A a commutative algebra over
K finitely generated by elements a1, . . . , an, and G a group of algebra automorphisms of A.

Theorem 3.3. If the action of G on A is completely reducible on finite dimensional repre-
sentations, then the ring AG of invariants of A with respect to G is Noetherian and a finitely
generated algebra over K.

We recall here the main steps of the proof that we will adapt in order to prove Theorem
3.2:

(a) From the complete reducibility of the action of G on A one can define a linear map

R : A → AG

namely the projection onto the space of invariant elements along the sum of non-trivial
isotypical components of A. This linear map is the Reynolds operator; we already discussed
it in (26) in the case of Uq acting on L0,n. By the same arguments we developed there, it
satisfies

(98) R(hf) = hR(f)

for every f ∈ A, h ∈ AG.

(b) Let I be an ideal of AG. Then I = R(AI) = AI ∩ AG. Because AI is an ideal of A,

and A is Noetherian, there exist elements b1, ..., bs, that can be chosen in I ⊂ AG, such that
AI = Ab1 + . . . + Abs. Since I = R(AI) = R(Ab1 + . . . + Abs) = AGb1 + . . . + AGbs, I is

finitely generated over AG. Therefore AG is Noetherian.

(c) Let B be an algebra graded over N (for simplicity of notations): B =
⊕+∞

n=0Bn, with

Bm.Bn ⊂ Bm+n. The augmentation ideal of B is B+ :=
⊕+∞

n=1Bn. If B+ is a Noetherian
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ideal of B, then B is a finitely generated algebra over B0. This is Lemma 2.4.5 of [91] (in
that statement B is commutative, but this hypothesis is not necessary for the proof).

(d) Assume that AG is graded over N (for simplicity of notations): AG =
⊕+∞

n=0A
G
n with

AG0 = K. Then AG+ =
⊕+∞

n=1A
G
n is an ideal of AG, which is Noetherian by (b) above.

Applying (c) we deduce that AG is a finitely generated algebra over K.

Proof of Theorem 3.2. Consider the filtration F of L0,n by the subspaces

F [µ] =
⊕

[µ′]�[µ]

C([µ′]), µ ∈ Pn+

where Pn+ is given the lexicographic partial order induced from [Λ]. It is easily seen that F is
an algebra filtration: the coregular actions ✄, ✁ fix globally each component C(µ) of L0,1, so
the claim follows from (9), (18) and the fact that C(µ) ⋆ C(ν) ⊂ C(µ + ν) for all µ, ν ∈ P+.
Denote by GrF (L0,n) the corresponding graded algebra. As a vector space we have:

(99) GrF (L0,n) =
⊕

[µ]∈Pn
+

C([µ]).

Because each space C([µ]) is stabilized by the coadjoint action of Uq, (99) has a key advantage
on the refined decomposition (93). Indeed, since L0,n is a Uq-module algebra, the action of Uq
is well-defined on GrF (L0,n) and gives it a structure of Uq-module algebra. As vector spaces
we have

(100) GrF (L0,n)
Uq =

⊕

[µ]∈Pn
+

C([µ])Uq .

Now we can adapt the differents steps (a)–(d) recalled above:

(a’) The action of Uq on GrF (L0,n) is completely reducible. This follows from (99) and the
fact that the spaces C(µ) are finite-dimensional and thus completely reducible Uq-modules.
We can therefore define the Reynolds operator as in (a),

R : GrF (L0,n) → GrF (L0,n)
Uq .

(b’) GrF (L0,n) is Noetherian, because (99) shows it is filtered by F3, and the associated
graded algebra GrF3(GrF (L0,n)) = GrF3(L0,n) is Noetherian by Theorem 3.1. As in (b) we

deduce that GrF (L0,n)
Uq is Noetherian. But GrF (L0,n)

Uq = GrF (L
Uq

0,n), which implies that

L
Uq

0,n is Noetherian.

(c’-d’) Then we can apply the steps (c)-(d). As a result GrF (L0,n)
Uq is finitely generated,

say by k non zero elements x̄1, . . . , x̄k, which we may assume homogeneous.

(e’) We can now deduce that L
Uq

0,n is generated by elements xi with leading terms the x̄i’s.

Indeed, let x ∈ L
Uq

0,n, and [µ] ∈ Pn+ such that x ∈ F [µ] \F≺[µ], where F≺[µ] := ⊕[µ′]≺[µ]C([µ′]).

In GrF (L0,n)
Uq

[µ] = F [µ]/F≺[µ] we have x̄ =
∑

(i1,...,ik)∈I
λ(i1,...,ik)x̄

i1
1 . . . x̄

ik
k for some finite set

I ⊂ Nk, scalars λ(i1,...,ik) ∈ C(q), and monomials x̄i11 . . . x̄
ik
k of degree [µ]. By definition of the

product in GrF (L0,n)
Uq , x̄i11 . . . x̄

ik
k = xi11 . . . x

ik
k + F≺[µ], so xi11 . . . x

ik
k ∈ F [µ] \ F≺[µ], whence

x̄i11 . . . x̄
ik
k = xi11 . . . x

ik
k and x−

∑
(i1,...,ik)∈I

λ(i1,...,ik)x
i1
1 . . . x

ik
k ∈ F≺[µ]. The conclusion follows

by decreasing induction on [µ], since at last we terminate at F [0] ∼= C(q).
By combining the steps (a’) to (e’), we get that M0,n is a Noetherian and finitely generated

ring. ✷
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Remark 3.4. (1) Because L
Uq

0,1 is the center of L0,1, (e’) proves it is finitely generated. Of

course this follows also from the isomorphism L0,1
∼= U lfq and the fact that the center of U lfq

is the center of Uq (by Theorem 2.1), plus the well-known description of the latter.

(2) In the sl(2) case the filtration F on L
Uq

0,n should be related via the Wilson loop isomor-

phism (defined in [31], Section 8.2) to the filtration of skein algebras of spheres with n + 1
punctures used in [82].

4. Proof of Theorem 1.2

As usual we let ǫ be a primitive l-th root of unity with l odd and l > di for all i ∈ {1, . . . ,m}.
We now consider the specialization Lǫ0,n of L0,n at q = ǫ, defined in Section 2.2.1. Recall the

isomorphism of algebras η∗ : O(G) → Z0(Oǫ) (see (79)), and that Lǫ0,n = O⊗n
ǫ as a vector

space. Consider the linear subspace of Lǫ0,n defined by

Z0(L
ǫ
0,n) := Z0(Oǫ)

⊗n.

This space is naturally a subalgebra of O⊗n
ǫ (endowed with the componentwise product ⋆).

In fact we also have:

Proposition 4.1. (1) Z0(L
ǫ
0,n) is a central subalgebra of the algebra Lǫ0,n, and the Z0(L

ǫ
0,n)-

modules Lǫ0,n and O⊗n
ǫ , with actions defined by the respective products of these algebras, do

coincide.
(2) Lǫ0,n is a free Z0(L

ǫ
0,n)-module of rank ln.dimg.

(3) (η∗−1)⊗n : Z0(L
ǫ
0,n) → O(G)⊗n is an isomorphism of algebras, and Z0(L

ǫ
0,n) is a Noe-

therian ring.
(4) The Z0(L

ǫ
0,n)-module Lǫ0,n is finite and Noetherian. Therefore Lǫ0,n is a Noetherian ring.

Note that the proof we give in (4) of the fact that Lǫ0,n is Noetherian is independent from
the proof of Theorem 3.1.

Proof. (1) Let us show that Z0(L
ǫ
0,n) is a central subalgebra of Lǫ0,n. In the case n = 1 the

formula (9) implies that αβ = α ⋆ β for all α ∈ Z0(Oǫ) and β ∈ Lǫ0,1. Indeed, by (9) we have

αβ =
∑

(R),(R)

(R(2′)S(R(2))✄ α) ⋆ (R(1′) ✄ β ✁R(1))

=
∑

(R),(R),(α),(β)

α(1) ⋆
(
β(1)

(
R(1)α(3)(S(R(2))

)
β(3)

(
R(1′)α(2)(R(2′))

)
β(2)

)

where all components α(1), α(2), α(3) ∈ Z0(Oǫ), since Z0(Oǫ) is a Hopf subalgebra of Oǫ. But∑
(R)R(1)α(3)(S(R(2))) = S−1

(
Φ−(SOǫ(α(3)))

)
∈ Z0(Uǫ), since Φ−(SOǫ(α(3))) ∈ Z0(Uǫ) by

Theorem 2.24 (2). Similarly,
∑

(R)R(1′)α(2)(R(2′)) ∈ Z0(Uǫ). By Lemma 2.23, Z0(Uǫ) acts

by the trivial character (the counit ε) on Γǫ-modules. Therefore

αβ =
∑

(R),(R),(α),(β)

α(1) ⋆
(
ε(β(1))ε(α(3))ε(β(3))ε(α(2))β(2)

)
= α ⋆ β.

