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Abstract

The binary branching Brownian motion in the boundary case is a particle system on
the real line behaving as follows. It starts with a unique particle positioned at the
origin at time 0. The particle moves according to a Brownian motion with drift µ = 2

and diffusion coefficient σ2 = 2, until an independent exponential time of parameter 1.
At that time, the particle dies giving birth to two children who then start independent
copies of the same process from their birth place. It is well-known that in this system,
the cloud of particles eventually drifts to ∞. The aim of this note is to provide a
precise estimate for the total number of particles that were born on the negative
half-line, investigating in particular the tail decay of this random variable.
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1 Introduction

A branching Brownian motion is a continuous-time particle system on the real
line in which particles move according to independent Brownian motions and split at
independent exponential times into children. These children then start independent
copies of the branching Brownian motion from their birth place. In this article, we take
interest in a binary branching Brownian motion, meaning that at each branching event,
every particle splits into two daughter particles independently. We also assume the
branching Brownian motion to be in the so-called boundary case (following [8]), i.e. that
the Brownian motions driving the motion of the particles have drift µ = 2 and diffusion
coefficient σ2 = 2.

The branching Brownian motion can be constructed as a process decorating the
infinite binary tree U := ∪n∈Z+

{1, 2}n following the classical Ulam-Harris notation, with
the convention {1, 2}0 = {∅}. For each u ∈ U , we write bu and du the birth- and death-
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Total number of births on the negative half-line of the branching Brownian motion

times of the particle u, and for all s ≤ du we denote by Xs(u) the position at time s of the
particle u or the position of its ancestor alive at that time.

For all t ≥ 0, let Nt = {u ∈ U : bu ≤ t < du} be the set of particles alive at time
t. It is well-known that a branching Brownian motion in the boundary case satisfies
local extinction and global survival properties. In other words, while Nt is almost surely
non-empty for all t ≥ 0, we have limt→∞#{u ∈ Nt : Xt(u) ∈ K} = 0 a.s. for all compact
set K. More precisely, Bramson [11] obtained the precise asymptotic behaviour of the
minimal position Mt = minu∈Nt

Xt(u) occupied by a particle at time t, showing that

Mt =
3

2
log t+OP(1), (1.1)

with OP(1) representing a tight family of random variables. Hence, for all x ∈ R, after
some finite time, there will be no particle in the interval (−∞, x).

The aim of this article is to study the law of the number N of birth (or death) events
occurring on the negative half-line, defined as

N :=
∑
u∈U

1{Xu(du)≤0}. (1.2)

Precisely, we take interest in the right tail of the distribution of N , and we show that
P(N ≥ n) ∼ 1

n as n→∞.
More generally, for all x ∈ R, we denote by Nx the total number of birth event

occurring below the level x (with N = N0), that can be written as

Nx :=
∑
u∈U

1{Xdu (u)≤x}. (1.3)

Remark that the random variable Nx is related to, but different of, the number Nx of
births that occurred in the branching Brownian motion with absorption at level x, defined
as

Nx =
∑
u∈U

1{Xd(u)(u)≤x,∀s≤du,Xs(u)≤x}. (1.4)

The quantity Nx was introduced and studied by Kesten [18], who proved it to be a.s.
finite if and only if the drift µ of the underlying Brownian motion is larger or equal
to 2. Increasingly tight estimates were obtained on N both in the boundary and the
non-boundary cases [1, 5, 20, 2, 7].

The process (Nx, x ≥ 0) is a Markovian branching process, at least as long as the
number of children created in a branching event is non-random. In that case Nx is in
one-to-one correspondence with the number Zx of individuals that hit level x for the
first time1. Conversely, the process (Nx, x ≥ 0) does not satisfy the Markov property, as
particles that went above level x for some time, then back below that level and gave
birth are taken into account. However, it is possible to link the values of N with N in
such a way that the known tail of Nx helps us compute the tail of N , see Lemma 3.1
below. The main result of the article is the following.

Theorem 1.1. Let X be a branching Brownian motion in the boundary case. Writing
c = log 2 + γ ≈ 1.27036, where γ is the Euler-Mascheroni constant, we have

E(N1{N≤n}) = log n+ c+ o(1) as n→∞.

