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1 Introduction and summary

The construction and counting of the gauge invariant observables, such as BPS operators
in supersymmetric gauge theories, have been central problems in gauge theory and string
theory, for decades. Often, the counting problems in gauge theory enjoy combinatorial fea-
tures which makes the problems more tractable. For example, the counting of single-trace
and multi-trace operators in supersymmetric gauge theories can be seen as the counting of
letters and words in combinatorics, in the plethystic program [1, 2].

The plethystic program provides a framework to study the generating function of
the gauge theories. An essential step in this framework is applying the Weyl integration
formula in the gauge theory [3–5], to obtain the full generating function of the multi-trace
operators as a group/matrix integral of the plethystic exponentiation of the single-trace
operator generating function. The potential of this matrix model is turned up to be the
double-trace potential, and in the weak coupling limit, one can approximate the pairwise
interaction potentials between the eigenvalues of the matrix model with a single-trace
potential, i.e. the Gross-Witten-Wadia (GWW) model [6, 7] and its generalization to higher
order polynomial potentials.

One important aspect of the counting problems is the asymptotic behavior of the
generating functions and their multiplicities. In the context of gauge theory, to study
the thermodynamic aspects such as confinement/deconfinement phase transition and the
perturbative/non-perturbative aspects one need to develop the asymptotic analysis for the
gauge theory indices in the limit of large parameters and study the singularities of the
generating functions. In the contexts of the AdS/CFT correspondence, the asymptotic
aspects of the gauge theory contain interesting and important information for the gravity
dual theories.

A recent interesting counting problem in gauge theory is the computation of the in-
dex of the N = 1 four-dimensional superconformal field theories (SCFT), the generating
function of the BPS operators which are annihilated by one supercharge. In the context
of AdS/CFT correspondence, the large N and large charge limits of the superconformal
indices, as a candidate of the microscopic explanations of the black holes entropy and phase
transition have attracted a lot of interests and many different methods are developed to-
ward the asymptotic study of the index, see [8] for a review.

In this work, we introduce an analytic approach, based on the machinery of the inte-
grable operator formalism in random matrices and random partitions to study the universal
features in the phase structure of gauge theories. The techniques from random partitions
and their asymptotics provide a natural framework for study of the dynamics of the gauge
theory. Having obtained an alternative formulation of the generic unitary matrix model
based on the Schur partition, i.e. a random partition obeying the Schur measure [9], in this
paper, we apply this machinery in the asymptotic analysis of the supersymmetric indices
and their unitary matrix integrals, and explore the thermodynamics of the gauge theory
and the phase structure. We study the finite and large N asymptotics and associated
phase structure of the unitary matrix models, mainly the generalized GWW model. Our
results include computation of the partition function of the generic unitary matrix model
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which have wide applications in gauge theories. The generating functions for the super-
symmetric indices of the gauge theory such as superconformal index are often represented
in terms of the unitary matrix integrals with double trace potential. In the limit of weak
interactions between the eigenvalues, they can be approximated by the matrix models with
the single-trace potential, i.e. the generalized Gross-Witten-Wadia model. We aim to shed
light on the implications of the universality for the phase structure of the gauge theory. In
fact, one can imagine that the fluctuations of the random partitions in the bulk or at the
edges explain a possible phase transition in the associated gauge theories. The generating
function of the indices and their matrix integrals in the large N limit can be represented
in terms of the Fredholm determinants. The asymptotic analysis of the Fredholm determi-
nants and emergence of the Tracy-Widom (TW) distribution explain the phase structure
of the gauge theories.

Precisely speaking, the edge and the bulk fluctuations in the Schur partitions, described
by the Fredholm determinants with sine, and Airy kernels, respectively, can be applied
in the study of critical dynamics of a class of gauge theories with a generic single-trace
unitary matrix integrals near its critical point. Moreover, the finer phase structure of the
matrix models known as the multi-critical generalization emerges from the smaller scale
fluctuations and they are studied using the higher Airy kernels and their asymptotics. In
fact, the critical dynamics of the matrix model is encoded in the asymptotic behavior,
i.e. the right and left tails of the TW distribution. In the large N limit, the sharp phase
transition is implicit in the different behavior of the tails of the distribution. This phase
transition is replaced by a smooth cross-over, in the intermediate domain of the distribution
at finite N . Moreover, the perturbative and non-perturbative aspects of the gauge theory
are obtained from the finite N corrections to the asymptotic behavior of the two tails of
the distribution. More precisely, the genus expansion of the free energy is obtained via the
perturbative 1/N corrections in the asymptotic analysis of the left tail of the distribution.
The exponential order corrections and related instanton effects are obtained from the right
tail of the distribution, using the Airy function approximation.

In concrete example of the GWWmodel and its generalization, our result is indicating a
universal third-order phase transition, and we compare it with the model-dependent results
in the literature which are based on different plausible methods such as the Coulomb gas
method and saddle-point analysis of the matrix models, and we find a good agreement,
when expanding the results around the critical point. As an application of our result, we
study the fine structure of the Hagedorn phase transition in two concrete examples of the
gauge theory indices. We find that the phase structure of the generalized GWW model
captures the leading order singularities of the Hagedorn phase transition. Based on this
observation, we compute the free energy of these gauge theories in different regimes. In the
finer double-scaling regimes, similar results for the multi-critical dynamics are obtained.

Summary. Let us briefly summarize the main results of this paper. We will collect the
main ideas, tools and results which are roughly expressed, and refer to the bulk of the
paper for the exact expressions. By using the character expansion formula, we can write
the matrix integral with multi-critical potential in terms of the sum over partitions with
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the Schur measure. In fact, imposing the constraint on the largest entry of the partition
λ1, the summation over the random partition is rewritten, modulo a normalization factor,
as the unitary matrix integral [9],

ZN ∝
∑
λ∈Y
λ1≤N

sλ(X)sλ(X) =
∫

U(N)
dU exp

( ∞∑
n=1

1
n
f(qn1 , qn2 , . . .)

(
trUn + trU−n

))
, (1.1)

for definitions see section 3.1. An unrefined version of the partition function (1.1) is recently
studied in [10]. Defining the free energy by F = limN→∞N

−2 logZN , we show that the
right/left (±) edge fluctuation contributes to the free energy, up to a scaling factor N−2,
as

F ∼ lim
s→±∞

logFp(s), where s = (βc − β)N
(αpN)

1
p+1

, (1.2)

and Fp is the higher-order Tracy-Widom distribution [11–14], and αp(q1, q2, . . .),
β(q1, q2, . . .) are some model-dependent parameters and are explicitly expressed in terms of
the couplings [15]. The main result of our study is that the matrix model (1.1), undergoes
a multi-critical phase transition at the critical point β = βc. This phase transitions can be
explained from the asymptotic behavior of the higher-order Tracy-Widom distribution,

Fp(s) ∼



1−O
(
s
− p+1

p e−s
p+1

p

)
s→ +∞

O
(
e−|s|

2(p+1)
p

)
s→ −∞

. (1.3)

The above leading asymptotic behavior of the higher-order TW distribution and the
following multi-critical double-scaling parameter, s = α

− 1
1+p

p (βc− β) N
p

p+1 , imply that the
free energy in two regimes s→ +∞ (β < βc), and s→ −∞ (β > βc), modulo an additive
constant, is given by

F ∼


O(e−cN ) β < βc

α−2/p
p |βc − β|2(p+1)/p +O(N−2) β > βc

. (1.4)

The above free energy implies a discontinuity in the (2(p + 1)/p)-th derivative of the free
energy at β = βc and a multi-critical phase transition of the order (2(p + 1)/p) at this
critical point. One can possibly make a mathematical sense of the fractional derivative in
the fractional calculus. Alternatively, the order of the multi-critical phase transition, can
be replaced by b2(p+1)

p c = 3 for any finite p > 2. At the classic case of p = 2, a universal
third-order phase transition is emerged from the fluctuations at scale N−2/3. This can be
seen as a universal generalization of the GWW model [6, 7], see also [16]. For higher p > 2,
the fluctuations at scale N−

p
p+1 creates a multi-critical phase transition and as we increase

p, the order of the phase transition monotonically decreases. At infinite p, the fluctuations
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are of order N−1 and they causes a second order phase transition. We focus on the two
fixed-points of p = 2 and p = ∞ and their possible physical implications in the general
setting and in concrete examples.

The rest of the paper is organized as follows. In section 2, the matrix integral represen-
tation of the supersymmetric indices is explained. In section 3, the Schur partition and its
asymptotics are reviewed. In sections 4 and 5 the critical and the multi-critical dynamics
of the generalized GWW model are discussed. In section 6, we study the asymptotics of
the double-trace matrix model in some concrete examples and explicit results about the
free energy and phase structure are obtained.

2 Gauge theory indices and matrix models

This section is a brief review about the two classes of unitary matrix models, namely
the generalized double-trace and generalized GWW model and their relations. These two
classes are related to the partition functions of the gauge theories on compact manifolds
and indices of the supersymmetric gauge theories.

2.1 Counting observables in gauge theory

The observables of the gauge theories are the set of gauge invariant operators and their
correlation functions. We consider four-dimensional gauge theories and their observables.
These are formed of single trace of the products of operators, called single-trace operators
and several single-trace operators multiplied to each other, called multi-trace operators.
The grand-canonical partition function of the multi-trace operators is obtained from the
plethystic exponentiation of the generating function of the single-trace operators f(qi),
where qi is the short notation for {qi}, the collection of fugacity factors [1, 2], and then in-
tegrating over the Haar measure of the gauge group to project onto the gauge-singlets [3–5],
known as Weyl integration formula,

I(qi) =
∫
G

dg exp
( ∞∑
n=0

1
n
f(qni )χR(gn)

)
, (2.1)

where g ∈ G, and in our study G is to be considered as the unitary gauge group U(N)
or their product, and χR(g) is the character in R-representation. In section 6, we discuss
some concrete examples in four-dimensional N = 1 SCFT.

