Unitary matrix models and random partitions: Universality and multi-criticality - Archive ouverte HAL
Article Dans Une Revue Journal of High Energy Physics Année : 2021

Unitary matrix models and random partitions: Universality and multi-criticality

Résumé

The generating functions for the gauge theory observables are often represented in terms of the unitary matrix integrals. In this work, the perturbative and non-perturbative aspects of the generic multi-critical unitary matrix models are studied by adopting the integrable operator formalism, and the multi-critical generalization of the Tracy-Widom distribution in the context of random partitions. We obtain the universal results for the multi-critical model in the weak and strong coupling phases. The free energy of the instanton sector in the weak coupling regime, and the genus expansion of the free energy in the strong coupling regime are explicitly computed and the universal multi-critical phase structure of the model is explored. Finally, we apply our results in concrete examples of supersymmetric indices of gauge theories in the large N limit.
Fichier principal
Vignette du fichier
JHEP07(2021)100.pdf (615.75 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-03229411 , version 1 (19-01-2024)

Identifiants

Citer

Taro Kimura, Ali Zahabi. Unitary matrix models and random partitions: Universality and multi-criticality. Journal of High Energy Physics, 2021, 07, pp.100. ⟨10.1007/JHEP07(2021)100⟩. ⟨hal-03229411⟩
75 Consultations
42 Téléchargements

Altmetric

Partager

More