It entails in particular P(N ≥ n) ∼ 1/n as n→∞.

1And (Zx, x ≥ 0) is Markovian, as it can be seen by applying the branching property along a stopping line,
see next section.
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As a comparison, the estimate of Maillard [20, Theorem 1.1] on N can be written in
this context: for all x > 0,

P(Nx > n) ∼n→∞
xex

n(log n)2
.

Therefore, the tail of N is slightly heavier than the tail of N , which indicates that a
non-trivial contribution to the tail of N comes from particles that cross 0 at least one
time before giving birth to descendants on the negative half-line.

Remark 1.2. This theorem is equivalent to

E
(
e−λN

)
= 1 + λ log λ+ (1 + c− γ)λ+ o(λ), as λ ↓ 0.

In other words, the asymptotic behavior of the Laplace transform of N as λ→ 0 is linked
to the asymptotic behavior of P(N ≥ n) as n → ∞. We refer to [12, Lemma 8.3] for a
proof of that equivalence.

Remark 1.3. One could obtain an estimate similar to Theorem 1.1 for a branching
Brownian motion with drift µ > 2. In this situation, N becomes integrable, but using the
decomposition in Lemma 3.1 and straightforward adaptation of our arguments, one can
obtain

P(N > n) ∼n→∞ cn−κ,

where c > 0 and κ =
µ+
√
µ2−2

µ−
√
µ2−2

> 1.

In the next section, we recall some useful estimates related to the branching Brownian
motion. We then prove Theorem 1.1 in Section 3, by comparing the asymptotic behaviours
as x→∞ of Nx and Nx.

2 Stopping lines, branching random walk and the many-to-one
lemma

We begin by introducing the derivative martingale of the branching Brownian motion,
defined as Dt :=

∑
u∈Nt

Xt(u)e−Xt(u). Lalley and Sellke [19] proved that the derivative

martingale converges a.s. towards a non-degenerate limit

D∞ := lim
t→∞

Dt, (2.1)

which is a.s. positive.
We then introduce optional stopping lines. Stopping line techniques were pioneered

in [14, 16]. Informally speaking, a stopping line is generalization of stopping time in the
context of branching processes, such that different particles are stopped at different
times. We take in particular interest in the following family of very simple cutting
stopping lines

Lx :=

{
{(u, t) ∈ U ×R+ : bu ≤ t < du, Xt(u) = x, ∀s < t,Xs(u) < x} , x ≥ 0,

{(u, t) ∈ U ×R+ : bu ≤ t < du, Xt(u) = x, ∀s < t,Xs(u) > x} , x < 0.
(2.2)

Jagers [16] proved that branching processes stopped at Lx satisfies the branching
property, i.e. that each particle in Lx starts from its time and position an independent copy
of the branching Brownian motion, which is independent of σ ((Xs(u), s ≤ t), (u, t) ∈ Lx).

We now associate to the branching Brownian motion the branching random walk of
the birth places of particles, defined for all u ∈ U by V (u) = Xu(du). Recall from (1.2)
that our main quantity of interest can be written

N =
∑
u∈U

1{Xu(du)≤0} =
∑
n≥0

∑
|u|=n

1{V (u)≤0},
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where the sum over |u| = n is the sum over u ∈ {1, 2}n the set of particles in the nth
generation. From the construction of the branching random walk, it is apparent that
(V (∅), V (u)− V (πu), u ∈ U\{∅}) is a family of i.i.d. random variables with same law as√

2BT + 2T , where πu is the parent of u, B is a standard Brownian motion and T an
independent exponential random variable with parameter 1.

As a result, we deduce that (V (u), u ∈ U) is a branching random walk, a discrete-time
particle system on the real line starting from V (∅), such that each parent particle gives
birth to two daughter particles that are positioned around their parent according to i.i.d.
copies of V (∅). Observe that for all λ close enough to 0, we have

E(eλX∅(d∅)) =

∫ ∞
0

dse−sE
(
eλ(
√

2Bs+2s)
)

=

∫ ∞
0

dse−s(1−λ2−2λ)

=
1

1− 2λ− λ2
=

1

2
√

2(
√

2 + 1 + λ)
+

1

2
√

2(
√

2− 1− λ)
.