This shows Lǫ0,1 and Oǫ coincide as modules over Z0(L
ǫ
0,1) = Z0(Oǫ). Next we show that

the subalgebras Z0(Oǫ)
(a) are central in Lǫ0,n for all a = 1, . . . , n. This fact will conclude the

proof that Lǫ0,n and O⊗n
ǫ coincide as Z0(L

ǫ
0,n)-modules, because the subalgebras Z0(Oǫ)

(a)

generate the space Z0(L
ǫ
0,n) in (Lǫ0,1)

⊗n, and hence in Lǫ0,n (this follows from the comment
before (19)).
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In order to show that Z0(Oǫ)
(a) is central in Lǫ0,n for all a = 1, . . . , n, it is enough to show

Z0(Oǫ)
(a) commutes with the elements of Lǫ0,n supported by the tensor factors (Lǫ0,1)

(b) with

b 6= a. Since (α)(a) ⊗ (β)(b) = ((α)(a) ⊗ 1)(1 ⊗ (β)(b)) by the definition, we have to show

that (1 ⊗ (β)(b))((α)(a) ⊗ 1) = (α)(a) ⊗ (β)(b) whenever α ∈ Z0(Oǫ). We have (denoting∑
(α),(α),(α),(α) by

∑
(α)4 , ∆(α(1)) =

∑
(α) α(1)(1) ⊗ α(1)(2) etc.):

(
1⊗ (β)(b)

)(
(α)(a) ⊗ 1

)
=

∑

(Ri)

(
S(R3

(1)R
4
(1))✄ α✁R1

(1)R
2
(1)

)(a)

⊗
(
S(R1

(2)R
3
(2))✄ β ✁R2

(2)R
4
(2)

)(b)

=
∑

(Ri),(α)4,(β)2

(α(2))
(a) ⊗ (β(2))

(b)

× β(1)

(
α(1)(2)(R

2
(1))R

2
(2)α(3)(1)(S(R

4
(1)))R

4
(2)

)

× β(3)

(
α(3)(2)(R

3
(1))R

3
(2)α(1)(1)(R

1
(1))S(R

1
(2))

)
.

By Theorem 2.24 (2) it follows that α(1)(2)(R
2
(1))R

2
(2) = Φ+(α(1)(2)) ∈ Z0(Uǫ), and similarly

α(3)(1)(S(R
4
(1)))R

4
(2), α(3)(2)(R

3
(1))R

3
(2), α(1)(1)(R

1
(1))S(R

1
(2)) ∈ Z0(Uǫ). Denote by z any such el-

ement; Z0(Uǫ) acts by the trivial character (the counit ε) on Γǫ-modules, hence the expression
of z in terms of the corresponding α(i)(j) implies ε(z) = ε(α(i)(j)). It follows

β(1)

(
α(1)(2)(R

2
(1))R

2
(2)α(3)(1)(S(R

4
(1)))R

4
(2)

)
= ε(α(1)(2)α(3)(1))β(1)(1)

= ε(α(1)(2))ε(α(3)(1))ε(β(1))

β(3)

(
α(3)(2)(R

3
(1))R

3
(2)α(1)(1)(R

1
(1))S(R

1
(2))

)
= ε(α(3)(2))ε(α(1)(1))ε(β(3)).

Therefore (1 ⊗ (β)(b))((α)(a) ⊗ 1) = (α)(a) ⊗ (β)(b). It follows that Lǫ0,n = O⊗n
ǫ as modules

over Z0(L
ǫ
0,n); for instance when n = 2, given α′, β′ ∈ Z0(L

ǫ
0,1) we have (α′ ⊗ β′)(α ⊗ β) =

(α′⊗1)(1⊗β′)(α⊗1)(1⊗β) immediately by (18), and (1⊗β′)(α⊗1) = α⊗β′ = (α⊗1)(1⊗β′)
as above. Then (α′ ⊗ β′)(α ⊗ β) = α′α⊗ β′β. In particular Z0(L

ǫ
0,n) is a central subalgebra

of Lǫ0,n.

(2) Since Lǫ0,n and O⊗n
ǫ coincide as modules over Z0(L

ǫ
0,n) = Z0(O

⊗n
ǫ ), the claim follows from

Theorem 2.24, that is: from Theorem 7.2 of [45], which shows that Oǫ is a finitely generated

projective module of rank ldimg over Z0(Oǫ), and from the arguments of [27] (using that
K0(O(G)) = Z by [84]), which imply that this module is free. Alternatively, it follows from
the fact that Oǫ is a cleft extension of O(G) (see [6], Remark 2.18 (b), and Section 3.2 of
[22]).
(3) The linear isomorphism (η∗−1)⊗n : Z0(L

ǫ
0,n) → O(G)⊗n is an isomorphism of algebras

because Z0(L
ǫ
0,n) is central in Lǫ0,n. It implies that Z0(L

ǫ
0,n) is a Noetherian ring, since

O(G)⊗n = O(Gn) and Gn is an affine algebraic variety.
(4) The fact that Lǫ0,n is a finitely generated Z0(L

ǫ
0,n)-module follows from (2); an alternative

proof of this fact will be provided at the end of the proof of Theorem 4.9. Since Lǫ0,n is finite
over Z0(L

ǫ
0,n) and Z0(L

ǫ
0,n) is Noetherian, L

ǫ
0,n is a Noetherian Z0(L

ǫ
0,n)-module (eg. by [7]

Proposition 6.5). It follows that Lǫ0,n is a Noetherian ring (by eg. [85], Section 1.3 of Chapter
1). �
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Recall that we denote U lfǫ = U lfA ⊗A Cǫ (see (35)), and Z0(Uǫ) ⊂ Uǫ is the central poly-

nomial subalgebra generated by Elβk , F
l
βk
, L±l

i , for k ∈ {1, . . . , N} and i ∈ {1, . . . m}. Since

Φ1 : L
ǫ
0,1 → U lfǫ is an embedding of algebras (see Corollary 2.20), it identifies Z0(L

ǫ
0,1) with

a central subalgebra of U lfǫ . Put

Z0(U
lf
ǫ ) := Φ1(Z0(L

ǫ
0,1)).

Recall Theorem 2.1, Proposition 2.19, and let T (l), T
(l)
2− and T

(l)
2 be the subsets of T , T2− and

T2 formed by the elements Kλl with λ ∈ P , λ ∈ −2P+ and λ ∈ 2P respectively.

Proposition 4.2. We have Uǫ = T−1
2−U

lf
ǫ [T/T2] = Φ1(L

ǫ
0,1[d

−1])[T/T2], and therefore the

map Φ1 : L
ǫ
0,1[d

−1] → T−1
2−U

lf
ǫ is an isomorphism. Moreover Z(U lfǫ ) = U lfǫ ∩ Z(Uǫ), and

Z0(Uǫ) = T
(l)−1
2− Z0(U

lf
ǫ )[T (l)/T

(l)
2 ] , Z(Uǫ) = T

(l)−1
2− Z(U lfǫ )[T (l)/T

(l)
2 ].

Proof. The first claim follows immediately from Proposition 2.19 by specialization at q = ǫ.
For the second claim, the inclusion U lfǫ ∩ Z(Uǫ) ⊂ Z(U lfǫ ) is clear, and for the converse

inclusion we only have to show that the elements of Z(U lfǫ ) commute with T . They commute

with T2 ⊂ U lfǫ , so the conjugation action by elements of T on Z(U lfǫ ) has order at most 2.

Let x ∈ Z(U lfǫ ) with decomposition x =
∑

i cixi with all ci ∈ C and xi PBW basis vectors,

and let λ ∈ P . We have KλxK−λ =
∑

i ciq(xi)xi, where q(xi) ∈ ǫZ satisfies q(xi)
2 = 1 for

all i. Because ǫ has odd order the only possibility is q(xi) = 1, whence KλxK−λ = x. The
conclusion follows.

The inclusion Z0(U
lf
ǫ ) ⊂ Z0(Uǫ) follows from the definition Z0(L

ǫ
0,1) = Z0(Oǫ), the formula

Φ1 = m ◦ (id ⊗ S−1) ◦ Φ, and the fact that Φ affords an embedding Z0(Oǫ) → Z0(Uǫ(G
∗))

(see Theorem 2.24 (2)). Since T (l) ⊂ Z0(Uǫ), we obtain T
(l)−1
2− Z0(U

lf
ǫ )[T (l)/T

(l)
2 ] ⊂ Z0(Uǫ).