2.2 Matrix integral representation

In this section, the counting problem of the BPS operators and their generating functions
in terms of matrix integral are reviewed. We consider the group integral that appears as
the partition function of G = U(N) gauge theories with the adjoint representation matter,
and by using the character formula in the adjoint representation in terms of the characters
in the fundamental representation χadj(g) = χF (g)χ∗F (g), the group integral recasts to a
matrix integral,

I(qi) =
∫

U(N)
dU PE [f(qi;U)] , (2.2)
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where by using the Weyl parameterization, the integral over the Haar measure can be
written as an integral over the eigenvalues θi in the diagonal matrix U = diag

(
eiθi

)N
i=1

,

∫
U(N)

dU = 1
N !

∫ N∏
i=1

dθi
2π

∏
1≤i<j≤N

|eiθi − eiθj |2, (2.3)

and the plethystic exponential is defined by

PE[f(qi;U)] = exp
[ ∞∑
n=1

1
n
f(qni )(trUn trU−n)

]
. (2.4)

The above matrix integral appears as the generating function for the BPS multi-trace
operators in free gauge theories. In particular, we are going to consider, in section 6,
two explicit classes of examples of this, which are i) BPS operators in chiral ring of the
free four-dimensional N = 1 SCFT and ii) the BPS operators that are annihilated by
one supercharge in N = 1 SCFT, in particular the sixteenth BPS operators in N = 4
supersymmetric Yang-Mills (SYM) theory.

Let us define a closely related model, the generalized GWW matrix model,

Z(qi) =
∫

U(N)
dU exp

[
N
∞∑
n=1

tn(qi)
(
trUn + trU−n

)]
. (2.5)

Notice that, in general, the O(1) couplings t1, t2, . . . can be any univariate or multivariate
function of the parameters of the model. In the rest of this paper, we absorb the N depen-
dence into the definitions of the couplings and thus drop the overall factor N . Truncating
to the case n = 1, Z(qi) reduces to a effective theory of GWW model,

Z(qi) ∼ ZGWW =
∫

U(N)
dU exp

[
t1(qi)(trU + trU−1)

]
. (2.6)

The gauge theory indices as the double-trace matrix integral (2.2) is related to the
generalized GWW matrix integral, either effectively at weak coupling in the large N limit
or exactly by the Hubbard-Stratonovich transformation [17, 18]. In this study, we focus on
the former approximation and leave the latter relation for the future studies. The double-
trace matrix model and the generalized GWW model share equilibrium conditions. In fact,
in the large N limit, I(qi) and Z(qi) are equivalent, upon identification

tn(qi) = f(qni )
n
〈trUn〉, (2.7)

and they have a similar phase structure [5]. Moreover, the truncated case n = 1 of the
double matrix integral (2.2), and the GWWmodel, are dominant in the asymptotic analysis
of the generalized models with higher degrees, n > 1, see [5] for more details. Being aware
of exact relation between double trace matrix models and GWW models by the Hubbard-
Stratonovich transformation and saddle point approximation [19], in this article we are
going to focus on the generalized GWW matrix model and its asymptotic analysis and
interpreting the results as the effective theory for the double trace models at the weak
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coupling limit. We hope to return to this problem in future and precisely apply the results
of generalized GWW model to the double-trace model, using the transformation.

Having explained the connection between matrix integral representation of gauge in-
dices and the generalized GWW model, in the rest of the paper, we are going to explore
the generalized GWW model and its possible implications for gauge theory indices. We
introduce random partitions with Schur measure to study the phase structure of the gen-
eralized GWW model. Our goal is to study the large N limit of the superconformal index
and its phase structure, using the asymptotic analysis of matrix integral. In the next sec-
tion, we use the asymptotic analysis is performed using the methods of random partitions
and integrable operator formalism. This approach uncovers the universal features of the
phase structure.

3 Integrable operator formalism in matrix models

In this part, we review, without details of the proofs, the results obtained in recent
works [15, 20] about the random partitions and its asymptotics, and then adopt them
to study the phase structure of gauge theories. The first step in the random partition
realization of the gauge theory is to think of the random partition as discretization of the
matrix integral representation of the partition function of the gauge theory. More pre-
cise relation between the matrix integral and the random partition is via the character
expansion formula.

3.1 Schur measure random partition and generalized GWW model

Let Y be a set of partitions, and X = (xi)i∈N be the set of the parameters and the Miwa
variables defined by

tn = 1
n

∞∑
i=1

xni . (3.1)

Then, we define our main object, the partition function of the constrained partitions, via
the Schur function sλ, as

ZN = P(λ1 < N) = Z−1 ∑
λ∈Y
λ1≤N

sλ(X)sλ(X), (3.2)

where Z is the normalization of the Schur measure random partition and it is given by,

Z =
∑
λ∈Y

sλ(X)sλ(X) =
∏

1≤i,j≤∞
(1− xixj)−1 = exp

( ∞∑
n=1

n t2n

)
. (3.3)

We will elaborate on the physical interpretation of the partition functions Z and Z in
section 3.2. Using the character expansion, the Schur partition can be written in terms of
the unitary matrix integral,

ZN = Z−1
∫

U(N)
dU exp

( ∞∑
n=1

tn
(
trUn + trU−n

))
. (3.4)

– 6 –
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Let us define the Fredholm determinant on a specific domain I ⊂ R,

det(1−K)I =
∞∑
n=0

(−1)n
n!

∫
In

n∏
i=1

dxi det
1≤i,j≤n

K(xi, xj) , (3.5)

where K is the integral operator with the kernel K(xi, yj). Then, the Schur partition
function can be written as a discrete analog of the original Fredholm determinant (3.5) [9],

ZN = det (1−K)I , (3.6)

where the domain I is defined as I = (N + 1
2 ,∞), and K(k, l) is given by [21],

K(k, l) = 1
(2πi)2

∮
|z|>|w|

dz dw K(z, w)
zk+1/2w−l+1/2

(
k, l ∈ Z + 1

2

)
, (3.7a)

K(z, w) = J(z)
J(w)

1
z − w

, J(z) =
∞∏
n=1

1− xnz
1− xn/z

. (3.7b)

The J(z) is called the wave function and it has the following mode expansion,

J(z) = exp
[ ∞∑
n=1

tn
(
zn − z−n

)]
=
∑
x∈Z

J(x) zx , J(x) =
∮ dz

2πi
J(z)
zx+1 . (3.8)

Plancherel measure random partition and GWW model. A particular example
of the Schur measure with a single parameter

tn = q δn,1, (3.9)

is called the Plancherel measure with the following partition function,

ZN = Z−1 ∑
λ∈Y
λ1≤N

q2|λ|
(dim λ

|λ|

)2
, (3.10)

where dim λ is the dimension of the irreducible representation parameterized by λ of the
symmetric group S∞, and |λ| = ∑∞

i=1 λi, and Z = eq2 .
The Plancherel partition function with the constraint λ1 ≤ N has the matrix integral

and Fredholm determinant representation,

ZN = Z−1
∫

U(N)
dU exp

(
q
(
trU + trU−1

))
= det (1−KdB)(N+ 1

2 ,∞) , (3.11)

where the discrete Bessel kernel is obtained in [22],

KdB(k, l) = q
Jk−1/2(2q) Jl+1/2(2q)− Jk+1/2(2q) Jl−1/2(2q)

k − l
. (3.12)

The wave function is then given by the Bessel function J(x) = Jx(2q), with the generating
function

J(z) = eq(z−z−1) =
∑
x∈Z

Jx(2q) zx . (3.13)

– 7 –
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Difference equation for wave functions. We observe that the wave functions of the
Schur partitions satisfy the following differential and difference equations:[ ∞∑

n=1
n tn

(
zn + z−n

)
− z ∂

∂z

]
J(z) = 0,

[ ∞∑
n=1

n tn
(
∇nx +∇−nx

)
− x

]
J(x) = 0, (3.14)

where we define the shift operator ∇xf(x) = f(x + 1) with ∇x = exp (∂x). In the case
of the Plancherel measure, the wave function obeys the difference equation, a special case
of (3.14), [

∇x +∇−1
x −

x

q

]
Jx(2q) = 0 . (3.15)

We remark that, as mentioned in [15], the differential/difference equation (3.14) is
interpreted as a quantization of the spectral curve for the generalized GWW model,

ΣGWW =
{
(x, z) ∈ C× C× | H(x, z) = 0

}
(3.16a)

with

H(x, z) =
∞∑
n=1

n tn
(
zn + z−n

)
− x . (3.16b)

3.2 Asymptotic analysis of partitions and dynamics of gauge theory

In this section, dynamics of gauge theory is obtained from the asymptotic analysis of the
Schur partition. The free energy in the large N limit of the U(N) matrix model is defined by

F = lim
N→∞

N−2 logZN . (3.17)

To explore the phase structure of the gauge theory, we compute the free energy in different
regimes of the parameter space, obtained from the asymptotic analysis of the random
partitions. In term of the random partition, there are two contributions to the free energy,
first a contribution from the continuum limit/limit shape of the random partition, obtained
from the normalization factor of the matrix integral. Secondly, there is a contribution from
the fluctuation around the limit shape. Depending on the region in the partition, the
fluctuation behaves differently; in the bulk of the partition, the contribution is given by
the Fredholm determinant of the sine kernel, and in the edge of the partition, it is the
Fredholm determinant with Airy kernel, i.e. TW distribution. Thus, formally speaking,
we have

F = Fc + Ff , (3.18)

where Fc and Ff denote the continuum and fluctuation free energy, respectively.
The continuum free energy is a global model dependent contribution and can be com-

puted using the matrix integral, for example in the generalized GWWmodel one can obtain
from eq. (3.3),

Fc = logZ =
∞∑
n=1

n t2n, (3.19)

notice that the N dependence is implicit in the coupling tn. The fluctuation has different
behavior in the bulk and edge of the partition, thus, we consider each case separately.
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Bulk scaling limit and fluctuation. Now, let us consider the Plancherel measure
random partition and discuss the scaling limit of the Bessel function. Let us define the
discreteness parameter ε ∼ N−1, to re-scale the parameters of the random partition, such
that the large N limit of the unitary matrix model corresponds to the continuum limit,
ε→ 0, of the random partition. Moreover, as we will explicitly explain later, the parameter
s in the domain of the Fredholm kernel (3.6), is in fact the double-scaling parameter and
as N tends to infinity, it tends to plus infinity in the bulk and plus/minus infinity at the
right/left sides of the edge of the random partition.

