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Abstract

This paper provides a novel framework that learns self symmetric functional maps
with an end goal of exploiting symmetry-aware representation as an embedding for
non-rigid shape matching. In contrast to prior work in this direction, our framework
is trained end-to-end and thus avoids instabilities and constraints associated with
the commonly-used Laplace-Beltrami basis. On multiple datasets, we demonstrate
that learning self symmetry maps with a deep functional map projects 3D shapes
into a low dimensional canonical embedding that facilitates non rigid shape corre-
spondence between unseen shape categories via a simple nearest neighbor search.
Our framework outperforms all recent learning based methods on two partial shape
matching SHREC benchmarks while being computationally cheaper.

1 Introduction

Shape correspondence is a fundamental problem in computer vision, computer graphics and related
fields, Thomas et al. [2021] since it facilitates many applications such as texture or deformation
transfer and statistical shape analysis Bogo et al. [2014] to name a few. Although shape correspon-
dence has been studied from many viewpoints, we focus here on a functional map-based approaches
Ovsjanikov et al. [2012] as this framework is quite general, scalable and thus, has been extended to
various other applications such as pose estimation Neverova et al. [2020], matrix completion Sharma
and Ovsjanikov [2021] and graph matching Wang et al. [2020].

While recent learning based deep functional map approaches have made impressive gains in non rigid
isometric full shape matching, partial shape matching Rodolà et al. [2017], Litany et al. [2017b] has
received little attention despite it being of great interest in robotics Chavdar et al. [2012] and Virtual
reality applications Sharma et al. [2016]. The progress is mainly hindered by the difficulty of learning
a suitable embedding or basis functions for partial 3D data. The majority of works in this domain
use the Laplace-Beltrami basis, Ovsjanikov et al. [2017] which are biased towards near-isometries
and can be unstable under significant partiality Kirgo et al. [2020]. Given a source and target shape
as input, recent approaches either learn an alignment of their Laplacian eigen-functionsLitany et al.
[2017b], Roufosse et al. [2019], Halimi et al. [2019], Sharma and Ovsjanikov [2020] or learn a
linearly invariant embedding directly from 3D data Marin et al. [2020]. While former approach
is class specific and requires retraining a network for each class, the later employs a two stage
optimization strategy without adequate regularization which, as we show later, is suboptimal.

Recently, it has been shown that learning an embedding to be used as a basis in the functional map
framework, rather than relying on the Laplace-Beltrami eigenfunctions, can lead to improvement in
robustness. Nevertheless, as we demonstrate below, learning a linearly invariant embedding for 3D
shapes with a PointNet based feature extractor, as done in Marin et al. [2020], without exploiting
natural priors on 3D shapes such as symmetry leads to overfitting as there is no regularization
involved. Similarly, learning a linear transformation for a pair of shapes Marin et al. [2020], without
any constraint on the linear transform itself can leave the network with a lot of degrees of freedom to
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choose this transform during training which is harder to retrieve at test time. Our work builds on the
idea that a functional map can be decomposed into symmetric and anti-symmetric parts of which
symmetric part is easier to compute Lipman et al. [2010], Ovsjanikov et al. [2013]. While prior work
explicitly factors out these subspaces from a functional map between the two shapes, in contrast,
we obtain this representation implicitly by virtue of learning a self symmetry map during training.
In this paper, we present a novel non-rigid shape matching method based on a nearest neighbour
approach in canonical embedding by learning a self symmetric intrinsic functional map. Our key idea
is to learn an embedding of each shape that would make the given self-symmetry map linear in some
higher-dimensional space. We hypothesize that learning self symmetry map during training acts as a
regularizer for learning a canonical embedding of 3D shapes and thus, improves generalization. Our
method obtains superior results on two partial shape matching SHREC benchmarks when compared
to recent learning based methods while being computationally cheaper.

2 Related Work

Functional Maps Computing point-to-point maps between two 3D discrete surfaces is a very
well-studied problem. We refer to a recent survey Sahillioğlu [2019] for an in-depth discussion. Our
method is closely related to the functional map pipeline, introduced in Ovsjanikov et al. [2012] and
then significantly extended in follow-up works (see, e.g.,Ovsjanikov et al. [2017]). The key idea
of this framework is to encode correspondences as small matrices, by using a reduced functional
basis, thus greatly simplifying many resulting optimization problems. The functional map pipeline
has been further improved in accuracy, efficiency and robustness by many recent works including
Kovnatsky et al. [2013], Huang et al. [2014], Burghard et al. [2017], Rodolà et al. [2017], Nogneng
and Ovsjanikov [2017], Ren et al. [2018], Eisenberger et al. [2020], Ginzburg and Raviv [2020].
There also exist other works Wei et al. [2016], Boscaini et al. [2016], Monti et al. [2017] that treat
shape correspondence as a dense labeling problem but they typically require a lot of data as the label
space is very large.