The proof of the converse inclusion is similar to that in Proposition 2.19. The isomor-
phism Z0(Oǫ)[ψ

−1
−lρ] → Z0(Uǫ(G

∗)) of Theorem 2.24 (2) implies F lβkK
l
βk

⊗ 1, 1 ⊗ K−l
βk
Elβk ∈

Φ(Z0(Oǫ)[ψ
−1
−lρ]) for every positive root βk. Since ψ−lρ = Φ−1

1 (K−2lρ) = ψl−ρ (the l-th power of

ψ−ρ in Lǫ0,1), and Φ1(Z0(L
ǫ
0,1)[ψ

−l
−ρ]) = T

(l)−1
2− Z0(U

lf
ǫ ), it follows that F lβkK

l
βk
, S−1(Elβk)K

l
βk

∈

T
(l)−1
2− Z0(U

lf
ǫ ), hence F lβk , S

−1(Elβk) ∈ T
(l)−1
2− Z0(U

lf
ǫ )[T (l)/T

(l)
2 ]. The sets S−1(Elβk)Z0(Uǫ(h)),

k = 1, . . . , N , generate the subalgebra Z0(Uǫ(b+)) of Z0(Uǫ), so from the triangular de-
composition Z0(Uǫ) = Z0(Uǫ(n−))Z0(Uǫ(h))Z0(Uǫ(n+)) this proves the inclusion Z0(Uǫ) ⊂

T
(l)−1
2− Z0(U

lf
ǫ )[T (l)/T

(l)
2 ]. By the isomorphism Z0(Uǫ) ⊗Z0(Uǫ)∩Z1(Uǫ) Z1(Uǫ) → Z(Uǫ) (see

Theorem 2.22), and the fact that Z(Uq) ⊂ U lfq (whence Z1(Uǫ) ⊂ Z(U lfǫ )), the equality

Z(Uǫ) = T
(l)−1
2− Z(U lfǫ )[T (l)/T

(l)
2 ] follows at once. ✷

Remark 4.3. Let us explain how this can be used to give an interpretation of the iso-
morphism Z0(L

ǫ
0,1)

∼= O(G). Recall the notations introduced around Theorem 2.22. Since
G∗ = U+TGU−, we have O(G∗) = O(U+)O(TG)O(U−), and the map σ yields an identification

(101) O(G0) = O(U+)O(TG/(2))O(U−).

We can identify O(G0) with the subalgebra (σ|G∗)∗(O(G0)) ⊂ O(G∗). Consider the exterior

power V = ∧Ng endowed with the action ∧NAd of G. Put on g a basis consisting of one
element eα per root space gα, along with a basis of h. Let v ∈ V be the exterior power of the
eα’s for α negative, and v∗ a dual vector such that v∗(v) = 1 and v∗ vanishes on a TG-invariant
complement of v. It is classical that G \ G0 has defining equation δ(g) = 0, where δ is the
matrix coefficient δ(g) = v∗(πV (g)v) (see eg. [59], page 174). Hence O(G0) = O(G)[δ−1].
On G0 we have δ(u+tu−) = χ−2ρ(t), where χ−2ρ is the character of TG associated to the
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root −2ρ. Now we can make the connection with Uǫ. The isomorphism Z0(Uǫ) ∼= O(G∗) of

Theorem 2.22 (2) identifies Z0(Uǫ(h)) = C[T (l)] with O(TG) by mapping Kλl to the character

of TG associated to λ. Therefore it maps C[T (l)
2 ] to O(TG/(2)), and T

(l)−1
2− Z0(U

lf
ǫ ) to O(G0)

by (101) and Proposition 4.2. Since O(G0) = O(G)[δ−1] and T
(l)−1
2− Z0(U

lf
ǫ ) = Z0(U

lf
ǫ )[ℓl], it

follows that Z0(U
lf
ǫ ) and O(G) coincide after localization by ℓl and δ respectively. By using

the Bruhat decomposition of G as in (106) in the proof of Theorem 4.9 below, one can deduce

Z0(U
lf
ǫ ) ∼= O(G), whence Z0(L

ǫ
0,1)

∼= O(G) by injectivity of Φ1.

Let us make the following observation. Since Lǫ0,n = LA0,n ⊗A Cǫ, with LA0,n = O⊗n
A as an

A-module, and a generating system of O⊗n
A is also a generating system of LA0,n, it follows

from Proposition 2.7 and the identities 60-61 that Lǫ0,n is generated by elements of the form
α1 ⊗ . . .⊗αn, where α1, . . . , αn belong to the set Cgen of matrix coefficients lying on the first
and last columns of the matrix representations of U resA in the canonical basis of the modules

AV̟i
, i = 1, . . . ,m. Denote by α⋆k, k ∈ N, the k-th power of an element α ∈ OA.

Lemma 4.4. For all α ∈ Cgen, α
⋆l ∈ Z0(L

ǫ
0,1).

Proof. Recall that the Frobenius epimorphism η : U resA ⊗A Cǫ → U(g) in (79) has kernel
the ideal I generated by the elements Ei, Fi, Ki − 1, and (Ki; p)qi where l does not divide
p, i = 1, . . . ,m. It follows that an element of Oǫ belongs to Z0(Oǫ) = η∗(O(G)) if and only

if it vanishes on I. But this is immediate to check for the elements of the form α⋆l with
α ∈ Cgen, using that Ki is grouplike and the pure summands of ∆(Ei) and ∆(Fi) have one

component equal to 1 or K±1
i and the other component equal to Ei or Fi. For instance,

ψ⋆l̟i
(Ki − 1) = ψ̟i

(Ki)
l − 1 = ǫl(αi,̟i) − 1 = 0. Similarly, for every α ∈ Cgen we find

α⋆l(Ei) = α⊗l(∆(l)(Ei)) = 0, and α⋆l(Fi) = α⋆l(Ki − 1) = 0. ✷

We need below explicit descriptions of the centers of Oǫ(SL2) and Lǫ0,1(sl(2)) and their
Z0-subalgebras. Denote by a, b, c, d the standard generators of Oq(SL2), ie. the matrix
coefficients in the basis of weight vectors v0, v1 = F.v0 of the 2-dimensional irreducible
representation V1 of Uq(sl(2)). As above, denote by x

⋆k, k ∈ N, the k-th power of an element

x ∈ OA(SL2). The algebra OA(SL2) is generated by a, b, c, d; the monomials a⋆i ⋆ b⋆j ⋆ d⋆r

and a⋆i ⋆c⋆k ⋆d⋆r, i, j, k, r ∈ N, k > 0, form an A-basis of OA(SL2). The algebra Z0(Oǫ(SL2))

is generated by a⋆l, b⋆l, c⋆l, d⋆l; the monomials a⋆il ⋆b⋆jl ⋆d⋆rl and a⋆il ⋆c⋆kl ⋆d⋆rl form a basis
of Z0(Oǫ(SL2)), and Z(Oǫ(SL2)) is generated by Z0(Oǫ(SL2)) and the elements b⋆(l−k) ⋆c⋆k,
k = 0, . . . , l (see [45], Proposition 1.4 and the Appendix). We have the relation

(102) a⋆l ⋆ d⋆l − b⋆l ⋆ c⋆l = 1

and the Frobenius isomorphism of Parshall-Wang (see [81], Chapter 7) coincides with the
map

FrPW : O(SL2) → Z0(Oǫ(SL2))

induced by η∗; it sends the standard generators a, b, c, d of O(SL2) = O1(SL2) respectively

to a⋆l, b⋆l, c⋆l, d⋆l. Finally, we have seen that Oǫ(SL2) is a free Z0(O(SL2))-module of rank
l3 (see Theorem 2.24 (3)). In [47] it is shown that a basis of this module is formed by the

monomials ambncs
′

and bncs
′′

dr, with the integers m,n, r, s′, s′′ in the range

(103) 1 ≤ m ≤ l − 1 , 0 ≤ n, r ≤ l − 1 ,m ≤ s′ ≤ l − 1 , 0 ≤ s′′ ≤ l − r − 1.
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Now consider LA0,1(sl(2)). Recall that LA0,1 = OA as UA-modules. The algebra LA0,1(sl(2)) is
also generated by a, b, c, d; a set of defining relations is (see [31], Section 5):

(104)

ad = da , ab− ba = −(1− q−2)bd
db = q2bd , cb− bc = (1− q−2)(da − d2)
cd = q2dc , ac− ca = (1− q−2)dc

ad− q2bc = 1.

The element ω := qa + q−1d is central. Let Tk, k ∈ N, be such that Tk(x)/2 is the k-th
Chebyshev polynomial of the first type in the variable x/2. We have (see [31], Proposition
7.2, for the generalization to Lǫ0,n(sl(2))):

Lemma 4.5. Z(Lǫ0,1(sl(2))) = C[ω, bl, cl, dl]/I and Z0(L
ǫ
0,1(sl(2))) = C[(Tl(ω), b

l, cl, dl]/I,

where I is the ideal of C[ω, bl, cl, dl] generated by (Tl(ω)− dl)dl − blcl − 1.