Using the scaling (x, q) → (x, q/ε), the scaling limit of the difference equation (3.15)
becomes [

∇x +∇−1
x +O(ε)

]
Jn(2q/ε) = 0 , (3.20)

which has the plane wave solutions

Jx(2q/ε) ε→0−−→


cos

(
π

2x
)

= (−1)x/2 (x ∈ 2Z)

sin
(
π

2x
)

= (−1)x/2−1/2 (x ∈ 2Z + 1)
. (3.21)

Then, the scaling limit of the discrete Bessel kernel (3.12) becomes the sine kernel

K(k, l) ε→0−−→ sin π(k − l)/2
π(k − l)/2 , (3.22)

where the normalization is fixed to be K(r, r) = 1. Similar studies for the bulk scaling
limit of the Schur measure random partition is performed in [23].

In the bulk, the dynamics of the gauge theory is governed by the sine random process
and the fluctuation contribution to the free energy is given by the Fredholm determinant
with the sine kernel, up to a scaling factor N−2, as

Ff ∼ lim
s→∞

log det
(
1− K̂sine

)
(s,∞)

, where K̂sine(x, y) = sin π(x− y)
π(x− y) . (3.23)

The asymptotics of the Fredholm determinant as s→∞ is obtained in [24, 25],

det
(
1− K̂sine

)
(s,∞)

= 21/12 e3 ζ′(−1) s−
1
4 exp

(
−s

2

2

)(
1 +O(s−1)

)
. (3.24)

This asymptotic result leads to the computation of the free energy in the bulk, the scaling
parameter s = γN , as

F = Fc + Ff
= Fc + lim

N→+∞
N−2 log det

(
1− K̂sine

)
(γN,∞)

= Fc −
γ2

2 −
1
N2

(
−1

4 logN − log γ
4 + log 2

12 + 3 ζ ′(−1)
)
, (3.25)

where Fc is given by the normalization of the Schur measure random partition in eq. (3.19).
Thus, we observe that in the large N limit, the leading contribution of the bulk fluctuation
in the free energy is non-zero. We will come back to this observation and discuss a possible
interpretation of that, at the end of section 5.2.
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Edge scaling limit and fluctuation. Next, we discuss the scaling limit of the difference
equations of the wave function and the kernel of the Fredholm determinant. We first
consider the Schur partition. Let us use the parameter ε to re-scale the parameters and
expand the shift operator,

(x, tn)→ (x/ε, tn/ε), ∇±nx/ε =
∞∑
k=0

(±nε)k
k!

dk
dxk . (3.26)

Then, the difference equation (3.14) becomes[ ∞∑
k=1

αk ε
k dk

dxk − (x− β)
]
J

(
x

ε

)
= 0 , (3.27)

where the coefficients are defined as

αk =
∞∑
n=1

2nk+1tn
k! , β = α0 =

∞∑
n=1

2n tn . (3.28)

In the scaling limit ε→ 0, and by keeping αp′ = 0 for p′ < p, the difference equation (3.27)
becomes the following differential equation,[ dp

dξp − ξ
]
J

(
β

ε
+
(
αp
ε

) 1
p+1

ξ

)
= 0 , (3.29)

where ξ = α
− 1

p+1
p ε

− p
p+1 (x − β) for p ≥ 2. Thus, we observe that the scaling limit of the

wave function is given by the p-Airy function,

J

(
β

ε
+
(
αp
ε

) 1
p+1

ξ

)
ε→0−−→ Aip(ξ) = (−1)

p
2 +1

∫
C

dλ
2πi exp

{
(−1)

p
2
λp+1

p+ 1 + ξλ

}
, (3.30)

where C is an integral contour providing a convergent integral. The case p = 2 corre-
sponds to the standard Airy function. The p-Airy function, Aip

(
(−1)

p
2 +1ξ

)
, satisfies the

generalized Airy equation,
dp
dξpAip(ξ) = ξAip(ξ). (3.31)

In fact, we can analyze the semi-classical behavior of the p-Airy function based on the
reduced spectral curve,

Σp-Airy = {(x, y) ∈ C× C | yp − x = 0} . (3.32)

This is obtained from the spectral curve of the GWW model (3.16) in the scaling limit
discussed above, i.e., parametrize w = exp (εy), then take the limit ε→ 0 with tuning the
parameters. We remark that the p-Airy spectral curve (3.32) agrees with (Ap−1, A0)-type
Argyres-Douglas theory [26, 27].

Next, we discuss the scaling limit of the kernel. Using the eq. (3.7), we obtain the
kernel in terms of the wave functions,

K(z, w) =
∑

n,m∈Z

∞∑
i=1

J(n)J(m) zn−iw−m+i−1, K(k, l) =
∞∑
i=1

J

(
k + i− 1

2

)
J

(
l + i− 1

2

)
,

(3.33)
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and then using the scaling limit of the wave function, one can obtain the scaling limit of
the kernel as

K

(
β

ε
+
(
αp
ε

) 1
p+1

x,
β

ε
+
(
αp
ε

) 1
p+1

y

)
ε→0−−→

(
αp
ε

) 1
p+1

Kp-Airy(x, y), (3.34)

where the p-Airy kernel is defined as

Kp-Airy(x, y) =
∫ ∞

0
dzAip(x+ z) Aip(y + z) (3.35a)

= 1
x− y

p−1∑
q=0

(−1)q Ai(q)p (x) Ai(p−q−1)
p (y) , (3.35b)

and Ai(r)p (x) is the r-th derivative of the Airy function.

3.3 Higher-order Tracy-Widom distribution

The natural origin of the Airy kernel is in the theory of random matrices, in which the gap
probability of the Airy process is given by the Fredholm determinant with the Airy kernel,

F2(s) = det(1−KAiry)(s,∞) . (3.36)

The probability distribution function of the largest eigenvalue and its statistical behavior
in the scaling limit is given by the Tracy-Widom distribution [28].

Random partition, as a discrete analog of the random matrix [9], has similar edge
scaling behavior which is reflected in terms of the probability distribution of the largest
entry (the first row) of the partition. In the scaling limit, the probability distribution of
the largest entry of the Schur partition is obtained in [15],

lim
ε→0

P

 λ1 − β/ε
(αp/ε)

1
p+1

< s

 = det(1−Kp-Airy)(s,∞) =: Fp(s) , (3.37)

where Fp(s) is a higher-order analog of the Tracy-Widom distribution [11–14].
The probability distribution (3.37) can be used to compute the contribution of the

edge fluctuation to the partition function of the generalized GWW model by using the
eqs. (3.2) and (3.6). In fact, there are three regions in the vicinity of the edge, namely the
finitely (O(1)) close regions in the left and right sides of the edge, and the crossing region
which is infinitesimally close to the edge. At the edge, the dynamics is determined by the
p-Airy process and the fluctuations in the right/left (±) sides of the edge contribute to the
free energy (3.18), up to a scaling factor N−2, as

Ff ∼ lim
s→±∞

log det (1−Kp-Airy)(s,∞) . (3.38)

Therefore, the right/left (±) edge free energy are obtained from the left and right tails of
the higher TW distribution,

Ff ∼ lim
s→+∞

logFp(s), Ff ∼ lim
s→−∞

logFp(s). (3.39)
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In the special case of the Plancherel partition, using the scaled parameters (x, q) →
(x/ε, q/ε), the difference equation (3.15) becomes[

ε2
d2

dx2 −
(
x

q
− 2

)
+O(ε4)

]
Jx/ε(2q/ε) = 0 , (3.40)

and in the scaling limit, the wave function becomes the Airy function,

Jx/ε(2q/ε)
ε→0−−→ Ai(ξ) , (3.41)

where ξ = ε−2/3q−1/3(x − 2q). Similarly, the scaling limit of the discrete Bessel kernel is
given by the Airy kernel,

K

(
2q
ε

+
(
q

ε

)1/3
x,

2q
ε

+
(
q

ε

)1/3
y

)
ε→0−−→

(
q

ε

)1/3
KAiry(x, y) . (3.42)

As a special case of the generic p, in the case of p = 2, the dynamics of the model is
governed by the Airy process and TW distribution, and the contribution of the fluctuation
to the free energy is given, up to a scaling factor N−2, by

Ff ∼ lim
s→±∞

log det (1−KAiry)(s,∞) = lim
s→±∞

logF2(p). (3.43)

4 Critical dynamics

In this section, we study the free energy of the generic unitary matrix model from the
viewpoint of the fluctuation of the model around the edge and explore the universal phase
structure of the model in the vicinity of a critical point. As we will see in the following
sections this phase transition is associated with the opening/closing of a gap in the distri-
bution function of the eigenvalues on the circle. From the mathematical point of view, the
case p = 2 explains the critical dynamics of the matrix models.