Therefore the law of the displacement of the branching random walk V has the density
(1− p)1{x<0}(

√
2 + 1)e(

√
2+1)x + p1{x>0}(

√
2− 1)e−(

√
2−1)x with respect to the Lebesgue

measure on R, where p := 2+
√

2
4 ≈ 0.85355.

For all a ∈ R, we write Pa the law of V conditionally on V (∅) = a and Ea the
corresponding expectation. We next introduce the many-to-one lemma. This result has a
long history going back to the work of Peyrière [21] and Kahane and Peyrière [17]. We
refer to [22, Theorem 1.1] for a proof of this result.

Lemma 2.1 (Many-to-one lemma). For any a ∈ R, n ≥ 1 and measurable function
f : Rn → R+, we have

Ea

∑
|u|=n

f(V (u1), . . . V (un))

 = Ea
(
eSn−af(S1, . . . , Sn)

)
,

where (u1, . . . , un) is the ancestral line of u and (Sn)n≥0 is a random walk such that

Pa(S0 = a) = 1, whose step distribution has density
√

2
2 e
−
√

2|x| with respect to the
Lebesgue measure on R.

As an immediate consequence of the above lemma, we obtain that

E0

∑
|u|=1

e−V (u)

 = 1 and E0

∑
|u|=1

V (u)e−V (u)

 = 0. (2.3)

Therefore, V is a branching random walk in the boundary case, according to the termi-
nology of [9]. We also note that

E0

∑
|u|=1

V (u)2e−V (u)

 = 1, (2.4)

i.e. the step distribution of the random walk (Sn) has unit variance.
We conclude this section with some random walk estimates. Stone’s local limit

theorem [23] implies the existence of C0 > 0 such that for all n ∈ N∗,

sup
z∈R

P0 (Sn ∈ [z, z + 1]) ≤ C0n
−1/2. (2.5)

For all n ∈ R, we set Sn = mink≤n Sk. Estimates on the joint law of Sn and Sn are
often called ballot theorems in the literature, and often appear in the study of branching
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random walks. In this article, we need the three following ballot-type estimates: there
exists C1 > 0 such that for all α > 0 and n ∈ N∗,

P0 (Sn ≥ −α) ≤ C1(1 + α)n−1/2, (2.6)

there exists C2 > 0 such that for any h, α > 0,

P0 (Sn ≥ −α, Sn ∈ [h− α, h− α+ 1]) ≤ C2(1 + h)n−1, (2.7)

and there exists C3 > 0 such that for any a > −α and h > 0

P0 (Sn ≥ −α, Sn ∈ [a, a+ h]) ≤ C3(1 + α)(1 + a+ h+ α)(1 + h)n−3/2. (2.8)

These estimates can be obtained as immediate consequences of [3, Lemma A.1].

3 Proof of Theorem 1.1

The proof of Theorem 1.1 is based on the following decomposition of the number Nx
of birth events below level x along the stopping line Lx.

Lemma 3.1. Let x ∈ R, we write Zx = #Lx for the total number of particles that hit
level x for the first time in their history. We have

Nx
(d)
= (Zx − 1)1{x>0} +

Zx∑
j=1

N (j),

where (N (j), j ≥ 1) are i.i.d. copies of N which are further independent of Zx.

This equality in distribution allows us to link together the law of N with the laws of
Nx and Zx. We then determine the asymptotic behaviour as x→∞ of Nx and Zx, and
use those to obtain estimates on the law of N .

Remark 3.2. As the branching Brownian motion splits at each time in exactly 2 children
at every branching event, and no particles stay forever below the level x > 0, the
total number of particles hitting level x for the first time in their history satisfies
Zx = Nx + 1 <∞ a.s., with Nx the total number of births given by particles before their
absorption at level x, defined in (1.4).