Learning from raw 3D shape Although early approaches in functional maps literature used hand-
crafted features Ovsjanikov et al. [2017], more recent methods directly aim to learn either the optimal
transformations of hand crafted descriptors Litany et al. [2017b], Roufosse et al. [2019] or even
features directly from 3D geometry itself Donati et al. [2020], Sharma and Ovsjanikov [2020]. Initial
efforts in this direction used classical optimisation techniques, Corman et al. [2014]. In contrast, Deep
Functional MapsLitany et al. [2017a] proposed a deep learning architecture called FMNet to optimize
a non-linear transformation of SHOT descriptors Tombari et al. [2010], that was further extended to
unsupervised setting Roufosse et al. [2019], Halimi et al. [2019]. To alleviate the sensitivity to SHOT
descriptor, recent works including Groueix et al. [2018], Donati et al. [2020], Sharma and Ovsjanikov
[2020] learn shape matching directly from the raw 3D data without relying on pre-defined descriptors,
thus leading to improvements in both robustness and accuracy. However, all these works are aimed at
full (complete) shape correspondence and do not handle partial shape matching effectively.

Self Supervised Learning Self supervised learning has been exploited for learning representations
and embedding in various domains where a proxy task is used to learn the representation. e.g. Sharma
et al. [2016] uses an autoencoder to complete the partial shapes and uses the resulting representation
of shape completion for shape classification task. Gidaris et al. [2018] learns to predict image
rotations and uses the resulting representation for image classification. Our formulation is in the same
spirit as we learn to predict the symmetry in a 3D shape and use the resulting representation for 3D
shape matching. However, we choose symmetry learning as a proxy task for embedding learning for
a principled reason which we describe in detail in the methodology section.

Learning Basis from Data for Partial Shape Matching Most of the functional map framework
can not handle partiality in data as they rely on Laplacian eigenfunctions that are shown to be
unstable under partial data. Rodolà et al. [2017], Litany et al. [2017b], Wu et al. [2020] deal with
partiality but they are based on hand-crafted features and require expensive optimization scheme and
is instance specific. While Sharma and Ovsjanikov [2020] proposes to learn a suitable alignment
of pre-computed Laplacian Eigen basis functions, the approach still relies on the Laplacian basis
and can therefore be unstable. Marin et al. [2020] proposed a two stage architecture to learn a linear
transformation invariant shape embedding to bypass the difficulties associated with LBO. However,
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as we demonstrate later in experiments, the two stage architecture is suboptimal due to the lack of
adequate regularization.

Symmetry for Non Rigid Shape Matching Matching shapes with intrinsic symmetries involves
dealing with symmetric ambiguity problem which has been very well studied and explored in
axiomatic methods Mitra et al. [2012], Raviv et al. [2010]. More recently, Shi et al. [2020] propose
an end to end method to learn extrinsic 3D symmetries from a RGB-D image. However, none of
the existing learning based non-rigid shape matching method models or learn symmetry explicitly
as a regularizer for shape matching. Our work is mainly related to the prior work Lipman et al.
[2010], Ovsjanikov et al. [2013] that proposes a principled framework for computation in symmetric
subspaces. Ovsjanikov et al. [2013] shows a functional map decomposition into symmetric and anti-
symmetric part and argues that it is easier to compute the symmetric part. However, this framework
is based on handcrafted feature descriptors as well as precomputed Laplacian eigen Basis functions
and thus, it is non-trivial to extend it directly to an end to end learning framework.

Rest of the paper is structured as follows: In the next section, we briefly cover the necessary
background on functional map and its symmetrized counterpart. Afterwards, we propose a novel
learning strategy to learn symmetrized embedding and generalize the functional maps framework to
noisy and incomplete data. Lastly, we validate our framework on three benchmark datasets.

3 Background

Before describing our method, we provide a brief overview of the basic pipeline to compute a
functional map and its symmetrized version.