4.1 General unitary matrix model and TW distribution

Precisely speaking, in the particular case p = 2 of the eq. (3.37), and by assuming the
scaling relation between ε and N , discussed in section 3.2, the finite and large N results
for the free energy of the critical model is encoded of the following result,

lim
ε→0

P
[
λ1 − c1/ε

(c2/ε)1/3 < s

]
= det(1−KAiry)(s,∞) = F2(s) , (4.1)

where c1 and c2 are some model-dependent parameters which in the case of generalized
GWW model we have c1 = β(t1, t2, . . .) and c2 = α2(t1, t2, . . .) in eq. (3.28), and F2 is the
TW distribution and

KAiry(x, y) = Ai(x)Ai′(y)−Ai(y)Ai′(x)
x− y

. (4.2)
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Using the definition (3.17), and by fixing the ’t Hooft parameter γ := Nε in the large N
limit of the U(N) matrix model, the universal result for the free energy can be obtained
from (3.2), (3.18), and (4.1), up to a scaling factor N−2, as

Ff ∼ lim
s→±∞

logF2(s) where s = γ − c1

c
1/3
2

N
2
3 , (4.3)

and the free energy in the left side of the edge is given by

F = Fc + lim
N→∞

N−2 logF2(s), for γ < c1, s→ −∞, (4.4)

and right sides of the edge is given by

F = Fc + lim
N→∞

N−2 logF2(s), for γ > c1, s→ +∞. (4.5)

In the rest of this section, we explain the perturbative and non-perturbative aspects of
the general unitary matrix model in the weak and strong coupling phases, using the TW
distribution. We obtain some results about the finite N and genus expansion of the free
energy. In the large N limit, we compute the free energy and extract the phase structure
of the models. Let us start with the asymptotic analysis of the TW distribution.

Tracy-Widom distribution. The Tracy-Widom distribution is given by

F2(s) = exp
{
−
∫ ∞
s

(x− s) q2(x) dx
}
, (4.6)

where q(x) is the solution of the Painlevé II equation,

qxx(x) = 2 q3(x) + x q(x), (4.7)

and qxx denotes the second derivative of q with respect to x. The asymptotic behavior of
the solution is obtained in [29, 30], and as x→ −∞,

q(x) =
√
−x2

(
1 + 1

8x3 −
73

128x6 + 10219
1024x9 +O(|x|−12)

)
, (4.8)

and
q (x)→ Ai(x), as x→∞. (4.9)

Using the Hastings-McLeod results [30] we have

F2(s) = exp
{
−
∫ ∞
s

R(x) dx
}
, where R(x) =

∫ ∞
x

q2(s) ds. (4.10)

Moreover, they obtained

R(x) = qx(x)2 − x q(x)2 − q(x)4. (4.11)

– 13 –



J
H
E
P
0
7
(
2
0
2
1
)
1
0
0

Unlike the Gaussian distribution, TW distribution is an asymmetric distribution and has
different left and right tails. Using the Hastings-McLeod results, asymptotic analysis of
the TW distribution is performed in [31], and the following result is obtained,

F2(s) =


1− e−

4
3 s

3
2

32πs 3
2

(
1− 35

24s 3
2

)
+O(s−3) s→∞

2
1
24 eζ

′(−1) e
− 1

12 |s|
3

|s|
1
8

(
1− 3

26 |s|3
+O(s−6)

)
s→ −∞

, (4.12)

where ζ(x) is the Riemann zeta function. The asymmetry of the tails of the TW distribution
is apparent in the leading order asymptotic,

F2(s) =


1−O(e−s3/2) s→∞

O(e−|s|3) s→ −∞

. (4.13)

4.1.1 Finite N results and 1/N expansion

Let us define the double-scaling parameter,

s = α
− 1

3
2 (βc − β) N

2
3 . (4.14)

By using the double scaling parameter for general unitary matrix model, the leading and
sub-leading contributions to the free energy, can be obtained using the asymptotic expan-
sion of the TW distribution (4.12),

F =


Fc + 1

N2 log
(

1− (32π)−1s−
3
2 exp

{
−4

3s
3
2

})
β < βc, |β − βc| = O(1)

Fc + 1
N2 log

(
2

1
24 eζ

′(−1)e−
1
12 |s|

3 |s|−
1
8

(
1− 3

26 |s|3
))

β > βc, |β − βc| = O(1)
.

(4.15)

We can add the crossing region, between the two tails, to the above result and after
expanding the logarithm, we obtain

F =



Fc−
1
N2

∞∑
n=1

1
n

(32π)−ns−
3
2n exp

(
−4

3ns
3
2

)
β <βc, |β−βc|=O(1)

Fc+
1
N2

∫ ∞
s

(x−s) q2(x) dx β <βc, |β−βc|=O(N−2/3)

Fc+
1
N2

(
c− |s|

3

12 −
1
8 log |s|−

∞∑
n=1

1
n

( 3
26

)n
|s|−3n

)
β >βc, |β−βc|=O(1)

,

(4.16)
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where c = log 2
24 + ζ ′(−1). We can recast the expansions as

F =



Fc +
∞∑
n=1

N−n−2 G (1)
n e−2Nfn(β) β < βc, |β − βc| = O(1)

Fc +
∞∑
n=0

N−
2
3n−2 G (2)

n β < βc, |β − βc| = O(N−2/3)

Fc + F0 +N−2G −
∞∑
n=1

N−2n−2 G (3)
n β > βc, |β − βc| = O(1)

, (4.17)

where in the right tail, the first line, we have

G (1)
n = − 1

n
(32π)−nα

n
2
2 (βc − β)−

3n
2 , fn(β) = 2

3nα
− 1

2
2 (βc − β)

3
2 , (4.18)

and in the left tail, third line,

F0 = −α
−1
2

12 |βc − β|
3, G = log 2

24 + ζ ′(−1) + 1
24 logα2 −

1
12 logN − 1

8 log |βc − β|,
(4.19)

and
G (3)
n = 1

n

( 3
26

)n
αn2 |βc − β|−3n. (4.20)

The above result reproduces the known results about the scaling behavior of the free energy
of GWW model [17] and moreover generalize it to the generalized GWW model [18]. We
will elaborate more on this in sections 4.2 and 4.3.

Right tail of TW distribution and instantons. The right tail of the TW distribution
is obtained by taking the limit s→∞, thus we can expand the exponential in eq. (4.6), as
the integrand becomes small in this limit,

F2(s) ≈ 1−
∫ ∞
s

(x− s) q2(x) dx, (4.21)

then, using the asymptotic result

q (s)→ Ai(s), if s→∞, (4.22)

and the Airy function asymptotics,

Ai(s) = 1
2
√
πs1/4 exp

{
−2

3s
3
2

}(
1− 5/27

2
3s

3
2

+O
( 1
|s|3

))
, (4.23)

by keeping the first term in the above expansion of the Airy function, and using it in
eq. (4.21), we obtain

F2(s) ≈ 1− 1
4π

∫ ∞
s

(x− s) x−
1
2 exp

{
−4

3x
3
2

}
dx. (4.24)

The above integral can be evaluated as

F2(s) ≈ 1− 1
8π exp

{
−4

3s
3
2

}
+ 1

6πs
3
2E 2

3

(4
3s

3
2

)
, (4.25)
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where En(x) is the generalized exponential integral defined by

En(x) =
∫ ∞

1

e−xt

tn
dt. (4.26)

Using the asymptotic expansion of the generalized exponential function at x→∞,

En(x) = e−x

x

(
1− n

x
+ n(n+ 1)

x2 − . . .
)
, (4.27)

we obtain
F2(s) ≈ 1− (16π)−1s−

3
2 exp

{
−4

3s
3
2

}(
1− 5

4s 3
2

+O(s−3)
)
. (4.28)

The above right tail expansion, s → ∞ of the TW distribution, matches, up to some
numerical coefficients, with the similar expansion in the literature, for example in [31, 32],

F2(s) = 1− (32π)−1s−
3
2 exp

{
−4

3s
3
2

}(
1− 35

24s 3
2

+O(s−3)
)
. (4.29)

Noperturbative instanton sector. In the region β > βc, (β − βc) = O(1), using the
parameterization s = (ξN) 2

3 , we observe that there is no perturbative corrections to the
continuum free energy and the non-perturbative corrections due to the instantons are of
order O(e−N ), and we can expand the leading terms of eq. (4.29) to obtain the instanton
contribution to the free energy,

Finst = −
∞∑
n=1

(32πξ)−n
n

N−n−2 exp
(
−4

3n ξN
)
, (4.30)

where n is the number of the instantons. Thus, we can write Finst =
∞∑
n=1
Fn-inst, and in

particular, the one-instanton sector, which is the dominant contribution, is

F1-inst = − 1
32πξN

−3 exp
(
−4

3 ξN

)
. (4.31)

Left tail of TW distribution and genus expansion of free energy. In this part,
we use the left tail expansion of the TW distribution to obtain the genus expansion of the
free energy. The genus expansion of the free energy is defined by

F =
∞∑
g=0

N2−2gFg. (4.32)

Notice that in the genus expansion of the free energy, the definition of the free energy is
not normalized by the 1/N2 factor and for example the genus zero free energy is of order
N2, and this should be considered when we compare the genus expansion with the result
in section 4.1.1. In the genus expansion of the free energy, for more convenience, we use
slightly different parameterization s = λN

2
3 , in which the two parameters are related by

λ = ξ
2
3 . In this parameterization, we can arrange the expansion of the free energy in powers

of N and find the subleading terms in 1/N expansion. Using this parameterization we find
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the total genus zero part, which is defined as the sum of the continuum free energy and
genus zero free energy in the expansion (4.32), as

F̃0 = Fc + F0 = Fc +


0 for β < βc

− 1
12 |λ|

3 for β > βc

. (4.33)

Furthermore, as we observed, there is no perturbative corrections O( 1
N ) in the region

β > βc, and the perturbative corrections in the region β < βc, can be computed by using
the left tail asymptotics of the TW(2) distribution. In fact, the free energy at genus one,
and for higher genus (g ≥ 2), are given by

F1 = log 2
24 + ζ ′(−1)− 1

8 log |λ| − 1
12 logN, Fg = − 1

g − 1

( 3
26

)g−1
λ3−3g. (4.34)

Let us define the perturbative corrections to free energy by

Fpert = F − F0 =
∞∑
g=1

N2−2gFg, (4.35)

and then by putting the perturbative and non-perturbative leading and subleading terms
together in the two phases, we obtain

F =


Fc + Finst, for β < βc

Fc −
1
12 |λ|

3 + Fpert, for β > βc

. (4.36)

Notice that, the above result for the free energy is universal, besides the model-dependent
parts, namely the continuum free energy Fc, and parameters ξ and λ.