Proof. The above equality is an immediate consequence of the branching property
applied at the stopping line Lx. Each of the Zx particles of the stopping line starts an
independent branching Brownian motion from level x, independently from the branching
Brownian motion absorbed at level x.

As a consequence, the total number of births below level x is equal to the number of
births below level x occurring before hitting x for the first time (which is equal to 0 if
x < 0 or to Nx = Zx − 1 if x > 0), summed with the total number of births below level x
of all the branching Brownian motions started from Lx, which are equal in distribution
to sum of Zx independent copies of N0.

As mentioned in Remark 1.2, the proof of Theorem 1.1 relies on a tight computation
of the asymptotic behaviour of the Laplace transform of N . For all x ∈ R and λ > 0, we
set

φ(λ, x) = logE
(
e−λNx

)
.

By Lemma 3.1, we have

φ(λ, x) =

{
λ+ logE (exp ((φ(λ, 0)− λ)Zx)) if x > 0

E (exp (φ(λ, 0)Zx)) if x < 0.
(3.1)
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In other words, the Laplace transform of N can be related to the Laplace transform of
Zx the number of particles first hitting level x, or equivalently by Remark 3.2 to the
Laplace transform of Nx when x > 0.

To study the asymptotic behaviour of φ(λ, 0) as λ → 0, we show that normalized
versions of Zx and Nx both converge, as x→∞, to multiples of the limit of the derivative
martingale of the branching Brownian motion, defined in (2.1).

First, using stopping line techniques, we obtain an almost sure estimate for the
growth rate of Zx as x→∞.

Lemma 3.3. We have lim
x→∞

xe−xZx = D∞ a.s.

Proof. This result is a direct consequence of [8, Theorem 6.1], stating that the deriva-
tive martingale stopped at line Lx converges, as x → ∞ to D∞ a.s. In other words
limx→∞

∑
(u,t)∈Lx

Xt(u)e−Xt(u) = limx→∞ xe−xZx = D∞ a.s.

We now turn to the asymptotic behaviour, as x→∞, of

Nx =
∑
u∈U

1{Xu(du)≤x} =
∑
n≥0

∑
|u|=n

1{V (u)≤x}.

Using estimates developed in Chen [15], we are able to obtain the following asymptotic
behaviour for Nx as x→∞.

Proposition 3.4. We have lim
x→∞

e−xNx = 2D∞ in probability.

This convergence can be thought of as a Seneta-Heyde type result for the additive
martingale of the branching random walk V . A similar convergence was obtained in [15,
Eq. (5.5)], using similar methods as the one pioneered by Boutaud and Maillard [10].
Precisely, for all 0 < a < b and Λ > 1, we have

lim
x→∞

e−x
∑

ax2≤n≤bx2

∑
|u|=n

1{V (u)≤x,maxk≤n V (uk)≤Λx}

=
√

2
πD∞

∫ b

a

φ(u−1/2)g(Λu−1/2, u−1/2)
du

u
in probability, (3.2)

where φ(z) = ze−z
2/2 and g(a, b) = P(sups∈[0,1]Rs ≤ a|R1 = b), with R a Bessel process

of dimension 3. Here we used [6, Lemma 2.1] to identify the constant
√

2
π . To complete

the proof of Proposition 3.4, we use the following lemma, whose proof is postponed to
the end of the article.

Lemma 3.5. For u ∈ U , we set V (u) = mink≤|u| V (uk), V (u) = maxk≤|u| V (uk). For all
α > 0 and 0 < a < b, we have

lim
Λ→∞

lim sup
x→∞

e−xE0

 ∑
ax2≤n≤bx2

∑
|u|=n

1{V (u)≥−α,V (u)≥Λx,V (u)≤x}

 = 0. (3.3)

Additionally, for all α > 0,

lim
δ→0

lim sup
x→∞

e−xE0

 ∑
n≤δx2

∑
|u|=n

1{V (u)≤x,V (u)≥−α}

 =0, (3.4)

and lim
δ→0

lim sup
x→∞

e−xE0

 ∑
n≥x2/δ

∑
|u|=n

1{V (u)≤x,V (u)≥−α}

 =0, (3.5)
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Proof of Proposition 3.4. For all 0 ≤ a < b ≤ ∞, we set

Nx(a, b) =
∑

ax2≤n≤bx2

∑
|u|=n

1{V (u)≤x} and ca,b =
√

2
π

∫ b

a

φ(u−1/2)
du

u
.

