Construction of the multi-soliton trains for a generalized derivative nonlinear Schr\"odinger equations by a fixed point method - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Construction of the multi-soliton trains for a generalized derivative nonlinear Schr\"odinger equations by a fixed point method

Résumé

We consider a derivative nonlinear Schrödinger equation with general nonlinearlity: i∂tu + ∂ 2 x u + i|u| 2σ ∂xu = 0, In [12], the authors prove the stability of two solitary waves in energy space for σ ∈ (1, 2). As a consequence, there exists a two-soliton trains in energy space for σ ∈ (1, 2). Our goal in this paper is proving the existence of multi-soliton trains in energy space for σ 5 2. Our proofs proceed by xed point arguments around the desired prole, using Strichartz estimates.
Fichier principal
Vignette du fichier
multi soliton trains for gDNLS.pdf (439.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03230989 , version 1 (20-05-2021)
hal-03230989 , version 2 (14-10-2021)
hal-03230989 , version 3 (21-03-2022)

Identifiants

Citer

Phan van Tin. Construction of the multi-soliton trains for a generalized derivative nonlinear Schr\"odinger equations by a fixed point method. 2021. ⟨hal-03230989v1⟩
228 Consultations
114 Téléchargements

Altmetric

Partager

More