4.1.2 Large N asymptotics: Universal phase structure

As we observed so far, the different asymptotic behavior of the TW distribution in its
left and right tail, lead to different expansion of the free energy in the strong and weak
coupling phases. In fact, there is a universal strong-to-weak coupling transition, i.e. the
deconfinement phase transition, in the unitary matrix models. The large gap asymptotic
of the Fredholm determinant, which is the asymptotic analysis in the left tail (i.e. the
phase β > βc) of the TW distribution, is obtained via the Riemann-Hilbert analysis [31],
as s→ −∞,

F2(s) = 21/24eζ
′(−1) |s|−

1
8 exp

{
−|s|

3

12

}(
1 + 3

26|s|3
+O(|s|−6)

)
. (4.37)

Thus, we obtain the universal finite contribution from the edge fluctuation to the free
energy in strongly-coupled phase,

Ff ∼ lim
s→−∞

logF2(s) = −|s|
3

12 −
1
8 log |s|+ logC2 + o(1), (4.38)
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where s = α
− 1

3
2 (βc − β) N 2

3 , and the parameters α and β depend on the model, and
C2 = 21/24eζ

′(−1).
Putting together the left and right tails expansion of the TW distribution, the lead-

ing order free energy and the order of the subleading perturbative and non-perturbative
corrections, can be summarized as

F =


Fc +O(e−cN ) for β < βc

Fc −
1
12 |λ|

3 +O(N−2) for β > βc

. (4.39)

It is easy to observe that the third derivative of the free energy is discontinuous at
β(ti) = γ ≡ βc, which is leading to a universal third order phase transition in the model.
This is a universal generalization of the GWW phase transition at β = βc between the two
phases: weak coupling β < βc (s→∞) and strong coupling β > βc (s→ −∞). This is the
phase transition associated with the one-gap opening/closing in the unitary matrix model.

Cross-over region between the tails. Having discussed the left and right tails of the
TW distribution, in this section, we take a closer look on the crossing regions between the
tails. At finite but large N , the free energy of the matrix model in the intermediate region
is obtained from the TW distribution,

F = Fc −
∫ ∞
s

(x− s) q2(x) dx, (4.40)

where s is finite, s ∼ α−1/3
2 = O(1), as β − βc = O(N−2/3), and q(x) is the solution of the

Painlevé II equation (4.7). Notice that, from eq. (4.6), one can observe that q satisfies

q2(s) = − d2

ds2 logF2(s), (4.41)

and one can interpret q2 as the specific heat, as F2 has the interpretation of the partition
function in our context.

In order to approximate the F2(s) in the crossing region for finite s, one needs to
study the interpolation of the function q(x) between the left and right tails; in the limit
x → −∞, the asymptotic behavior is given by the eq. (4.8) and in the limit x → ∞, it is
q (x)→ Ai(x). In the crossing region, it is numerically obtained that the TW distribution
can be approximated by the Gamma distribution [33],

F2(s) ≈ Γ(k)−1γ(k, s+ α

θ
), (4.42)

where γ(k, x) is the lower incomplete gamma function defined as

γ(t, x) =
∫ x

0
st−1e−s ds, (4.43)

and the parameters k, α and θ are numerically adjusted to fit the TW distribution.
Having discussed the applications of the asymptotic analysis of the TW distribution in

the general setting, in the rest of this section, we apply our result in two concrete example
of the GWW model and its generalization.
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4.2 GWW model and TW distribution

The perturbative and non-perturbative results and a universal phase structure in the GWW
matrix model can be extracted from the free energy given by

F = Fc + lim
N→∞

N−2 logF2(s), where s = λN2/3, (4.44)

and λ = α
−1/3
2 (βc − β), with the coefficients α2 and β, given by

α2 = t1 , β = 2t1 , βc = γ. (4.45)

Assuming γ = 1, the critical point βc = 1 implies that the critical coupling is t∗1 = 1/2.
Then, we easily obtain

λ = 1− 2t1
t
1/3
1

, ξ = (1− 2t1)3/2

t
1/2
1

, (4.46)

and we can compute the free energy (4.36),

F =


t21 + Finst for t1 < 1/2

t21 −
|1− 2t1|3

12t1
+ Fpert for t1 > 1/2

, (4.47)

where Finst in eq. (4.30) can be computed by sum over all n-instantons contributions,
given by

Fn-inst = 1
(32π)nn

t
n/2
1

(1− 2t1)3n/2N
−n−2 exp

(
−4

3n
(1− 2t1)3/2

t
1/2
1

N

)
, (4.48)

and Fpert is given by

F1 = log 2
24 + ζ ′(−1)− 1

8 log
∣∣∣∣∣1− 2t1
t
1/3
1

∣∣∣∣∣− 1
12 logN, (4.49)

and

Fg = − 1
g − 1

( 3
26

)g−1
∣∣∣∣∣1− 2t1
t
1/3
1

∣∣∣∣∣
3−3g

, for g ≥ 2. (4.50)

To compare with results in the literature for example [17, 34], notice that the coupling
of our GWW matrix model t1 is related to one in the literature t, by t = 2t1. The leading
term of the free energy of the GWW model obtained from the Coulomb gas method is

F =


t2

4 for t < 1

t− 3
4 −

log t
2 for t > 1

. (4.51)

Above free energy implies there is a third order phase transition at t = 1 in GWW model.
This model-dependent third-order phase transition is an example of the universal third
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order phase transition in our discussion implied by the universality of the TW distribution.
In order to compare the above model dependent result with the leading terms (genus zero)
of the universal result obtained in eq. (4.47), we should consider the vicinity of the critical
point t∗ = 1. The free energy obtained by both methods in the phase t > 1 matches exactly.
In the phase t < 1 and in the vicinity of the critical point t ↗ 1, one can observe that
the expansion of the free energy in terms of ε = t− 1 (or t = eε) in eqs. (4.47) and (4.51)
matches up to order O(ε3).

Let us consider the 1/N expansion in GWW model [17],

F =



t2

4 + 1
2πe

−2Nf(t)
∞∑
n=1

N−n−2 F (1)
n for t < 1, 1− t = O(1)

t2

4 +
∞∑
n=0

N−
2
3n−2 F (2)

n for t < 1, 1− t = O(N−2/3)

t− 3
4 −

log t
2 +

∞∑
n=0

N−2n−2 F (3)
n for t > 1, t− 1 = O(1)

, (4.52)

where

f(t) = log
(

1
t

+
√

1
t2
− 1

)
− t
√

1
t2
− 1, F (1)

n ∼ 1
(1− t) 3n

2
, F (3)

n ∼ 1
(t− 1)3n , (4.53)

and F (2)
0 satisfies Painlevé II equation [17]. We observe an agreement between G(1,2,3)

n in
eq. (4.17) and F (1,2,3)

n in above result. In instanton sector, different approximation for Airy
function is applied in our study whereas in the literature the Airy function is approximated
by the Bessel function and its Debye approximation. However, one can observe that the
f1(β) in eq. (4.18) matches with f(t) around t = 1 up to the first term in the expansion
which is of order O(ε3/2). We hope to comeback to this problem, in our future studies.

The perturbative genus expansion in the GWW model [34] is

Fg(t) = B2g
2g(2g − 2) + 1

(t− 1)3g−3

g−2∑
n=0

c(g)
n tn, (4.54)

where B2g denotes Bernoulli number. In particular, at genus one, we have

F1(t) = ζ ′(−1)− 1
8 log(1− 1/t)− 1

12 logN. (4.55)

In general, for any g ≥ 1, we expect that the above results match with eqs. (4.49) and (4.50)
around the critical point t = 1. At genus one, all terms in eq. (4.55) match with eq. (4.49)
up to the coefficient of term log t. The first term in eq. (4.54) is normalization for the Haar
measure and it is obtained by computing the volume of the U(N) gauge group. However,
for the second term in eq. (4.54), by comparing with eq. (4.50), although they are different
in order, but we expect the following relation around t = 1,

g−2∑
n=0

c(g)
n tn ∼ − 1

g − 1

( 3
27

)g−1
tg−1. (4.56)

More precise comparison and further implications of the above equation remain for future
studies.
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4.3 Generalized GWW model and TW distribution

In this section we explain the free energy of the one-cut solution of the generalized GWW
model. Similar to GWW model, all the results in the matrix model with an arbitrary
potential in generalized GWW can be obtained from the free energy (4.44) with explicit
model-dependent parameters given by

α2(t1, t2, . . .) =
∞∑
n=1

n3 tn , β(t1, t2, . . .) = 2
∞∑
n=1

n tn , βc(t1, t2, . . .) = γ . (4.57)

Then, by using explicit form of λ and ξ = λ3/2 in eqs. (4.30), and (4.35), one can explicitly
compute the free energy of the generalized GWW model,

F =
∑
n

n t2n +


Finst for β < βc

− 1
12 |λ|

3 + Fpert for β > βc

. (4.58)

The above free energy of the generalized GWW model implies a universal third order phase
transition in the generalized GWW model. In the following, we compare our result with
1/N expansion of the free energy in the literature. The critical behaviour of the generalized
GWW model is discussed in [18],