Let ε > 0, by (1.1), there exists α > 0 such that P0(infu∈U V (u) ≤ −α) < ε. Additionally,
using (3.4), (3.5) and the Markov inequality, we can fix A1, δ > 0 such that for all x ≥ A1,

P0

(
Nx(0, δ) +Nx(δ−1,∞) ≥ εex

)
≤ ε+ P( inf

u∈U
V (u) ≥ −α) ≤ 2ε.

Up to decreasing δ, we assume as well that 0 ≤ c0,∞ − cδ,δ−1 ≤ ε. Similarly, using (3.3),
we may fix A2 ≥ A1 and Λ > 1 such that for all x ≥ A2, we have

P0

(
Nx(δ, δ−1)−Nx(δ, δ−1,Λ) ≥ εex

)
≤ 2ε,

where Nx(a, b,Λ) =
∑
|u|=n

1{V (u)≤x,V (u)≤Λx}. Up to enlarging again Λ, we also assume

that 0 ≤ cδ,δ−1 −
√

2
π

∫ δ−1

δ

φ(u−1/2)g(Λu−1/2, u−1/2)
du

u
≤ ε. Finally, using the conver-

gence (3.2), we can choose A3 ≥ A2 such that for all x ≥ A3,

P0

(∣∣e−xNx(δ, δ−1,Λ)− c0,∞D∞
∣∣ ≥ (2D∞ + 1)ε

)
≤ ε.

As a result, for all x ≥ A3, chaining these equations we obtain

P0

(∣∣e−xNx − c0,∞D∞∣∣ ≥ (3 + 2D∞)ε
)
≤ 5ε,

proving that limx→∞ e−xNx = c0,∞D∞ in P0-probability, as D∞ is a.s. finite.
Next, using that V (∅) is independent of (V (u)− V (∅), u ∈ U), which has law P0, and

that for all a ∈ R, the law of D∞ under Pa is the same as the law of eaD∞ under law P0,
we also obtain that

lim
x→∞

e−xNx = c0,∞D∞ in P-probability.

By computing that c0,∞ =
√

2
π

∫∞
0
φ(u−1/2)du

u = 2, the proof is now compete.

Next, using Lemma 3.3 and Proposition 3.4, we are now able to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 3.3, for all λ > 0 we have

lim
x→∞

E
(
e−λxe

−xZx

)
= E(e−λD∞).

Recall that φ(λ, x) = logE(e−λNx), and as N + 1 is a.s. positive, the continuous function
λ 7→ λ − φ(λ, 0) is increasing. Hence for all x > 0 large enough, there exists a unique
λx > 0 so that

λx − φ(λx, 0) = xe−x,

with λx → 0 as x→∞. Then, equation (3.1) implies that

lim
x→∞

E(e−λx(Nx−1)) = E(e−D∞).

On the other hand, it is known from Proposition 3.4 that for all µ > 0,

lim
x→∞

E(e−µe
−x(Nx−1)) = E(e−2µD∞).
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As a result, we conclude that e−x ∼ 2λx as x → ∞. It yields in particular that
2φ(λx, 0) = 2(λx − xe−x) = (−2x+ 1 + o(1))e−x as x→∞, i.e. as λx → 0. As a result, we
obtain that as λ→ 0, we have

φ(λ, 0) = λ(log(2λ) + 1 + o(1))

= λ log λ+ (1 + log 2)λ+ o(λ) as λ→ 0.

By Remark 1.2, we deduce

E
(
N1{N≤n}

)
= log n+ (log 2 + γ) + o(1),

as n→∞, which completes the proof of the main theorem.

We end this article with a proof of Lemma 3.5, which is based on the many-to-one
lemma and random walk estimates.

