Total number of births on the negative half-line of the binary branching Brownian motion in the boundary case - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Total number of births on the negative half-line of the binary branching Brownian motion in the boundary case

Xinxin Chen
  • Fonction : Auteur
  • PersonId : 1044542

Résumé

The binary branching Brownian motion in the boundary case is a particle system on the real line behaving as follows. It starts with a unique particle positioned at the origin at time $0$. The particle moves according to a Brownian motion with drift $\mu = 2$ and diffusion coefficient $\sigma^2 = 2$, until an independent exponential time of parameter $1$. At that time, the particle dies giving birth to two children who then start independent copies of the same process from their birth place. It is well-known that in this system, the cloud of particles eventually drifts to $\infty$. The aim of this note is to provide a precise estimate for the total number of particles that were born on the negative half-line, investigating in particular the tail decay of this random variable.
Fichier principal
Vignette du fichier
nnbbm.pdf (356.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03251329 , version 1 (26-01-2022)
hal-03251329 , version 2 (17-11-2022)

Identifiants

Citer

Xinxin Chen, Bastien Mallein. Total number of births on the negative half-line of the binary branching Brownian motion in the boundary case. 2022. ⟨hal-03251329v1⟩
102 Consultations
56 Téléchargements

Altmetric

Partager

More