F =



∑
n

n t2n + 1
2πe

−2Nf(tn)
∞∑
n=1

N−n−2 F (1)
n for t < 1, 1− t = O(1)

∑
n

n t2n +
∞∑
n=0

N−
2
3n−2 F (2)

n for t < 1, 1− t = O(N−2/3)

H(tn) +
∞∑
n=0

N−2n−2 F (3)
n for t > 1, t− 1 = O(1)

, (4.59)

where F (1,2,3)
n and H(tn) can be computed using the methods of orthogonal polynomi-

als [35]. In the vicinity of the critical point, assuming γ = 1,

2
∑
n

n t∗n = 1, (4.60)

using the results in eqs. (4.17)–(4.20) with the parameters α2 and β given by eq. (4.57), in
principle we can obtain explicit results for H(tn), f(tn), F (1,3)

n and F (2)
0 . Similar to GWW

case, they can compared with G1,2,3
n in eqs. (4.18) and (4.20) with insertion of parameters

from eq. (4.57). In particular, the genus zero free energy in the strong coupling regime is
expected to be obtained from eq. (4.58), as

H(tn) ≈
∑
n

n t2n −
1
12α

−1
2 |1− β|3. (4.61)

In summary, the new results include the exact and explicit results for the 1/N expansion,
genus expansion at finite N and phase structure of the model at large N .
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As a simple example, we can consider the single-term generalized GWW model, tn =
tmδn,m, with the following potential

V (U) = tm tr
(
Um + U−m

)
. (4.62)

For simplicity we write tm ≡ t and then in this case we obtain the double scaling parameter

λ = m−1t−
1
3 (1− 2mt), (4.63)

and the free energy,

F = mt2 +


Finst for t < 1

2m

− 1
12m

−3t−1|1− 2mt|3 + Fpert for t > 1
2m

. (4.64)

This implies that there is a third-order phase transition at critical coupling t∗ = 1
2m .

Similarly, Finst and Fpert can be computed explicitly.

5 Multi-critical dynamics

In the previous section, we have studied the critical dynamics associated with the one gap
opening/closing in the GWW model and its generalization. In this section, we study the
multi-critical extension of our previous results for the generalized GWW model, which are
related to the multi-gap opening/closing in the unitary matrix model with a generic high
degree polynomial potential. The multi-critical dynamics is originated in the asymptotic
behavior of the higher TW distribution TW(p). The asymptotic behavior of the TW dis-
tribution (p = 2) is studied in [31], and recent asymptotic results for the Pearcey processes
(p = 3) are obtained in [36]. See also earlier results [37, 38]. The asymptotic analysis
for the generic case of higher TW(p) distribution is conjectured in [13] and proved in [14].
See also [11, 12]. In this section we review recent results in the large gap asymptotics of
the higher TW distributions. Moreover, we obtain the asymptotics results for the right
tail expansion. Then, we apply these results in the multi-critical dynamics of the unitary
matrix model. The analysis of this section is the direct generalization of the one for p = 2
in previous section.

5.1 Multi-critical dynamics and higher TW(p) distribution

The main result of this work is the critical/multi-critical phase structure of the generalized
GWW model. In this study, we consider p ∈ 2N, however we expect similar results for odd
p [39]. We conjecture that all the perturbative and non-perturbative information at the
finite N and large N and the (multi-)critical phase structure can be encoded in a compact
form as

lim
ε→0

P

λ1 − c(p)
1 /ε

(c(p)
2 /ε)

1
p+1

< s

 = Fp(s) , (5.1)
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where c(p)
1 and c

(p)
2 are some model dependent parameters, and Fp(s) is TW(p) distribu-

tion. In the generalized GWW model, we have the distribution (3.37) with parameters are
explicitly given by

c
(p)
2 = αp(t1, t2, . . .) = 2

∞∑
n=1

np+1

p! tn , c
(p)
1 = β(t1, t2, . . .) = 2

∞∑
n=1

n tn . (5.2)

The free energy in the large N limit of the U(N) matrix model is defined in (3.17), and it
can be obtained from (3.2) and (5.1), by fixing γ := Nε, as

F = Fc + lim
N→∞

N−2 logFp(s) where s = γ − c(p)
1(

c
(p)
2

) 1
p+1

N
p

p+1 , (5.3)

is called the multi-critical double-scaling parameter.

Multi-critical double-scaling parameter. Let us define the critical point γ = βc and
by using (5.2), write double scaling parameter in generalized GWW model as

s = α
− 1

1+p
p (βc − β) N

p
p+1 . (5.4)

The multi-critical dynamics and phase structure is governed by the behaviour of free energy
around the critical point β = βc, and as we will see, the free energy in the vicinity of the
critical point and the order of the multi-critical phase transition can be explicitly computed
from the parameters αp and β in the asymptotic expansion of Fp(s) around the critical
point. For real positive tn, we have αp > 0, β > 0, and as N → ∞, the double-scaling
parameter s is tending to plus/minus infinity depending on the sign of (βc − β) and thus
there are two phases βc > β and βc < β in the matrix model. Then, the free energy has
different expansions in different phases. Thus, to obtain the free energy one needs to study
the asymptotics of Fp(s) in the two limits of s→ ±∞.

5.1.1 Multi-critical instantons

In this section, we study the right tail asymptotics of TW(p) and its applications for the
instantons in the multi-critical model.

In the limit s → ∞, one can obtain the asymptotic expansion of Fp(s), in a straight-
forward calculations, by using the definition

logFp(s) = −
∫ ∞
s

(x− s) q2
(
(−1)

p
2 +1x

)
dx, (5.5)

and the following asymptotic result [14],

q
(
(−1)

p
2 +1s

)
→ Aip(s), if s→∞, (5.6)

where Aip(s) is the p-Airy function defined in (3.30).
The asymptotic behavior of the p-Airy function is obtained in [40], and the following

results, up to some unkown numerical factor ap and ãp, holds

Aip(s) = ap s
− p−1

2p exp
{
− p

p+ 1s
p+1

p

}(
1− ãp s−

p+1
p +O(s−

2(p+1)
p )

)
. (5.7)
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The factor ãp does not appear in the following approximation as we keep the leading term
in the asymptotic, and we will also drop the factor ap in the following computation. Similar
to the discussion in the p = 2 case, by using the leading term in the asymptotic of the
higher Airy function (5.7), from eq. (5.5) in the limit s→∞, we obtain

Fp(s) ≈ 1− 1
2 exp

{
− 2p
p+ 1s

p+1
p

}
+ p

p+ 1s
p+1

p E p
p+1

( 2p
p+ 1s

p+1
p

)
. (5.8)

Then, by expanding the generalized exponential integral eq. (4.27), we obtain

Fp(s) ≈ 1− 1
4s
− p+1

p exp
{
− 2p
p+ 1s

p+1
p

}(
1− 2p+ 1

p
s
− p+1

p +O(s−
2(p+1)

p )
)
. (5.9)

Finally, for generic p, we have the following right tail expansion of the logarithm of the
higher TW(p),

logFp(s)≈ log
(

1−4−1s−
p+1

p exp
(
− 2p
p+1s

p+1
p

))
=−

∞∑
n=1

1
4nns

−n(p+1)
p exp

(
− 2np
p+1s

p+1
p

)
.

(5.10)

The right tail of TW(p), explain the regime β < βc, and (β − βc) = O(1) of the gener-
alized GWW model. Using the parameterization s = (ξpN)

p
p+1 , and the above asymptotic

results, the free energy in this phase is obtained as

F = Fc + F (p)
inst, (5.11)

where
F (p)

inst = −
∞∑
n=1

1
4nnξ

−n
p N−n−2 exp

{
− 2np
p+ 1ξpN

}
. (5.12)

In the generalized GWW model, we have Fc = ∑
n n t

2
n, and ξp = α

− 1
p

p (βc − β)
p+1

p .

5.1.2 Multi-critical genus expansions

In this part, we study the left tail asymptotics of TW(p) and its application in the strong
coupling phase of multi-critical model, such as the computation of the genus-expansion of
the free energy. The asymptotic expansion of the TW(p) distribution, in the limit s→ −∞,
is recently obtained in [14],

logFp(s) = cp|s|
2(p+1)

p + c log |s|+ logCp + o(1), (5.13)

where

cp = − p2

2(p+ 1)(p+ 2)

(
p
p
2

)− 2
p

, (5.14)

and c = −1
8 if p = 2, c = −1

2 if p > 2, and Cp is a constant, possibly depending on p.
Although, the perturbative subleading corrections are not yet rigorously studied, but using
the analogy to the p = 2 case in eq. (4.37), we can conjecture,

o(1) = log
(

1 + b1|s|
−2(p+1)

p +O
(
|s|
−4(p+1)

p

))
, (5.15)
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for some undetermined constant b1. More explicitly, for p = 2, 4, 6, cases we have,

logF2(s) = −|s|
3

12 −
1
8 log |s|+ logC2 + o(1), (5.16a)

logF4(s) = − 2
45
√

6 |s|
5
2 − 1

2 log |s|+ logC4 + o(1), (5.16b)

logF6(s) = − 9
56020

2
3 |s|

7
3 − 1

2 log |s|+ logC6 + o(1). (5.16c)

Using the asymptotic (5.13), and the double scaling parameter (5.4), s = λpN
p

p+1 , we
obtain the free energy in the strong coupling phase (β > βc), as

F = Fc + cp|λp|
2(p+1)

p +N−2
(
c log |λp|+

c p

p+ 1 logN + logCp
)

+ o(N−2). (5.17)

Furthermore, in the phase β > βc, and (β−βc) = O(1), we can re-arrange the above result,
and obtain the genus expansion of the free energy of the generalized GWW model,

F = F̃0 + F (p)
pert, (5.18)

where the genus zero part and the higher genus subleading perturbative corrections are