Here bl, cl, dl are the l-th powers of b, c, d computed using the product of LA0,1(sl(2)), not
the product ⋆ of Z0(Oǫ(SL2)). The above generator of I can be interpreted as a determinant,
and ω as a quantum trace on V1.

Lemma 4.6. Viewed as elements of OA(SL2), Tl(ω)− dl = a⋆l and xl = x⋆l, x ∈ {b, c, d}.

Proof. Let α and ̟ be the simple root and fundamental weight of sl(2). In the notations

of (78) we have b = ψ−α
−̟, c = ψα−̟, d = ψ−̟; the formulas give Φ1(b

⋆l) = (q − q−1)lF l,

Φ1(c
⋆l) = (q − q−1)lElK−l, Φ1(d

⋆l) = K−l. These coincide respectively with Φ1(b
l), Φ1(c

l),

Φ1(d
l) (see (32) in [31]). By passing to the localization OA(SL2)[d

−1], and using Parshall-

Wang’s relation (102), one deduces easily Φ1(a
⋆l) = K l+(q−q−1)2lF lEl = Tl(Ω)−K

−l, where
Ω = (ǫ− ǫ−1)2FE + ǫK + ǫ−1K−1 is the Casimir element, and Tl(x)/2 is the l-th Chebyshev

polynomial of the first type in the variable x/2. We have Φ1(ω) = Ω, so Φ1(a
⋆l) = Tl(ω)−d

l.
The conclusion follows from the injectivity of Φ1. ✷

This lemma proves that we have a commutative diagram

O(SL2)
FrPW

//

Fr
((◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

Z0(Oǫ(SL2))

��

�

�

// Oǫ(SL2)

��

Z0(L
ǫ
0,1(sl(2)))

�

�

// Lǫ0,1(sl(2))

where FrPW is Parshall-Wang’s Frobenius isomorphism recalled above, Fr is the Frobenius
isomorphism introduced in [31], Definition 7.1, and the vertical arrows are the identifications
as vector spaces (the middle one proved by Proposition 4.1).

Remark 4.7. By Lemma 4.5 the monomials Tl(ω)
ibjldrl and Tl(ω)

ickldrl, for i, j, k, r ∈ N
and k > 0, form an A-basis of Z0(L

ǫ
0,1(sl(2))). It is straightforward (though cumbersome) to

express these basis elements in terms of the basis elements a⋆il ⋆ b⋆jl ⋆ d⋆rl and a⋆il ⋆ c⋆kl ⋆ d⋆rl

of Z0(Oǫ(SL2)), and conversely; this can be done by using Lemma 4.6, the formula (9) or the
inverse one (expressing ⋆ in terms of the product of L0,1, see (18) in [31]), and the formula of
the coproduct ∆: Lǫ0,1(sl(2))) → Lǫ0,2(sl(2))) restricted to Z0(L

ǫ
0,1(sl(2))) (given in Lemma

7.5 of [31]).

Since LA0,1 = OA as an A-module, the functionals ti in Proposition 2.25 can be seen as

maps ti : L
A
0,1 → A. Though the algebra structures of Oǫ and Lǫ0,1 are very different, Lǫ0,1

satisfies a result analogous to Proposition 2.25:
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Proposition 4.8. The maps ✁ti preserve Z0(L
ǫ
0,1), and they satisfy (f✁ ti)(a) = f(nia) and

(fα)✁ ti = (f ✁ ti)(α✁ ti) for every f ∈ Z0(L
ǫ
0,1), a ∈ G, α ∈ Lǫ0,1.

Proof. The first two claims follow from Proposition 2.25 and the definition Z0(L
ǫ
0,1) =

Z0(Oǫ).
The last claim follows from the case g = sl(2), as in the proof of Proposition 7.1 of

[45]. In fact it is enough to show that t(fg) = t(f)t(g) for every f ∈ Z0(L
ǫ
0,1(sl(2)), g ∈

Lǫ0,1(sl(2)); for completeness we explain this in the Appendix, see (127). A word of caution
is needed: the proof of (127) uses that ∆: Oǫ → Oǫ ⊗ Oǫ is a morphism of algebras. The
analogous property for Lǫ0,1 is that ∆ yields a morphism of algebras ∆: Lǫ0,1 → Lǫ0,2. Since
the algebra structure of Lǫ0,2 is not the product one on Lǫ0,1 ⊗ Lǫ0,1, it is not true in general
that

∑
(f),(g)(f(1)⊗f(2))(g(1)⊗g(2)) =

∑
(f),(g) f(1)g(1)⊗f(2)g(2) for every f, g ∈ Lǫ0,1. However

it holds whenever f ∈ Z0(L
ǫ
0,1), since ∆(Z0(L

ǫ
0,1)) ⊂ Z0(L

ǫ
0,1) ⊗ Z0(L

ǫ
0,1) and therefore

f(2) ∈ Z0(L
ǫ
0,1) = Z0(Oǫ) commutes in Lǫ0,2 with any g(1) ∈ Lǫ0,1 = Oǫ.

It is enough to prove the identity t(fg) = t(f)t(g) when f ranges in a set of generators of

the algebra Z0(L
ǫ
0,1(sl(2))). So one can take f among, say, Tl(ω) − dl = a⋆l and xl = x⋆l,

x ∈ {b, c, d} (using Lemma 4.5). By (9) and Proposition 6.1 in the Appendix we have

t(fg) =
∑

(R),(R)

t
(
R(2′)S(R(2))✄ f

)
t
(
R(1′) ✄ g ✁R(1)

)
.

Expanding coproducts and using that R−1 = (S ⊗ id)(R) we deduce

t(fg) =
∑

(f),(R),(R)

t
(
f(1)

) 〈
f(2), R(2′)S(R(2))

〉
t
(
R(1′) ✄ g ✁R(1)

)

=
∑

(f),(R),(R)

t
(
f(1)

)
t

(〈
f(2), R(2′)

〉
R(1′) ✄ g ✁

〈
f(3), S(R(2))

〉
R(1)

)

=
∑

(f)

t(f(1)) t

(
S−1(Φ−(f(2)))✄ g ✁ S−2(Φ−(f(3)))

)

=
∑

(f)

t(f(1))

〈
g, S−2(Φ−(f(3)))wS

−1(Φ−(f(2)))

〉

=
∑

(f)

t(f(1)) ε

(
S−2(Φ−(f(3)))

)
ε

(
S−1(Φ−(f(2)))

)
t(g)

where w ∈ UΓ is the quantum Weyl group element dual to t (see Section 6.1), and in the last
equality we used that Φ− maps Z0(Oǫ) into Z0(Uǫ) (see Theorem 2.24 (2)), which acts on
Γ-modules by the trivial character (the counit) ε : Uǫ → C. By (119)-(120) in the Appendix

we have t(a⋆l) = t(d⋆l) = 0 and t(b⋆l) = 1, t(c⋆l) = −1. Now the computation of t(fg)

follows easily. For instance, taking f = bl = b⋆l, by using ∆(b⋆l) = a⋆l ⊗ b⋆l + b⋆l ⊗ d⋆l and

∆(d⋆l) = c⋆l ⊗ b⋆l + d⋆l ⊗ d⋆l we get

t(blg) = ε

(
S−2(Φ−(b⋆l))

)
ε

(
S−1(Φ−(c⋆l))

)
t(g) + ε

(
S−2(Φ−(d⋆l))

)
ε

(
S−1(Φ−(d⋆l))

)
t(g)

Since b⋆l ∈ Oǫ(U+), Φ−(b⋆l) = 0. Also, it is immediate from the definition of Φ− that

Φ−(d⋆l) = Φ−(d)l = Ll; alternatively, one can bypass this computation by observing that Φ−

sets an isomorphism from Oǫ(TG) = Oǫ(B+)∩Oǫ(B−) to C[L±1] = Uǫ(b+)∩Uǫ(b−), mapping
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a generator d to L or L−1. We have ε(Ll) = 1, and therefore

t(blg) = t(g) = t(bl)t(g).

The other cases f = Tl(ω)− dl, cl, dl are similar. ✷

Theorem 4.9. Lǫ0,n is a free Z0(L
ǫ
0,n)-module of rank ln.dimg, and (Lǫ0,n)

Uǫ is a Noetherian
ring and a finite, whence Noetherian, Z0(L

ǫ
0,n)-module.

