Total number of births on the negative half-line of the binary branching Brownian motion in the boundary case - Archive ouverte HAL
Article Dans Une Revue Electronic Communications in Probability Année : 2022

Total number of births on the negative half-line of the binary branching Brownian motion in the boundary case

Résumé

The binary branching Brownian motion in the boundary case is a particle system on the real line behaving as follows. It starts with a unique particle positioned at the origin at time $0$. The particle moves according to a Brownian motion with drift $\mu = 2$ and diffusion coefficient $\sigma^2 = 2$, until an independent exponential time of parameter $1$. At that time, the particle dies giving birth to two children who then start independent copies of the same process from their birth place. It is well-known that in this system, the cloud of particles eventually drifts to $\infty$. The aim of this note is to provide a precise estimate for the total number of particles that were born on the negative half-line, investigating in particular the tail decay of this random variable.
Fichier principal
Vignette du fichier
22-ECP449.pdf (408.74 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03251329 , version 1 (26-01-2022)
hal-03251329 , version 2 (17-11-2022)

Identifiants

Citer

Xinxin Chen, Bastien Mallein. Total number of births on the negative half-line of the binary branching Brownian motion in the boundary case. Electronic Communications in Probability, 2022, 27 (7), pp.1-11. ⟨10.1214/22-ECP449⟩. ⟨hal-03251329v2⟩
102 Consultations
56 Téléchargements

Altmetric

Partager

More