F̃0 =
∞∑
n=1

n t2n + cp|λp|
2(p+1)

p , (5.19a)

F (p)
pert = F (p)

1 +
∞∑
g=2

N2−2gF (p)
g , (5.19b)

with the genus one free energy is given by

F (p)
1 = −1

2 log |λp| −
p

2(p+ 1) logN + logCp. (5.20)

For higher genus g ≥ 2, by using the expansion of the conjecture, one can show that the
higher than two genus free energy is given by (5.15),

o(1) ≈
∞∑
n=1

(−1)n−1 b
n
1
n
|s|−

2(p+1)
p

n
, F (p)

g = (−1)g
g − 1 (b1)g−1 |λp|

2(p+1)
p

(1−g)
. (5.21)

To summarize the results obtained in this section for the free energy in the weak and strong
phases of the multi-critical generalized GWW model, we have

F (p) =
∑
n

n t2n +


F (p)

inst for β < βc

cp|λp|
2(p+1)

p + F (p)
pert for β > βc

, (5.22)

where F (p)
inst and F (p)

pert are given by eqs. (5.12) and (5.19b), respectively.
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Cross-over region. In this part, we discuss the smooth cross-over region between the
weak and strong coupling phases, at large, but finite N , in the vicinity of the critical point
βc; β > βc and (β − βc) = O(N−

p
p+1 ). The cross-over region is the intermediate region

between the right and left tails, i.e. TW(p)(s) for finite s ∼ α
− 1

1+p
p . The free energy of the

generalized GWW multi-critical model in this region can be obtained from eq. (5.5), as

F =
∞∑
n=1

n t2n −N−2
∫ ∞
s

(x− s) q2
(
(−1)

p
2 +1x

)
dx where s ∼ α

− 1
1+p

p = O(1),

(5.23)

and q(s) is the solution of the p
2 -th member of the Painlevé II hierarchy [14], see also [41],( d
ds + 2q

)
Lp/2[qs − q2] = s q, (5.24)

where qs is the derivative of q w.r.t. s, and operators Ln are Lenard operators defined by

d
dsLj+1f =

(
d3

ds3 + 4f d
ds + 2fs

)
Ljf, L0f = 1

2 , Lj1 = 0, j ≥ 1. (5.25)

Moreover, the multi-critical specific heat satisfies

q2
(
(−1)

p
2 +1x

)
= − d2

ds2 logFp(s), (5.26)

and in the strong coupling phase, as s→ −∞, it has the following expansion [14],

q
(
(−1)

p
2 +1s

)
=
(

(p2)!2

(p)! |s|
) 1

p

+ c

2

(
(p)!
(p2)!2

) 1
p

|s|−2− 1
p +O

(
|s|−2− 2

p

)
, (5.27)

and, in the weak coupling phase, as s → ∞, we have q((−1)
p
2 +1s) → Aip(s). One can

study the interpolation of q(s) between these two limits and extract the finite s results.

5.1.3 Multi-critical 1/N expansion

Similar to the discussion in section 4.1.1, our results in this section about the large N
dependence of the free energy of the multi-critical generalized GWW model in vicinity of
the critical point, can be summarized in the following 1/N expansion,

F =



Fc +
∞∑
n=1

N−n−2 G (p,1)
n e−2Nf (p)

n (β) for β < βc, |β − βc| = O(1)

Fc +
∞∑
n=1

N
− p

p+1n−2
G (p,2)
n for β < βc, |β − βc| = O(N−

p
p+1 )

Fc + F (p)
0 +N−2G(p) −

∞∑
n=1

N−2n−2 G (p,3)
n for β > βc, |β − βc| = O(1)

,

(5.28)
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where Fc = ∑
n n t

2
n, and it is straightforward to observe that G (p,1)

n and f
(p)
n (β) in the

weak coupling phase are given by

G (p,1)
n = 1

4nn α
n
p
p (βc − β)−

(p+1)n
p , f (p)

n (β) = np

p+ 1 α
− 1

p
p (βc − β)

p+1
p , (5.29a)

and in the strong coupling phase, for the genus expansion of the free energy we have

F (p)
0 = cp α

− 2
p

p |βc − β|
2(p+1)

p , (5.29b)

G(p) = logCp + 1
2(1 + p) logαp −

p

2(p+ 1) logN − 1
2 log |βc − β|, (5.29c)

and
G (p,3)
n = (−1)n−1 bn1

n
α

2n
p
p |βc − β|−

2n(p+1)
p . (5.29d)

5.2 Infinite limit (p → ∞) of multi-critical dynamics and bulk fluctuation

Let us consider the generalized GWW model with the infinite degree polynomial poten-
tial and study the multi-critical dynamics at p → ∞. In this limit the double scaling
parameter (5.4) becomes

s = e−1(βc − β)N, (5.30)

where we used the fact that the limit p → ∞ in definition of αp in eq. (5.2), implies that
only the term with n ∼ p survives, and we have

lim
p→∞

α
− 1

1+p
p ∼ lim

p→∞

(
pp+1

p!

)− 1
1+p

= e−1. (5.31)

It is interesting to compute the multi-critical 1/N expansion in this limit,

F =



Fc +
∞∑
n=1

N−n−2 G (∞,1)
n e−2Nf (∞)

n (β) for β < βc, |β − βc| = O(1)

Fc +
∞∑
n=1

N−n−2 G (∞,2)
n for β < βc, |β − βc| = O(N−1)

Fc + F (∞)
0 +N−2G(∞) −

∞∑
n=1

N−2n−2 G (∞,3)
n for β > βc, |β − βc| = O(1)

,

(5.32)

where one can directly compute the limit p→∞ of the functions in eqs. (5.29), as

G (∞,1)
n = en

4nn(βc−β)−n, f (∞)
n (β) = n

e
(βc−β), (5.33a)

F (∞)
0 =− 1

8e2 |βc−β|
2, G(∞) = logCp+ 1

2−
1
2 logN− 1

2 log |βc−β|, (5.33b)

G (∞,3)
n = (−1)n−1 bn1 e

2n

n
|βc−β|−2n. (5.33c)
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In this limit, the free energy expansion in the strong coupling phase β > βc, becomes

F (∞)(β) = Fc −
1

8e2 |βc − β|
2 − 1

2N−2 (log |βc − β|+ logN − 1) +O(N−4), (5.34)

and the rest of the subleading terms are
∞∑
n=1

(−1)n−1 bn1 e
2n

n
|βc − β|−2nN−2n−2. (5.35)

The leading contribution to free energy indicates a second order phase transition. Moreover,
the higher genus (g ≥ 2) free energy becomes

F (∞)
g (β) = (−1)g

(
e2 b1

)g−1

g − 1 |βc − β|2−2g. (5.36)

In the weak coupling phase β < βc, using the asymptotic behavior of the higher Airy
function in eq. (5.7),

lim
p→∞

Aip(s) = a∞s
− 1

2 e−s
(

1− ã∞
s

+O
( 1
s2

))
, (5.37)

and the infinite limit of the TW(p) in eq. (5.8) is

lim
p→∞

Fp(s) ≈ 1− e−2s

2 + s E1(2s) = 1− e−2s

2 + s Γ(0, 2s), (5.38)

where Γ(t, x) is the upper incomplete Gamma function defined as

Γ(t, x) =
∫ ∞
x

st−1e−s ds, (5.39)

and we used Γ(t, x) = xt E1−t (x). Then, we can expand the exponential integral or the
Gamma function to obtain

lim
p→∞

Fp(s) ≈ 1− 1
4s
−1e−2s

(
1− 2s−1 +O(s−2)

)
, (5.40)

and then after keeping the first leading terms, we obtain

lim
p→∞

logFp(s) ≈ log
(
1− 4−1s−1e−2s +O(e−2ss−2)

)
= −

∞∑
n=1

1
4nns

−ne−2ns +O(s log s).

(5.41)

Finally, the infinite limit of the multi-critical instanton free energy can be obtained from
eq. (5.12), as

F (∞)
inst (β) = −

∞∑
n=1

en

4nn(βc − β)−nN−n−2 exp
{
−2ne−1(βc − β)N

}
, (5.42)

and the one-instanton sector is

F (∞)
1-inst(β) = −4−1e(βc − β)−1N−3 exp

{
−2e−1(βc − β)N

}
. (5.43)
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5.3 Multi-critical phase structure and its interpretation

Based on our analysis in this section, we observe that in the generalized GWW model there
is a multi-critical phase transition at critical point βc = γ, meaning that the free energy
has different expansion at left and right side of the critical point,

F (p) =


Fc +O(e−cN ) for β < βc

Fc + cp |λp|
2(p+1)

p +O(N−2) for β > βc

, (5.44)

where Fc = ∑
n n t

2
n,

cp = − p2

2(p+ 1)(p+ 2)

(
p
p
2

)− 2
p

, and λp = α
− 1

1+p
p (βc − β). (5.45)

The leading order of the free energy in two phases, imply that the order of the multi-critical
phase transition is 2(p+1)

p . Often, in the literature this multi-critical phase transition, for
any finite p, is considered a transition of order b2(p+1)

p c = 3.

5.3.1 Multi-critical gap dynamics

Before discussing the interpretations of the multi-critical phase transition, let us briefly
explain some related issues. The assumption αp′ = 0 for p′ < p, which is used to derive
the coefficients (5.2) in eq. (5.1), implies some physical constraints on the dynamics of the
model. Notice that at any fixed p, the interaction and fluctuation are at scale N−

p
p+1 ,

and thus in order to see the sub-dominant fluctuations for higher p, all the larger scale
interactions at p′ < p, should be turned off as we want to isolate the interaction at the scale
p, and study the effect of a fixed scale fluctuation. In general, to study the multi-critical
dynamics, one needs the fine tuning of the coupling, for example in this case, introducing
p-dependent, at any p ≥ 2, couplings in the large N limit, such as t(p)n ∼ q(p−p′)N , for q < 1
and 2 ≤ p′ ≤ p.