Proof. We already proved the first claim in Proposition 4.1, and that Lǫ0,n is a Noetherian

Z0(L
ǫ
0,n)-module. For the second claim, it follows that the Z0(L

ǫ
0,n)-submodule (Lǫ0,n)

Uǫ is

necessarily finitely generated. But Z0(L
ǫ
0,n) being Noetherian, (Lǫ0,n)

Uǫ is then a Noetherian
Z0(L

ǫ
0,n)-module and a Noetherian ring.

For the sake of clarity let us provide a self-contained proof of the first claim, not invoking
directly [45, 27] or [6, 22], but applying the same arguments directly on Lǫ0,n. Since Lǫ0,n
and L⊗n

0,1 coincide as modules over Z0(L
ǫ
0,n) = Z0(L

ǫ
0,1)

⊗n by Proposition 4.1, the result will
follow from the case n = 1. Then we argue in four steps. First, using Theorem 2.1 we show
that a certain localization of Lǫ0,1 is a free module of rank ldimg. Then, assuming that Lǫ0,1
is finitely generated and projective, we explain why it has constant rank ldimg (this is very
classical). Thirdly, we prove that Lǫ0,1 is finitely generated and projective as in Theorem 7.2
of [45]. Finally we obtain that it is a free module as in [27].

Recall Proposition 4.2: Uǫ is a free Φ1(L
ǫ
0,1[d

−l])-module of rank 2m (note that Lǫ0,1[d
−l] =

Lǫ0,1[d
−1]), and Z0(Uǫ) is free over T

(l)−1
2− Z0(U

lf
ǫ ) = Φ1(Z0(L

ǫ
0,1)[d

−l]) of rank 2m. Since Uǫ

is also free of rank ldimg over Z0(Uǫ) (Theorem 2.22 (1)), it is free over Φ1(Z0(L
ǫ
0,1)[d

−l])

of rank 2mldimg. The decomposition being unique, Φ1(L
ǫ
0,1[d

−l]) is free of rank ldimg over

Φ1(Z0(L
ǫ
0,1)[d

−l]), and injectivity of Φ1 implies that Lǫ0,1[d
−l] is free of rank ldimg over

Z0(L
ǫ
0,1)[d

−l].
Assume now that Lǫ0,1 is finitely generated and projective. Let us show that its rank is

ldimg. The localization (Lǫ0,1)P of Lǫ0,1 at any prime ideal P of Z0(L
ǫ
0,1) is a free module

over Z0(L
ǫ
0,1)P ([88], Proposition 2.12.15); the ranks of such modules are finite in number

([88], Proposition 2.12.20). If these ranks are all equal, then, by definition, it is the rank of
Lǫ0,1 over Z0(L

ǫ
0,1). This happens if Z0(L

ǫ
0,1) has no non-trivial (ie. 6= 1) idempotent ([88],

Corollary 2.12.23), which is the case since it has no non-trivial zero divisors. To compute the

rank, suppose P does not contain dl = ψl−ρ. Such ideals P are in 1-1 correspondence with the

prime ideals of Z0(L
ǫ
0,1)[d

−l] by the natural ring monomorphism Z0(L
ǫ
0,1) → Z0(L

ǫ
0,1)[d

−l].
The set S = Z0(L

ǫ
0,1) \ P is multiplicatively closed, and we have also a ring morphism

Z0(L
ǫ
0,1)[d

−l] → S−1Z0(L
ǫ
0,1), which is also an injection (there are no zero divisors in Z0(L

ǫ
0,1),

whence in S). Then

(105) (Lǫ0,1)P = S−1Lǫ0,1 = Lǫ0,1[d
−l]⊗Z0(Lǫ

0,1)[d
−l] S

−1Z0(L
ǫ
0,1)

shows that (Lǫ0,1)P has over Z0(L
ǫ
0,1)P = S−1Z0(L

ǫ
0,1) the same rank ldimg as Lǫ0,1[d

−l] over

Z0(L
ǫ
0,1)[d

−l]. This proves our claim.
In order to show that Lǫ0,1 is finitely generated and projective over Z0(L

ǫ
0,1) it is enough to

show it is finite locally free, ie. there are elements di ∈ Z0(L
ǫ
0,1) such that the localizations

Lǫ0,1[d
−1
i ] are finite free Z0(L

ǫ
0,1)[d

−1
i ]-modules, and Maxspec(Z0(L

ǫ
0,1)) is covered by the open

sets U(di) made of the ideals not containing di (see Lemma 77.2 of [94]).

We have seen above that Lǫ0,1[d
−l] is free of rank ldimg over Z0(L

ǫ
0,1)[d

−l]. By Remark 4.3,

Z0(L
ǫ
0,1)[d

−l] ∼= Z0(U
lf
ǫ )[ℓl] is isomorphic to O(G0), and O(G0) = O(G)[δ−1]. Now, given
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w ∈ W with a reduced expression si1 . . . sik , put tw = ti1 . . . tik . Let w be represented by
nw = ni1 . . . nik in N(TG). By Proposition 4.8 we have (f ✁ tw)(x) = f(nwx) for every
f ∈ Z0(L

ǫ
0,1), x ∈ G. Then

(106) Z0(L
ǫ
0,1)[d

−l]✁ tw ∼= O(n−1
w G0) ∼= O(G)[(δ ✁ tw)

−1].

If b1, . . . , br (r := ldimg) is a basis of Lǫ0,1[d
−l] over Z0(L

ǫ
0,1)[d

−l], then Lǫ0,1[d
−l] ✁ tw is free

over Z0(L
ǫ
0,1)[(d ✁ tw)

−l] ∼= O(n−1
w G0) with basis b1 ✁ tw, . . . , br ✁ tw. Consider the Bruhat

decomposition of G: any g ∈ G can be written in the form g = b1nb2, where b1, b2 ∈ B−,
n ∈W . Hence g = nn−1b1nb2 ∈ nB+B− = nG0, and therefore

G = ∪w∈W (B−nwB−) = ∪w∈W (nwG
0).

For every w ∈W put

dlw := dl ✁ tw.

Under the isomorphism of Z0(L
ǫ
0,1) with O(G), we thus get that Maxspec(Z0(L

ǫ
0,1)) is covered

by the open sets U(dlw)
∼= nwG

0, and Lǫ0,1[d
−l
w ] is finite free over Z0(L

ǫ
0,1)[d

−l
w ]. Therefore Lǫ0,1

is finitely generated and projective over Z0(L
ǫ
0,1).

Finally, let us explain why Lǫ0,1 is free over Z0(L
ǫ
0,1), following the arguments of [27]. Let R

be a commutative Noetherian ring, put X = Maxspec(R), and let P be an R-module. Denote
by RI , PI the localizations of R, P at a maximal ideal I ∈ X. Define the f-rank of P as f-
rank(P ) = infI∈X{ f-rankRI

(PI)}, where f-rankRI
(PI) = sup{r ∈ N, R⊗r

I ⊂ PI} ∈ N ∪ {+∞}
(ie. the maximal dimension of a free summand of PI). Bass’ Cancellation theorem asserts that
if P is projective and f-rank(P ) > dim(X), and P⊕Q ∼=M⊕Q for some R-modules Q andM
such that Q is finitely generated and projective, then P ∼=M (see [10], IV.3.5 and pages 167
and 170, taking A = R, or [85], section 11.7.13). Let us apply this to R = O(G) and P = Lǫ0,1.

We proved above that f-rankRI
(PI) = ldimg, a constant, and we have ldimg > dimg = dim(G).

By a result of Marlin [84], G being semisimple and simply connected the Grothendieck ring
K0(O(G)) is isomorphic to Z. Therefore Lǫ0,1 ⊕ Q ∼= O(G)r for some free O(G)-module Q
and r ∈ N. Then Bass’ Cancellation implies Lǫ0,1 is free over Z0(L0,1) ∼= O(G). ✷

5. Proof of Theorem 1.3

We begin with the following lemma, interesting by itself.

Lemma 5.1. Z(Lǫ0,n) is a finite Z0(L
ǫ
0,n)-module and a Noetherian ring. Therefore the ring

Z(Lǫ0,n) is integral over Z0(L
ǫ
0,n).

Proof. We know by Proposition 4.1 that Z0(L
ǫ
0,n) is a Noetherian ring, and Lǫ0,n is a finite

Noetherian Z0(L
ǫ
0,n)-module. Therefore the submodule Z(Lǫ0,n) is finitely generated. Being

finite over Z0(L
ǫ
0,n), it is necessarily a Noetherian ring (by eg. Proposition 7.2 of [7]).

Let x ∈ Z(Lǫ0,n). The Z0(L
ǫ
0,n)-submodule Z0(L

ǫ
0,n)[x] of L

ǫ
0,n is finitely generated by the

same argument. Using the fact that an element x is integral over Z0(L
ǫ
0,n) if and only if

Z0(L
ǫ
0,n)[x] is a finitely generated Z0(L

ǫ
0,n)-module (by eg. Proposition 5.1 of [7]), this proves

the last claim. ✷

We will use the following notations. Let A be a ring with no non-trivial zero divisors. The
center Z = Z(A) is a commutative integral domain. We denote by Q(Z) its field of fractions,
and put

Q(A) := Q(Z)⊗Z A.

