Learning Canonical Embedding for Non-rigid Shape Matching - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Learning Canonical Embedding for Non-rigid Shape Matching

Résumé

This paper provides a novel framework that learns canonical embeddings for non-rigid shape matching. In contrast to prior work in this direction, our framework is trained end-to-end and thus avoids instabilities and constraints associated with the commonly-used Laplace-Beltrami basis or sequential optimization schemes. On multiple datasets, we demonstrate that learning self symmetry maps with a deep functional map projects 3D shapes into a low dimensional canonical embedding that facilitates non-rigid shape correspondence via a simple nearest neighbor search. Our framework outperforms multiple recent learning based methods on FAUST and SHREC benchmarks while being computationally cheaper, data efficient, and robust.
Fichier principal
Vignette du fichier
symmetry_for_embedding-7.pdf (425.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03251317 , version 1 (07-06-2021)
hal-03251317 , version 2 (06-10-2021)

Identifiants

  • HAL Id : hal-03251317 , version 2

Citer

Abhishek Sharma, Maks Ovsjanikov. Learning Canonical Embedding for Non-rigid Shape Matching. 2021. ⟨hal-03251317v2⟩
396 Consultations
219 Téléchargements

Partager

More