Functional Map Computation We assume that we are given a source and a target shape, S1, S2,
containing, respectively, n1 and n2 vertices, a small set of k1, k2 of basis functions , e.g. of the
respective Laplace-Beltrami operators (LBO). For the sake of simplicity, we also assume that we are
given a set of descriptors on each shape, to be preserved by the unknown map, whose coefficients in
the LB basis are stored as columns of matrices A,B. The optimal functional map is computed C by
solving the following optimization problem:

Copt = arg min
C

Edesc
(
C
)

+ αEreg
(
C
)
, (1)

where Edesc
(
C
)

=
∥∥CA−B

∥∥2
aims at the descriptor preservation whereas the second term acts as

a regularizer on the map by enforcing its overall structural properties, such as commutativity with
the Laplacian, which corresponds to promoting near-isometries (see Chapter 2.4.4 and Algorithm
1in Ovsjanikov et al. [2017] for details). The optimization problem in Eq (1) can be solved with
any convex solver. Once functional map C is computed, one can use nearest neighbor search in the
spectral embedding to convert it to point to point correspondence.

Note that when descriptor functions are neural network based, instead of optimizing over C, we
are optimizing the functional in Eq.1 over C, A and B. In this case, joint optimization over C, A
and B is challenging as C is computed via an iterative solver itself. Deep functional map Litany
et al. [2017a] propose to optimize for descriptors, which define the spectral coefficients A and B
simply through projection onto the Laplacian basis, whereas the functional map matrix C is defined
implicitly via C = arg minX ‖XA − B‖. This results in a simple linear system for which the
derivatives can be computed in closed form.

Symmetrized Functional Map Pipeline The functional map pipeline described above is known to
have issues disambiguating intrinsic symmetries Ovsjanikov et al. [2013]. To avoid this, Ovsjanikov
et al. [2013] propose a simple pipeline that splits the shape matching problem into two steps – first a
linear transformation is computed between a set of symmetric basis functions, which is then extended
to a complete point-to-point map by continuity. This approach is summarized as follows: 1. given a
self-symmetry map on each shapes, a set of symmetrized basis functions is computed by projecting
the Laplacian eigen-basis onto the space of functions that are invariant under the given self-maps.
2. The functional map between symmetrized bases is computed by using standard descriptors and
regularization terms, 3. This map is then extended to the complete space by enforcing symmetry-
preservation during the conversion of functional to point-to-point maps. The main observation
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of Ovsjanikov et al. [2013] is that computing functional maps between symmetric basis functions
only is easier, since this space does not suffer from ambiguities and is thus more stable. At the
same time, this still relies on hand-crafted descriptors and the Laplace-Beltrami basis, making it
parameter-dependent and limited to near-isometries.

4 Learning Symmetrized Embedding

In the previous section, we outlined a basic mechanism to take any functional map and compute
its symmetric part. However, this requires as input a space of symmetric functions on each shape
and a set of basis functions. Due to the instability of LBO on partial 3D shapes, our main goal is to
avoid using LBO and instead learn a embedding that can replace the spectral embedding given by the
Laplce-Beltrami eigenfunctions. This section details how to learn such an embedding whilst working
in the symmetric space.

We assume to be given a collection of shapes with a self symmetry ground truth map for each
shape and our goal is to find an embedding that respects the given symmetry of each shape and that
ultimately can reduce shape correspondence between a pair of shapes to a nearest neighbor search
between their embeddings. We draw our inspiration from a recent work Marin et al. [2020] that has
proposed to replace the Laplace-Beltrami basis by learning embeddings that are related by linear
transformats across pairs of shapes. Intuitively, this formulation aims to embed a shape from the
3D space, in which complex non-rigid deformations could occur, to another higher-dimensional
space space, in which transformations across shapes are linear. However, using a supervised loss to
learn this transform without enforcing any structural properties on this linear transform provides no
guarantee that the learned transform will generalize from train to test setting.

Our key idea is to learn an embedding of each shape that would make the given self-symmetry map
linear in some higher-dimensional space. Learning self symmetry map simultaneously also acts as
a regularizer. Our network takes a shape as input X and its point to point symmetry map denoted
as TXXf

. We use PX to denote the 3D coordinates of X. It then flips each shape along one axis
resulting in a shape denoted as Xf . The original and flipped shapes are then forwarded to a Siamese
architecture, based on a PointNet Qi et al. [2017] feature extractor, that projects these two shapes into
some fixed k dimensional space.