Proof of Lemma 3.5. We prove each of the three limits in turn, using the ballot-type
random walk estimates introduced in Section 3.

Proof of (3.3). For all n ∈ N, we set Sn = maxk≤n Sk. Let 0 < a < b, using the
many-to-one lemma, we compute for all α, x > 0 and Λ > 1,

E0

 ∑
ax2≤n≤bx2

∑
|u|=n

1{V (u)≥−α,V (u)≥Λx,V (u)≤x}


=

∑
ax2≤n≤bx2

E0

(
eSn1{Sn≥−α,Sn≥Λx,Sn≤x}

)
≤

∑
ax2≤n≤bx2

∞∑
j=0

ex−jP0

(
Sn ≥ −α, Sn ≥ Λx, Sn ∈ [x− j − 1, x− j]

)
≤ ex

1− e−1
(bx2 − ax2 + 1) sup

n≥ax2,

h≤(n/a)1/2

P0

(
Sn ≥ −α, Sn ≥ Λ(n/b)1/2, Sn ∈ [h− 1, h]

)
. (3.6)

We then bound P0

(
Sn ≥ −α, Sn ≥ Λ(n/b)1/2, Sn ∈ [h− 1, h]

)
for large values of Λ, uni-

formly in h ≤ (n/a)1/2.
Write T (n) = inf{k ∈ N : Sk ≥ Λ(n/b)1/2}, we observe that, setting p = bn/2c,

P0

(
Sn ≥ −α, Sn ≥ Λ(n/b)1/2, Sn ∈ [h− 1, h]

)
≤ P0

(
Sn ≥ −α, T (n) ≤ p, Sn ∈ [h− 1, h]

)
+P0

(
Sn ≥ −α, T (n) ∈]p, n], Sn ∈ [h− 1, h]

)
,

(3.7)

and we bound these two probabilities in turn. Applying the Markov property at time p,
we have

P0

(
Sn ≥ −α, T (n) ≤ p, Sn ∈ [h− 1, h]

)
≤ P0

(
Sp ≥ −α, Sp ≥ Λ(n/b)1/2

)
sup
z∈R

P(Sn−p ∈ [z − 1, z])

≤ C0C1(1 + α)

p1/2(n− p)1/2
P0

(
Sp ≥ Λ(n/b)1/2

∣∣∣Sp ≥ −α) ,
using (2.5) and (2.6). Therefore, there exists C ′ > 0 such that for all n ∈ N, we have

P0

(
Sn ≥ −α, Sp ≥ Λ(n/b)1/2, Sn ∈ [h− 1, h]

)
≤ C ′

n
P0

(
Sp ≥ Λ(n/b)1/2

∣∣∣Sp ≥ −α) .
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Given R a Bessel process of dimension 3, by Caravenna-Chaumont’s invariance principle
[13, Theorem 1.1], we have

lim
n→∞

P0

(
Sp ≥ Λ(n/b)1/2

∣∣∣Sp ≥ −α) = P( max
s∈[0,1]

Rs ≥ Λ(2/b)1/2),

which converges to 0 as Λ→∞. Hence, we conclude that

lim
Λ→∞

lim sup
n→∞

[
n sup
h≤(n/a)1/2

P0

(
Sn ≥ −α, T (n) ≤ p, Sn ∈ [h− 1, h]

)]
= 0. (3.8)

Next, observing that (Sn − Sn−k, k ≤ n)
(d)
= (Sk, k ≤ n) by reversing time, for all

0 ≤ h ≤ (n/a)1/2, we have

P0

(
Sn ≥ −α,∃k ∈]p, n] : Sk ≥ Λ(n/b)1/2, Sn ∈ [h− 1, h]

)
≤P0

(
max

n−p≤j≤n
Sj ≤ α+ h, Sn−p ≤ −Λ(n/b)1/2 + h, Sn ∈ [h− 1, h]

)
≤P0

(
Sn−p ≤ −Λ(n/b)1/2 + (n/a)1/2

)
sup
z∈R

P
(
Sp ≤ α+ z, Sp ∈ [z − 1, z]