It is an algebra over its center Q(Z). Since Lǫ0,n has no non-trivial zero divisors ([31], Propo-

sition 6.30), we can take A = Lǫ0,n, or A = (Lǫ0,n)
Uǫ .
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By the lemma Z(Lǫ0,n) is finite over Z0(L
ǫ
0,n), so the ring Z(Lǫ0,n)⊗Z0(Lǫ

0,n)
Q(Z0(L

ǫ
0,n)) is

a field. Necessarily it coincides with Q(Z(Lǫ0,n)), and therefore

(107) Q(Lǫ0,n) = Q(Z(Lǫ0,n))⊗Z(Lǫ
0,n)

Lǫ0,n = Q(Z0(L
ǫ
0,n))⊗Z0(Lǫ

0,n)
Lǫ0,n.

Recall that we denote by N the number of positive roots of g.

Theorem 5.2. (Theorem 1.3(1)) Q(Lǫ0,n) is a division algebra and a central simple algebra

of PI degree lNn.

Proof. It follows from (107) and Theorem 4.9 that Q(Lǫ0,n) is a vector space of dimension

ln.dimg over Q(Z0(L
ǫ
0,n)), and therefore has finite dimension over its center Q(Z(Lǫ0,n)). Be-

cause Lǫ0,n has no non-trivial divisors ([31], Proposition 6.30) andQ(Lǫ0,n) is finite-dimensional
over Q(Z(Lǫ0,n)), Q(Lǫ0,n) is a division algebra, whence a central simple algebra. By classical
theory (see eg. Section 13.3.5 of [85], or [88], Corollary 2.3.25) there is a finite extension F
of Q(Z(Lǫ0,n)), a splitting field, such that

F⊗Q(Z(Lǫ
0,n))

Q(Lǫ0,n) =Md(F)

where d ∈ N, the PI degree of Q(Lǫ0,n), satisfies

(108) d2 = [Q(Lǫ0,n) : Q(Z(Lǫ0,n))] =
[Q(Lǫ0,n) : Q(Z0(L

ǫ
0,n))]

[Q(Z(Lǫ0,n)) : Q(Z0(Lǫ0,n))]
.

We have to show d2 = l2nN . We will obtain this equality by proving firstly that d2 ≥ l2nN ,
and then d2 ≤ l2nN .

In order to show that d2 ≥ l2nN , it is enough to exhibit an irreducible representation
V of Lǫ0,n of dimension k := lnN . Indeed, the representation map ρV : Lǫ0,n → EndC(V )
being surjective, given basis elements v1, . . . , vk2 ∈ End(V ), and elements α1, . . . , αk2 ∈ Lǫ0,n
such that ρ(αi) = vi for every i ∈ {1, . . . , k2}, necessarily α1, . . . , αk2 form a free family of
Q(Lǫ0,n). For, if there was a non trivial relation

∑
i ziαi = 0, with zi ∈ Q(Z0(L

ǫ
0,n)), by

clearing denominators and then applying the representation map ρV we would get a non
trivial relation in EndC(V ) between v1, . . . , vk2 .

Now, by Theorem 2.22 (1) (see [43], section 20), the dimension of a generic irreducible

representation space of Uǫ is l
N . Because Uǫ = T−1

2−U
lf
ǫ [T/T2] (Proposition 4.2), an irreducible

representation of Uǫ yields an irreducible representation of U lfǫ . Moreover, the tensor product

of n irreducible representation spaces of U lfǫ of dimension lN is an irreducible representation

space of (U lfǫ )⊗n of dimension lnN (see eg. Theorem 3.10.2 in [51]). Applying the linear
isomorphism ψn = Φn ◦ (Φ−1

1 )⊗n in (23) thus provides an irreducible representation of Lǫ0,n
of dimension lnN .

It remains to show d2 ≤ l2nN , which by [Q(Lǫ0,n) : Q(Z0(L
ǫ
0,n))] = ln(2N+m) is equivalent

to [Q(Z(Lǫ0,n)) : Q(Z0(L
ǫ
0,n))] ≥ lmn. For this, it is enough to exhibit an extension of

Q(Z0(L
ǫ
0,n)) contained in Q(Z(Lǫ0,n)) and of degree lmn. There is a very natural one, which

we denote by Q(Ẑ0(L
ǫ
0,n)) and is constructed as follows. Consider for every λ ∈ P+ the

matrices

Mλ := (
AVλφ

el
ek
)k,l ∈ End(AVλ)⊗ LA0,n , M

(i)
λ := ((

AVλφ
el
ek
)(i))k,l ∈ End(AVλ)⊗ LA0,n,

where i = 1, . . . , n, and as usual
AVλφ

el
ek

is a matrix coefficient of AVλ, {ek} the canonical

basis of AVλ, and (Vλφ
el
ek
)(i) := 1⊗(i−1) ⊗ Vλφ

el
ek

⊗ 1⊗(n−i). Set

λω := Tr(πVλ(ℓ)Mλ) , λω
(i) := Tr(πVλ(ℓ)M

(i)
λ )
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where Tr is the standard trace on End(Vλ). Clearly λω ∈ LA0,1, λω
(i) ∈ LA0,n. By Proposition

4.8 and 6.24 of [31], the family of elements
∏n
i=1 λiω

(i), where λ1, . . . , λn ∈ P+, is a basis of
Z(L0,n); moreover the Alekseev map Φn affords an isomorphism from Z(L0,n) to Z(Uq)

⊗n,

and Φn(λω
(i)) = (Φ1(λω))

(i). For n = 1, specializing q to ǫ it follows

(109) Z1(Uǫ) = V ect {Φ1(λω), λ ∈ P+} ,

where Z1(Uǫ) is defined before Theorem 2.22. Then, for every i = 1, . . . , n define

Z0,(i)(L
ǫ
0,n) := Z0(L

ǫ
0,n)[{λω

(i), λ ∈ P+}]

and let Ẑ0(L
ǫ
0,n) ⊂ Z(Lǫ0,n) be the algebra generated by Z0,(1)(L

ǫ
0,n), . . . ,Z0,(n)(L

ǫ
0,n). The

fields Q(Z0,(i)(L
ǫ
0,n)) are n linearly disjoint extensions of Q(Z0(L

ǫ
0,n)), so

[Q(Ẑ0(L
ǫ
0,n)) : Q(Z0(L

ǫ
0,n))] =

n∏

i=1

[Q(Z0,(i)(L
ǫ
0,n)) : Q(Z0(L

ǫ
0,n))].

Now, by Proposition 4.2 we know that Φ1 affords isomorphisms Q(Z0(L
ǫ
0,1))

∼= Q(Z0(U
lf
ǫ ))

and Q(Z(Lǫ0,1))
∼= Q(Z(U lfǫ )), and moreover

(110) Q(Z0(Uǫ)) = Q(Z0(U
lf
ǫ ))(T (l)/T

(l)
2 ) , Q(Z(Uǫ)) = Q(Z(U lfǫ ))(T (l)/T

(l)
2 ).

Computing via the field embedding Φ⊗n
1 : Q(Ẑ0(L

ǫ
0,n)) → Q(Z(U⊗n

ǫ )), we deduce

[Q(Z0,(i)(L
ǫ
0,n)) : Q(Z0(L

ǫ
0,n))]

= [Φ⊗n
1 (Q(Z0,(i)(L

ǫ
0,n))) : Φ

⊗n
1 (Q(Z0(L

ǫ
0,n)))]

=
[
Q(Z0(U

lf
ǫ )⊗n)[{(Φ1(λω))

(i), λ ∈ P+, i = 1, . . . , n}] : Q(Z0(U
lf
ǫ )⊗n)

]

=
[
Q(Z0(Uǫ)

⊗n)[{(Φ1(λω))
(i), λ ∈ P+, i = 1, . . . , n}] : Q(Z0(Uǫ)

⊗n)
]

= lm.

The second and third equalities follow from (110) and the properties of Φ1 recalled be-
fore it, and the last equality follows from Theorem 2.24 (2) and (109). As a result we

have [Q(Ẑ0(L
ǫ
0,n)) : Q(Z0(L

ǫ
0,n))] = lmn, whence [Q(Z(Lǫ0,n)) : Q(Z0(L

ǫ
0,n))] ≥ lmn. Since

[Q(Lǫ0,n) : Q(Z0(L
ǫ
0,n))] = ln(m+2N), by (108) we obtain d2 ≤ l2nN , which concludes the proof.

