Symmetry-aware Learning for Non-rigid Shape Matching - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Symmetry-aware Learning for Non-rigid Shape Matching

Résumé

This paper provides a novel framework that learns self symmetric functional maps with an end goal of exploiting symmetry-aware representation as an embedding for non-rigid shape matching. In contrast to prior work in this direction, our framework is trained end-to-end and thus avoids instabilities and constraints associated with the commonly-used Laplace-Beltrami basis. On multiple datasets, we demonstrate that learning self symmetry maps with a deep functional map projects 3D shapes into a low dimensional canonical embedding that facilitates non rigid shape correspondence between unseen shape categories via a simple nearest neighbor search. Our framework outperforms all recent learning based methods on two partial shape matching SHREC benchmarks while being computationally cheaper.
Fichier principal
Vignette du fichier
symmetry_for_embedding.pdf (333.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03251317 , version 1 (07-06-2021)
hal-03251317 , version 2 (06-10-2021)

Identifiants

  • HAL Id : hal-03251317 , version 1

Citer

Abhishek Sharma, Maks Ovsjanikov. Symmetry-aware Learning for Non-rigid Shape Matching. 2021. ⟨hal-03251317v1⟩
396 Consultations
219 Téléchargements

Partager

More