)
,

applying the Markov property at time n− p. Then applying (2.7) to the random walk −S,
there exists C ′′ > 0 such that

sup
z∈R

P
(
Sp≤α+z, Sp ∈ [z − 1, z]

)
=sup
z∈R

P
(
−Sp≥−α−z,−Sp ∈ [−z,−z + 1]

)
≤ C

′′(1 + α)

n
,

and by Donsker’s invariance principle,

lim
n→∞

P0

(
Sn−p ≤ −Λ(n/b)1/2 + (n/a)1/2

)
= P( inf

s∈[0,1]
Bs ≤ −Λ(2/b)1/2 + (2/a)1/2),

where B is a Brownian motion. As a result, we deduce that

lim
Λ→∞

lim sup
n→∞

[
n sup
h≤(n/a)1/2

P0

(
Sn ≥ −α, T (n) ∈]p, n], Sn ∈ [h− 1, h]

)]
= 0. (3.9)

Then, plugging (3.8) and (3.9) into (3.7), we deduce that

lim
Λ→∞

lim sup
x→∞

x2 sup
n≥ax2,

h≤(n/a)1/2

P0

(
Sn ≥ −α, Sn ≥ Λ(n/b)1/2, Sn ∈ [h− 1, h]

) = 0,

which, going back to (3.6) is enough to prove (3.3).
Proof of (3.5). Using the many-to-one lemma, we have

E0

 ∑
n≥x2/δ

∑
|u|=n

1{V (u)≤x,V (u)≥−α}

 =
∑

n≥x2/δ

E0[eSn ;Sn ≤ x, Sn ≥ −α]

≤
∑

n≥x2/δ

bxc∑
k=b−αc

ek+1P0(Sn ≥ −α, Sn ∈ [k, k + 1])

≤
∑

n≥x2/δ

C(1 + α)

n3/2

x+α∑
k=0

ek−α(1 + k)
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by (2.8). As a result, we obtain that

e−xE0

 ∑
n≥x2/δ

∑
|u|=n

1{V (u)≤x,V (u)≥−α}

 ≤ C(1 + α)(1 + x+ α)

√
δ

x

which is oδ(1)(1 + α) as δ ↓ 0, uniformly in x ≥ 1.
Proof of (3.4). This proof is similar to the proof of (3.5), using the same lines as in

the proof of [15, Equation (A.19)]. We first use the many-to-one lemma to write

E0

 ∑
n≤δx2

∑
|u|=n

1{V (u)≤x,V (u)≥−α}

 =
∑
n≤δx2

E0[eSn ;Sn ≤ x, Sn ≥ −α]

≤
δx2∑
n=1

bxc∑
r=b−αc

er+1P0(Sn ∈ [r, r + 1], Sn ≥ −α), (3.10)

and we bound P0(Sn ∈ [r, r + 1], Sn ≥ −α) uniformly in n ≤ δx2 and r ≤ x. To do so,
we recall the following inequality, first proved in [4] for random walks with bounded
increments: as E[eη|S1|] <∞ for some η > 0, there exist 0 < a < 1 < b <∞ such that for
r ≥ 1 and br ≤ n ≤ ar2,

P0(Sn ≥ −α, Sn ∈ [r, r + 1]) ≤ C 1 + α

n
e−c

′ r2
n

It comes from the fact that P0(Sk ∈ [r, r + 1]) ≤ 1√
k
e−cr

2/k for all br ≤ k ≤ ar2. On the
other hand, if 1 ≤ n ≤ br and 0 < t < η, one has

br∑
n=1

P0(Sn ≥ −α, Sn ∈ [r, r + 1]) ≤
br∑
n=1

P(Sn ≥ r) ≤ e−tr
br∑
n=1

E[etS1 ]n ≤ e−cr.

Consequently,
δr2∑
n=1

P0(Sn ≥ −α, Sn ∈ [r, r + 1]) ≤ c(1 + α)δ,

which by (3.10) yields e−xE0

 ∑
n≤δx2

∑
|u|=n

1{V (u)≤x,V (u)≥−α}

 ≤ Cδ(1+α), completing the

proof of (3.4).
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