✷

Remark 5.3. By the degree computation above, it follows [Q(Z(Lǫ0,n)) : Q(Z0(L
ǫ
0,n))] = lmn,

whence Q(Z(Lǫ0,n)) = Q(Ẑ0(L
ǫ
0,n)). We expect Z(Lǫ0,n)) = Ẑ0(L

ǫ
0,n).

Theorem 5.4. (Theorem 1.3(2)) Q((Lǫ0,n)
Uǫ), n ≥ 2, is a division algebra and a central

simple algebra of PI degree lN(n−1)−m.

Proof. The center of (Lǫ0,n)
Uǫ contains Z(Lǫ0,n), so the finite dimensionality of Q(Lǫ0,n) over

Q(Z(Lǫ0,n)) implies the finite dimensionality of Q((Lǫ0,n)
Uǫ) over its center. Since it has no

non-zero divisors, this proves Q((Lǫ0,n)
Uǫ) is a division algebra.

Now denote by ∆(n) : Oǫ → O⊗n
ǫ , n ≥ 2, the n-fold coproduct, ie. ∆(2) := ∆, the standard

coproduct of Oǫ, and ∆(n) := (id ⊗∆) ◦ ∆(n−1) for n ≥ 3. Identifying Lǫ0,n with O⊗n
ǫ as a

vector space, we consider ∆(n) as a map ∆(n) : Lǫ0,1 → Lǫ0,n. It is an algebra morphism ([31],

Proposition 6.18), injective because (ε⊗(n−1) ⊗ id)∆(n) = id. Then it extends uniquely to
the fraction algebra Q(Lǫ0,1). As noted above Q(Lǫ0,1) = Q(Z0(L

ǫ
0,1)) ⊗Z0(Lǫ

0,1)
Lǫ0,1. Since
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Z0(L
ǫ
0,1) = Z0(Oǫ) is a Hopf subalgebra of Oǫ ([45], Proposition 6.4), ∆(n) maps Z0(L

ǫ
0,1) to

Z0(L
ǫ
0,1)

⊗n. Then, extending the scalars of ∆(n)(Q(Lǫ0,1)) by the field Q(Z(Lǫ0,n)), consider
the algebra

QZ(∆
(n)(Lǫ0,1)) := Q(Z(Lǫ0,n))⊗∆(n)(Z0(Lǫ

0,1))
∆(n)(Lǫ0,1)

= Q(Z(Lǫ0,n))⊗∆(n)(Q(Z0(Lǫ
0,1)))

∆(n)(Q(Lǫ0,1))

=
(
Q(Z(Lǫ0,n))⊗∆(n)(Q(Z0(Lǫ

0,1)))
∆(n)(Q(Z(Lǫ0,1)))

)

⊗∆(n)(Q(Z(Lǫ
0,1)))

∆(n)(Q(Lǫ0,1)).

By Proposition 5.2, ∆(n)(Q(Lǫ0,1)) is a ∆(n)(Q(Z(Lǫ0,1)))-central simple algebra. The left

factor is a field, so QZ(∆
(n)(Lǫ0,1)) is a central simple algebra over it (see eg. [88], Theorem

1.7.27, or [95], Lemma 4.9). Note that the left factor can also be written as

Q̃(Z(Lǫ0,n)) := Q(Z(Lǫ0,n))⊗∆(n)(Z0(Lǫ
0,1))

∆(n)(Z(Lǫ0,1))

for it contains Q̃(Z(Lǫ0,n)), it is contained in its fraction field, and Q̃(Z(Lǫ0,n)) is a field
because Z(Lǫ0,1) is finite over Z0(L

ǫ
0,1) and has no non trivial zero divisors. Note that

[Q̃(Z(Lǫ0,n)) : Q(Z(Lǫ0,n))] = lm

We proved in Proposition 6.19 of [31] that the ring (LA0,n)
UA is the centralizer of ∆(n)(LA0,1)

in LA0,n; the same arguments show that (Lǫ0,n)
Uǫ is the centralizer of ∆(n)(Lǫ0,1) in Lǫ0,n. So

the algebra
Q((Lǫ0,n)

Uǫ) := Q(Z(Lǫ0,n))⊗Z(Lǫ
0,n)

(Lǫ0,n)
Uǫ .

is the centralizer of QZ(∆
(n)(Lǫ0,1)) in Q(Lǫ0,n). Since the latter is simple, we can apply the

double centralizer theorem (see eg. [88], Theorem 7.1.9, or [95], Theorem 7.1): Q((Lǫ0,n)
Uǫ)

is a simple algebra, we have

[Q((Lǫ0,n)
Uǫ) : Q(Z(Lǫ0,n))] =

[Q(Lǫ0,n) : Q(Z(Lǫ0,n))]

[QZ(∆(n)(Lǫ0,1)) : Q(Z(Lǫ0,n))]
= l2nN−(2N+m),

and the centralizer of Q((Lǫ0,n)
Uǫ) is QZ(∆

(n)(Lǫ0,1)). In particular Q((Lǫ0,n)
Uǫ) has center

Q((Lǫ0,n)
Uǫ) ∩QZ(∆

(n)(Lǫ0,1)), which is easily shown to be Q̃(Z(Lǫ0,n)). It then follows

[Q((Lǫ0,n)
Uǫ) : Q̃(Z(Lǫ0,n))] =

[Q((Lǫ0,n)
Uǫ) : Q(Z(Lǫ0,n))]

[Q̃(Z(Lǫ0,n)) : Q(Z(Lǫ0,n))]

= l2nN−(2N+m).l−m = l2(N(n−1)−m).

Therefore Q((Lǫ0,n)
Uǫ) is a central simple algebra of PI degree lN(n−1)−m. ✷

6. Appendix

6.1. Quantum Weyl group. We recall some of the formulas of [34]. Let eq(z) be the formal
power series in z with coefficients in C(q) defined by:

(111) eq(z) =

+∞∑

n=0

zn

(n)q!
.

We first consider the case of g = sl(2). As explained in [31], Section 3, the Cartan element

H ∈ g defines an element of Uq(sl(2)). Viewed as elements of Uq we have L = qH/2. The
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series Θ = qH⊗H/2 defines an element of Uq(sl(2))
⊗̂2, its image under multiplication being

qH
2/2. The R-matrix can be expressed as R = ΘR̂ where R̂ = eq−1((q − q−1)E ⊗F ) is a well

defined element of U⊗̂2
q . Consider the Lusztig [75] braid group automorphism of Uq(sl(2)),

defined by

(112) T (L) = L−1, T (E) = −FK−1, T (F ) = −KE.

For every x ∈ Uq(sl(2)) it satisfies:

(113) ∆(T (x)) = R̂−1(T ⊗ T )(∆(x))R̂.

Define the quantum Weyl group element ŵ ∈ Uq(sl(2)) by Saito’s formula [90]:

(114) ŵ = eq−1(F )q−H
2/4eq−1(−E)q−H

2/4eq−1(F )q−H/2.

For every x ∈ Uq(sl(2)) it satisfies:

T (x) = ŵxŵ−1,(115)

∆(ŵ) = R̂−1(ŵ ⊗ ŵ),(116)

ŵ2 = qH
2/2ξθ,(117)

where θ ∈ Uq(sl(2)) is the ribbon element, and ξ ∈ Uq(sl(2)) is the central group element

whose value on the type 1 simple module Vk of Uadq (sl(2)) of dimension k + 1 is the scalar

endomorphism (−1)kidVk .
In order to compare our setting to the one of [45] we need an explicit formula of ŵ. Consider

the basis vectors v0, . . . , vk of Vk such that:

K.vj = ǫk−2jvj ,
F.vj = vj+1 if j < k, F.vk = 0,
E.vj = [j]ǫ[k − j + 1]ǫvj−1 if j > 0, E.v0 = 0.

Setting v′j = vj/[j]! and using (112), (115) and (117), we obtain:

(118) ŵv′j = (−1)jq−j(k−j−1)−kv′k−j.

In [45] another quantum Weyl group element w is defined. It is dual to the Vaksman-
Soibelman functional t : Oq(SL2) → C(q) of [93, 92], that is, t(α) = 〈α,w〉 for all α ∈
Oq(SL2). By comparing (118) with the formulas defining the action of t in Section 1.7 of
[45], we find

w = ξŵK

and the basis vectors wpr of [45], where p ∈ (1/2)N and r ∈ {−p,−p + 1, . . . , p − 1, p}, are
related to the vectors v′j above as follows:

v′j = λjw
p
r

where k = 2p, j = p− r, λ0 = 1, λ1 = [k]q−k, and

λj =
[k]!