Let ΦX and ΦXf
denote the matrices, whose rows can be interpreted as embeddings of the points

of X and Xf . In the functional map framework, there exists a functional map CXXf
that aligns

the corresponding embeddings. Given a self symmetry ground truth pointwise map TXXf
, we can

estimate CXXf
by solving the following optimization problem:

CXXf
= arg min

C
‖ΦXC

T −TXXf
ΦXf
‖2 (2)

The optimal symmetry map CXXf
is given by: CXXf

= (Φ+
XTXXf

ΦXf
)T , that is differentiable

using the closed-form expression of derivatives of matrix inverses, as also mentioned in Section 3.
Similarly, we can compute CYYf

for shape Y .

Training Loss Given a set of pairs of shapes X,Y for which ground truth correspondences Tgt
XY

are known along with a pointwise symmetry map, our network computes an embedding ΦX,ΦY for
each shape as well as a self symmetry functional map CXXf

and CYYf
respectively as described

above. We then optimize the sum of two loss functions, one each defined for self symmetry map
and pairwise map computation. Both loss functions are based on a soft-correspondence matrix, also
used in Litany et al. [2017a] with geodesic weights and without in Marin et al. [2020], that penalizes
incorrect correspondences based on the Euclidean distances of associated points. To define it for self
symmetry map, we transform each embedding Φ̂X = ΦXC

T
XXf

by applying the optimal symmetry
map . We then compare the rows of Φ̂X to those of ΦXf

to obtain the soft correspondence matrix
SXXf

that approximates the self-symmetry map in a differentiable way as follows:

(SXfX)ij =
e
−‖Φ̂i

X−Φj
Xf
‖2∑n

k=1 e
−‖Φ̂i

X−Φk
Xf
‖2

(3)

To compute the soft correspondence matrix SXY between a pair of shapes, we compare the rows
of ΦX to those of ΦY in a differentiable way as done in Eq. 3. Note that there is no embedding
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transformation involved in this case. Finally, we combine the two loss functions and write the overall
loss as follows:

L(ΦX,ΦXf
,ΦY,ΦYf

) =
∑
‖SXfXPX −Tgt

XXf
PXf
‖22 +

∑
‖SYfYPY −Tgt

YYf
PYf
‖22

+
∑
‖SXYPY −Tgt

XYPY‖22.
(4)

Testing : At test time, once the network is trained, we simply compute the embedding ΦX and ΦY

and do a nearest neighbour search between them to find correspondence between the two shapes. .

Implementation Details We implement our method in Pytorch Paszke et al. [2019]. All experi-
ments are run on a Nvidia RTX 2080 graphics processing card and require 5 GB of GPU memory.
For our experiments, similar to prior work Sharma and Ovsjanikov [2020], Marin et al. [2020], we
train over randomly selected 1K shapes from the SURREAL dataset Varol et al. [2017], where each
point cloud is resampled randomly at 3K vertices. We learn a k = 40 dimensional embedding (basis)
for each point cloud.

During training, we require self-symmetry ground truth as well as pairwise ground truth map.
We train on Surreal dataset instead of ShrecCosmo et al. [2016] as Shrec only has ground truth
symmetry data for one whereas we require it for both null and partial shapes. Following Sharma
and Ovsjanikov [2020], Marin et al. [2020], our feature extractor is also based on the semantic
segmentation architecture of PointNet. For the network details, we attach here the source code. We
use a batch size of 12 and learning rate of 1e− 5 and optimize our objective with Adam optimizer in
Pytorch Paszke et al. [2019]. Training iterations as well as other hyperparameters are validated on a
small validation set.

Unlike Marin et al. [2020] that uses fixed 1000 points during train and test time, we use full resolution
at test time. During training, all point cloud contains 6890 points. We experimented with 3 sampling
density from the set 2k, 3k, 4k and found 2k as well as 3k to provide similar results. However,
increasing the point cloud density further during training leads to a gradual performance drop on
testing at Cosmo et al. [2016] dataset later. This can be explained by the fact that this dataset has
several shapes containing less than 2000 points. We obtain an embedding of 40 dimensions during
training by validating from set 30, 40, 50. Our results are not sensitive to small variations in the size
of embedding.

5 Results

This section is divided into two subsections. First subsection 5.1 shows the experimental comparison
of our approach with two state-of-the art methods for near-isometric partial shape matching. Section
5.2 demonstrates the effectiveness on full shape matching. We evaluate all results by reporting the
per-point-average geodesic distance between the ground truth map and the computed map. All results
are multiplied by 100 for the sake of readability.

5.1 Partial Shape Matching

We compare our method with state-of-the-art approaches focusing especially on the the very recent
functional map-based techniques Sharma and Ovsjanikov [2020], Marin et al. [2020], which was
shown to outperform existing competitors. Note that Marin et al. [2020] is the only baseline that
learns embedding for shape matching between point clouds and thus, our main competitor.

Datasets For a fair comparison with Sharma and Ovsjanikov [2020], Litany et al. [2017b], we
follow the same experimental setup and test our method on on the challenging SHREC’16 Partial
Correspondence dataset Cosmo et al. [2016]. The dataset is composed of 200 partial shapes (from a
few hundred to 9K vertices each) belonging to 8 different classes (humans and animals), undergoing
nearly-isometric deformations in addition to having missing parts of various forms and sizes. Each
class comes with a “null” shape in a standard pose which is used as the full template to which partial
shapes are to be matched. The dataset is split into two sets, namely cuts (removal of a few large parts)
and holes (removal of many small parts). We use the same test set following Sharma and Ovsjanikov
[2020]. However, we also include the wolf class missing in their setup. Overall, this test set contains
24 shapes each for cuts and holes datasets chosen randomly from the two sets respectively.
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Table 1: Avg. Geodesic Error on two partial SHREC benchmarks

Method \ Dataset Holes Cuts
Litany et al. [2017b] 16 13
Sharma and Ovsjanikov [2020] 14 16
Marin et al. [2020]-1k 19 22
Marin et al. [2020]-3k 12 15
Canonical Emb. 18 20
Canonical Emb. + symmetry(Ours) 9 12

Baselines We compare with the following four very competitive baselines:

Litany et al. [2017b] This baseline is not learning based and relies on hand crafted features and
expensive optimization scheme on Stiefel manifold for every pair of shapes at test time. Thus, in
terms of computation and ground truth map requirement, it is most expensive.

Sharma and Ovsjanikov [2020] This baseline, although weakly supervised, also relies on learning
LBO alignment and thus, is dependent on class that needs to be retrained for each of the 8 classes.
We include their results even though our results are class agnostic and thus, significantly more robust
and efficient. We obtain their results by running the code provided by the authors.

Marin et al. [2020] This is considered state of the art for learning embedding directly from data.
They obtain all their results by training on 1k subsampled points from each point cloud and testing
on 1k. Since we are testing with point clouds of much higher resolution, we retrain their models
with 3k subsampled points for each point cloud and show their results with both resolutions 1k as
well as 3k.The rest of the parameters such as embedding size are used as such as they were found
to be optimal. We use their open source code to retrain on our subset of Surreal dataset. Note that
this baseline is somewhat different from others since it requires both basis training and descriptors
(feature functions).

Canonical Emb. This baseline ablates the overall performance of our method and quantifies the gain
brought in by learning self symmetry map during training. It shows the performance if we simply
remove the symmetry loss and learn an embedding by just projecting the shapes into a 50 dimensional
space. We denote our results with Canonical Emb.+ symmetry in the Table 1.

Results and Discussion We present our findings on partial shape matching in Table 1. As shown in
that table, we obtain superior performance on both benchmark datasets for partial shape matching. In
addition, our result outperforms the canonical embedding competitive baseline by a significant margin
and thus, validating the importance of working in the symmetric space while learning canonical
embedding. We would like to stress that baseline such as Sharma and Ovsjanikov [2020] are class
specific and needs to be trained each time whereas our method is class agnostic and can obtain high
quality results with a fraction of time. Similarly, Marin et al. [2020] trains similar network as our two
times. First, it computes the embedding and then it again trains a similar network to compute the
optimal linear transformation between the two embedding. Moreover, testing it also requires running
a network twice. Therefore, our method is at least twice faster than nearest baseline in computational
complexity.

We attribute our superior quantitative results over other learning based methods to a range of factors.
First, in contrast to Marin et al. [2020] that is based on two stage sequential architecture, our symmetry
factored embedding is trained end to end in one phase. As a result, embedding obtained by Marin et al.
[2020] optimization is suboptimal with the canonical embedding as we also show in the supplement.
Second, none of the baseline methods takes symmetry into account even though symmetry ambiguities
for shape matching is a well known problem and studied extensively in axiomatic methods. Third,
performance of Marin et al. [2020] is sensitive to a specific point cloud resolution and low size of
embedding 20. In contrast, due to the regularization provided by learning symmetry map, we can
train with twice their embedding size.