[j]![k − (j − 2)]!
qj(j+1)−j(k+2), j ≥ 2.
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Explicit formulas of the evaluation of t on basis vectors of Oq(SL2) can be computed. We
get:

t(ã⋆m ⋆ b̃⋆n ⋆ d̃⋆p) = δm,pq
−np

p∏

i=1

(1− q−2i),(119)

t(ã⋆m ⋆ c̃⋆n ⋆ d̃⋆p) = (−1)nδm,pq
−n(p+1)

p∏

i=1

(1− q−2i)(120)

where

(121) ã = a , b̃ = qb , c̃ = q−1c , d̃ = d

and as usual a, b, c, d are the standard generators of Oq(SL2), ie. the matrix coefficients in the
basis of weight vectors v0, v1 of the 2-dimensional irreducible representation V1 of Uq(sl(2))

such that K.v0 = qv0 and v1 = F.v0. Here we have introduced the generators ã, . . . , d̃ to
facilitate the comparison with the formulas in [45]; these generators come naturally in their
setup because they use different generators Ei and Fi of Uq(g), which in our notations can

be written respectively as K−1
i Ei and FiKi.

The formulas (119)-(120) can be shown by two independent methods. The first uses a
definition of t as a GNS state associated to an infinite dimensional representation of Oq(SL2),
as recalled in Section 1.6 of [45]. The second is to write eg.

(122) t(ã⋆m ⋆ b̃⋆n ⋆ d̃⋆p) =
〈
ã⊗m ⊗ b̃⊗n ⊗ d̃⊗p,∆(m+n+p−1)(w)

〉

and to use explicit expressions of ∆(m+n+p−1)(w) when represented on V
⊗(m+n+p)
1 . In general

one can check that

(123) ∆(n)(ω̂) =
(
∆(n−1) ⊗ id

)(
R̂−1

)((
∆(n−2) ⊗ id

)(
R̂−1

)
⊗ id

)

. . .
(
(∆⊗ id)

(
R̂−1

)
⊗ id⊗(n−3)

)(
R̂−1 ⊗ id⊗(n−2)

)
ω̂⊗n.

By (118) or (119)-(120) we see that ŵ (or w) and t are well-defined on the integral forms,

ŵ ∈ UΓ , t : OA(SL2) → A.

We now consider the case where g is of rank m ≥ 2. To each simple root αi, 1 ≤ i ≤ m,
is associated the subalgebra of Uq generated by Ei, Fi, Li, L

−1
i . It is a copy of Uqi(sl(2)),

where qi = qdi . Let ŵi be the corresponding quantum Weyl group element in Uq = Uq(g),
defined by Saito’s formula (114), replacing H, E, F by Hi, Ei and Fi. Also, denote by
νi : Oq → Oqi(SL2) the projection map dual to the inclusion Uqi(sl(2)) ⊗C(qi) C(q) →֒ Uq,
and put ti = t ◦ νi. Let wi be the corresponding quantum Weyl group element in Uq, ie.
ti(α) = 〈α,wi〉 for all α ∈ Oq. On integral forms they yield well-defined elements ŵi, wi ∈ UΓ

and ti : OA → A (see [45], Proposition 5.1, and [77] for a different construction). They satisfy
the defining relations of the braid group B(g) of g [70]:

ŵiŵjŵi = ŵjŵiŵj if aijaji = 1

(ŵiŵj)
k = (ŵjŵi)

k for k = 1, 2, 3 if aijaji = 0, 2, 3

and similarly by replacing ŵi with wi, or with ti (see [92] for the latter). The Weyl group
W = W (g) = N(TG)/TG is generated by the reflexions si associated to the simple roots αi.
Denote by ni ∈ N(TG) a representative of si. Let w ∈ W and denote by w = si1 . . . sik
a reduced expression. Because of the braid group relations the elements ŵ = ŵi1 . . . ŵik ,
w = wi1 . . . wik and the functional tw = ti1 . . . tik do not depend on the choice of reduced
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expression. The Lusztig [75] braid group automorphism Tw : Γ → Γ associated to w satisfies
(see [45]):

Tw(x) = ŵxŵ−1, x ∈ Γ.

Let w0 be the longest element in W . We have

(124) ∆(ŵ0) = R̂−1(ŵ0 ⊗ ŵ0)

where as usual R = ΘR̂.

6.2. Regular action on Oǫ. The following result is proved in Section 1.10 of [45]. For
completeness let us give a (different) proof. Recall from (80) that we may identify Z0(Oǫ)
with O(G).

Proposition 6.1. For every f ∈ Z0(Oǫ), g ∈ Oǫ we have

ti(f) = f(ni)(125)

ti(f ⋆ g) = ti(f)ti(g).(126)

Proof. It is sufficient to prove the results for SL2 because νi : Oǫ → Oǫ(SL2) is a morphism
of Hopf algebras and νi(Z0(Oǫ)) ⊂ Z0(Oǫ(SL2)). In this case (125) can be proved by using
(119)-(120), evaluating t on basis elements of Z0(Oǫ(SL2)) as is done in Lemma 1.5 (a) of
[45]. Such a basis is formed by monomials like in (119)-(120), with all exponents divisible by
l; then for instance

t(ã⋆ml ⋆ b̃⋆nl ⋆ d̃⋆pl) = δp,0δm,0 = ambndp(n)

where a, . . . , d are the generators of O(G) = O1(G) corresponding to a, . . . , d, and we take

n =

(
0 1

−1 0

)

as representative of the reflexion s generating the Weyl groupW (sl(2)). Here is an alternative
proof of (125): (126) shows that t is a homomorphism on Z0(Oǫ(SL2)), so by proving (126)

at first one is reduced to check (125) on the generators a⋆l, . . . , d⋆l, which is easy by means
of (122) and (124).

We provide a proof of (126) that we find more conceptual than the one in Lemma 1.5 (b)
of [45] (which uses again (119)-(120)). As above let us denote w = ξŵK. For any f, g ∈ Oǫ

we have

t(f ⋆ g) = (f ⊗ g)(∆(w))

= (f ⊗ g)
(
R̂−1(w ⊗ w)

)

=
∑

(R̂−1)

f
(
(R̂−1)(1)w

)
g
(
(R̂−1)(2)w

)

=
∑

(R̂−1),(f)

f(1)

(
(R̂−1)(1)

)
f(2)(w) g

(
(R̂−1)(2)w

)

=
∑

(f)

f(2)(w) g
(
(f(1) ⊗ id)(R̂−1)w

)
.

Assume now f ∈ Z0(Oǫ(SL2)). Since Z0(Oǫ(SL2)) is a Hopf subalgebra of Oǫ(SL2) we have
f(1) ∈ Z0(Oǫ(SL2)). From Theorem 2.24 (2) we deduce

(f(1) ⊗ id)(R̂−1) ∈ Uǫ(n−) ∩ Z0(Uǫ).
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Denote by z this element. Note that from its expression we have ǫ(z) = ǫ(f(1)). Now
g(zw) =

∑
(g) g(1)(z)g(2)(w), but g(1) is a linear combination of matrix elements of Γ-modules,

on which Z0(Uǫ) acts by the trivial character. Therefore

g(zw) =
∑

(g) ǫ(z)g(1)(1)g(2)(w) = ǫ(z)g(w) = ǫ(f(1))g(w)

and eventually

t(f ⋆ g) =
∑

(f)

f(2)(w)ǫ(f(1))g(w) = t(f)t(g).

This concludes the proof. ✷

For the sake of completeness, let us show how this result implies:

Proof of Proposition 2.25 (ie. Proposition 7.1 of [45]). We have f ✁ ti =
∑

(f) ti(f(1))f(2),

f ∈ Z0(Oǫ). Since Z0(Oǫ) is a Hopf subalgebra of Oǫ, f(2) ∈ Z0(Oǫ) and therefore the maps
✁ti : Oǫ → Oǫ preserve Z0(Oǫ). Moreover, (f ✁ ti)(a) =

∑
(f) f(1)(ni)f(2)(a) = f(nia), a ∈ G,

by (125).
It remains to show that (f ⋆ α) ✁ ti = (f ✁ ti)(α ✁ ti) for every f ∈ Z0(Oǫ), α ∈ Oǫ. We

have

(f ⋆ g)✁ ti =
∑

(f⋆g) ti
(
(f ⋆ g)(1)

)
(f ⋆ g)(2) =

∑

(f),(g)

ti
(
f(1) ⋆ g(1)

)
f(2) ⋆ g(2)

=
∑

(f),(g)

t
(
νi(f(1))νi(g(1))

)
f(2) ⋆ g(2)

=
∑

(f),(g)

t
(
νi(f(1))

)
t
(
νi(g(1))

)
f(2) ⋆ g(2)(127)

using that νi is a homomorphism in the third equality, and (126) in the last one. The result
is just (f ✁ ti)(g ✁ ti). ✷
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