Cumulative Curves In Figure 1 and 2, we show the corresponding curves below that are consistent
with average geodesic error shown in Table 1. Y axis shows fraction of correspondence whereas X
axis shows the geodesic error. We include comparison with rest of the methods in supplement.
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Figure 1: Cumulative curves on SHREC Cuts Figure 2: Cumulative curves on SHREC Holes

Table 2: Avg. Geodesic Error on FAUST benchmark

Method \ Dataset Faust
Marin et al. [2020]-3k 20
Canonical Emb. 19
Canonical Emb. + symmetry(Ours) 12

5.2 Full Shape Matching

We also present our results on full shape matching benchmark dataset FAUSTBogo et al. [2014]. This
dataset contains 100 shapes of 10 different subjects in different poses where each point cloud contains
6890 points. Following prior work, we use the last 20 shapes as test set and report the performance on
this test set. We compare our results with Marin et al. [2020] in Table 2 as this approach is applicable,
in principle, to both partial and complete shape matching. Note that in their work, Marin et al. [2020]
presents results on FAUST data that is subsampled to 1000 points both during train and test. Our
method obtains significantly better results than Marin et al. [2020] although our results are not state
of the art for complete shape matching. Note that in the case of complete shape matching, LBO eigen
functions already form a good basis for shapes and thus, prior work based on finding LBO eigen basis
alignment obtains impressive performance. However, performance of this line of work collapses
badly under partiality, as also shown in Marin et al. [2020].

6 Conclusion and Limitation

In shape correspondence literature, partial shape matching and complete shape matching are generally
tackled by two different set of methods which obtain impressive results in one of the two respective
domain. We presented a simple, general but effective method that reduces shape matching to a
nearest neighbour search problem in a canonical embedding and apply it to both partial and complete
shape matching. Our key idea is to learn an embedding of each shape that would make the given
self-symmetry map linear in some higher-dimensional space. Our idea of injecting symmetry into the
learning pipeline also serves as a regularizer and provides superior performance on two partial shape
matching benchmarks in comparison to all recent learning based methods.

We have demonstrated our results on near isometric benchmarks and extension to non-isometric
shapes is left as a future work.
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Yusuf Sahillioğlu. Recent advances in shape correspondence. The Visual Computer, pages 1–17,
2019.

Abhishek Sharma and Maks Ovsjanikov. Weakly supervised deep functional maps for shape matching.
In NeurIPS, volume 33, 2020.

Abhishek Sharma and Maks Ovsjanikov. Matrix decomposition on graphs: A functional view. arXiv,
2021.

Abhishek Sharma, Oliver Grau, and Mario Fritz. Vconv-dae: Deep volumetric shape learning without
object labels. In ECCV, 2016.

Yifei Shi, Junwen Huang, Hongjia Zhang, Xin Xu, Szymon Rusinkiewicz, and Kai Xu. Symmetrynet:
Learning to predict reflectional and rotational symmetries of 3D shapes from single-view RGB-D
images. ACM Transactions on Graphics (Proc. SIGGRAPH Asia), 39, 2020.

9



Oshane O. Thomas, Hongyu Shen, Ryan L. Raaum, William E.H. Harcourt-Smith, John D. Polk, and
Mark Hasegawa-Johnson. Automated morphological phenotyping using learned shape descriptors
and functional maps: A novel approach to geometric morphometrics. bioRxiv, 2021. URL
https://www.biorxiv.org/content/early/2021/05/18/2021.05.18.444628.

Federico Tombari, Samuele Salti, and Luigi Di Stefano. Unique signatures of histograms for local
surface description. In International Conference on Computer Vision (ICCV), pages 356–369,
2010.

Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev, and
Cordelia Schmid. Learning from synthetic humans. In CVPR, 2017.

Fudong Wang, Gui-Song Xia, Nan Xue, Yipeng Zhang, and M. Pelillo. A functional representation for
graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42:2737–2754,
2020.

Lingyu Wei, Qixing Huang, Duygu Ceylan, Etienne Vouga, and Hao Li. Dense human body
correspondences using convolutional networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1544–1553, 2016.

Yan Wu, Jun Yang, and Jinlong Zhao. Partial 3d shape functional correspondence via fully spectral
eigenvalue alignment and upsampling refinement. Comput. Graph., 92:99–113, 2020.

10

https://www.biorxiv.org/content/early/2021/05/18/2021.05.18.444628

	Introduction
	Related Work
	Background
	Learning Symmetrized Embedding
	Results
	Partial Shape Matching
	Full Shape Matching

	Conclusion and Limitation
	Acknowledgement