In the critical dynamics, we studied the third-order phase transition associated with
one-gap dynamics. More precisely, in the generalized GWW model with the maximum
degree m polynomial potential,

V (U) =
m∑
n=1

tn tr
(
Un + U−n

)
, (5.46)

the critical dynamics is causing the transition between l-cut solution and (l−1)-cut solution
for 1 ≤ l ≤ m. In the multi-critical dynamics we must consider the multi-gap dynamics.
The unitary matrix model with degree m polynomial potential can have 1- to m-cut solu-
tions and could possibly have phase transitions between l-cut solution to (l−r)-cut solution
for 0 ≤ r ≤ l ≤ m. These phase transitions are associated with the colliding of the two or
more end points of the cuts, simultaneously at the same critical point βc, which depends
only on the potential. Let us isolate a particular set of phase transitions, namely the transi-
tions between the p

2 -cut solutions to full support (zero gap) solution, in which p-end points
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of the cuts collide simultaneously, for p ≤ 2m. We call this transition a p-multi-critical
dynamics for p > 2. The case p = 2 is called critical dynamics. There are m possible
phase transitions in this set, labeled by 2 ≤ p ≤ 2m, and each different p-(multi)-critical
dynamics is governing the opening/closing of p

2 -gaps as a result of the edge fluctuation of
order N−

p
p+1 at critical point. In our study, there is no mixing between the dynamics and

fluctuations at different p, as we isolate the fluctuation scale N−
p

p+1 by putting αp′ = 0, for
p′ < p. We did compute the free energy of the generalized GWW model near the critical
point βc with the p-end points of the cuts are colliding simultaneously.

5.3.2 A new second-order phase transition

In the limit p→∞, the asymptotic behavior of the Fredholm determinant (5.13) is

lim
p→∞

Fp(s) ∼ |s|−
1
2 e−

1
8 |s|

2
, (5.47)

where the scaling parameter is s ∼ (βc − β)N . This is similar to the asymptotics of the
Fredholm determinant with the sine kernel discussed in section 3.2, and in fact indicating
of the bulk fluctuation. From the physical point of view, in the infinite limit, there are
infinite number of the gaps as well as infinite number of the cuts. Then, the infinite-multi-
critical dynamics is related to the shrinking of the infinite gaps at a critical point, when
infinite end points of the cuts collide, simultaneously. The infinite number of the gaps can
be seen as the phase of the full gap, i.e. no support for eigenvalues. Thus, when all the gaps
shrink simultaneously, the model undergoes a transition to the phase of full support for
the eigenvalues or in other words, the infinite number of cuts collide and eigenvalues cover
the full circle. As we observe from eq. (5.47), the phase transition between the full support
and full gap is of the second order. This is a phase transition associated with the infinite
number of edge fluctuations or in other words a zero-to-full support transition driven by
the bulk fluctuation.

Higher Plancherel partition and multi-critical models. In this part, we consider
some basic examples of the unitary matrix models with multi-critical dynamics. First,
consider the degree two polynomial potential with the couplings,

tn = t1δn,1 + t2δn,2. (5.48)

In this model, the multi-critical parameter is restricted to p ≤ 4, and the parameters can
be easily computed

αp = 2
p! (t1 + 21+pt2) , β = 2(t1 + 2t2) , λp = 2−

1
1+p (1− 2t1 − 4t2)

(
t1 + 21+pt2

p!

)− 1
1+p

.

(5.49)

The critical point βc = 1 implies that the surface of critical couplings is 2t∗1 + 4t∗2 − 1 = 0.
Using the above parameters, we can compute the first few terms of the free energy in

the strong coupling regime can be computed from eq. (5.17), as

F ≈ t21 + 2t22 + cp|λp|
2(p+1)

p + c

N2 log |λpN
p

p+1 |. (5.50)
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The higher order corrections to the free energy can be computed in a straightforward way.
Let us consider the critical and multi-critical cases separately. In the critical case p = 2,
the double-scaling parameter is

λ2 = 1− 2t1 − 4t2
(t1 + 8t2)1/3 , (5.51)

and the first few terms of the free energy are obtained as

F ≈ t21 + 2t22 −
(−1 + 2t1 + 4t2)3

12(t1 + 8t2) − 1
8N2 log

∣∣∣∣1− 2t1 − 4t2
(t1 + 8t2)1/3

∣∣∣∣− logN
12N2 . (5.52)

In the multi-critical case p = 4, in principle we can fine tune the couplings t1, and t2 such
that α2 → 0, and similarly one can compute,

λ4 = 22/5 31/5 (1− 2t1 − 4t2)
(t1 + 32t2)1/5 , (5.53)

and the leading orders in free energy as

F ≈ t21 + 2t22 + 4
15
√

2
( 1− 2t1 − 4t2

(t1 + 32t2)1/5

)5/2
− 1

2N2 log
∣∣∣∣ 1− 2t1 − 4t2
(t1 + 32t2)1/5

∣∣∣∣− 2 logN
5N2 . (5.54)

Moreover, the above results can be expanded around the critical surface, for example in
terms of the critical coupling t∗1, by using t∗2 = (1− 2t∗1)/4.

6 Supersymmetric indices: Examples

In this section, we apply the machinery of the generalized GWW model to study the
matrix integral representation of the indices of the gauge theory in the large N limit.
Although the exact relation is provided through Hubbard-Stratonovich transformation, we
consider this approximation as a toy model for gauge theory indices, and use the same
couplings, from generalized GWW model, in the potential of the matrix integrals of the
gauge theories. Using this approximation, we study the perturbative and non-perturbative
regimes of gauge theory and explicitly compute the free energy and phase structure, in some
concrete examples with some interesting choices, motivated by gauge theory, of finely tuned
couplings such that the matrix model is solvable. The results in this part are obtained from
the direct computations of the contributions of the left and right tails of TW(p), to the free
energy in section 5.

6.1 Hagedorn phase transition and deconfinement

Before, diving to the explicit computations in some concrete examples, let us discuss the
Hagedorn phase transition in gauge theories and its relation to the deconfinement transition
in the generalized GWW model, discussed in this paper, so far. The Hagedorn transition
is the phase transition, in the large N limit, between the domain of the convergence and
divergence in the generating function, separated by the hyper-surface of the singularities of
the generating functions, corresponding to Hagedorn phase transition point. The matrix
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integral of the gauge theory indices I in eq. (2.2), in the large N limit, using the Gaussian
matrix integration, becomes an infinite product [5],

lim
N→∞

I(qi) =
∞∏
n=1

1
1− f(qni ) . (6.1)

Thus, using the above generating function at large N limit, we can study the singularities
of the generating function at the poles of the infinite product formula. First, consider n = 1
which corresponds to the double-trace matrix model and can effectively be approximated
by GWW model. Notice that in this case, the Hagedorn critical point and GWW critical
point coincide t∗ = f(q∗i ) = 1. In the general case, we observe that the critical hyper-surface
of the Hagedorn transition is given by

∞∏
n=1

(1− f(q∗ni )) = 1−
∞∑
n=1

f(q∗ni ) +O(f2(q∗ni )) = 0. (6.2)

On the other hand, in the generalized GWW model, the parameters α and β depend
on the couplings tn, and the couplings can be any univariate or multivariate function of
the parameters of the gauge theory qi, thus we have

αp(qi) = 2
∞∑
n=1

np

p! f(qni ) , β(qi) = 2
∞∑
n=1

f(qni ) . (6.3)

The strong-weak coupling or the deconfinement phase transition in this model, which is a
generalization of the Gross-Witten phase transition, happens at βc(qi) = γ = 1, between
the two phases of weak-coupling β(qi) < 1, and strong-coupling β(qi) > 1.

Using the couplings tn = f(qni )/n, and re-scaling all of them by a factor 1/2, similarly
to what we have in the original GWW model, the critical hyper-surface of deconfinement
transition in the generalized GWW model is given by

βc =
∞∑
n=1

n t∗n =
∞∑
n=1

f(q∗ni ) = 1. (6.4)

Then, by expanding the Hagedorn critical hyper-surface (6.2) and comparing it with de-
confinement critical hyper-surface (6.4), we observe that they match up to linear order in
f(qi). The single letter indices f(qi) in the domain of convergence, f(qi) < 1, approaches
the Hagedorn critical hyper-surface, f(qi) ↗ 1, and thus the deconfinement transition in
generalized GWW model effectively explains the Hagedorn phase transition.

In summary, we observe that the generalized GWW model and generalized double-
trace model have qualitatively similar phase structure. In fact, upon identification of
the couplings in two models, the phase structure of generalized GWW model captures the
dominant contribution, i.e. linear approximation in Hagedorn phase structure. This implies
a universal deconfinement/Hagedorn phase transition at critical point βc = 1, for any
arbitrary coefficient f(qi) of the potential in the matrix integral of the gauge theory. This
is the phase transition associated with the gap opening in the multi-critical matrix model.

A priori, the gauge theory double-trace matrix model is approximated by the single-
trace GWW model in the large N limit, thus we expect that the results of GWW model
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carry over to the double-trace model, at least up to leading order and possibly extending
to first few subleading corrections. A possible clue for roughly examining that to what
extent the subleading corrections of single-trace model apply to double-trace model, comes
from the observation made in this section, that the critical point of the single-trace and
double trace models coincide up to linear order in f(q∗ni ), see eq. (6.4). At n = 1 case, the
critical temperature of the GWW model exactly matches with that of double-trace model.
This indicates that results for n = 1 case, can more accurately transfer to the double-
trace model. Moreover, we can expect that in the large N limit, all the results about the
free energy and phase structure can safely carry over up to linear order in f(q∗ni ). More
precise statement about the subleading corrections at finite N requires an exact analysis
of the Hubbard-Stratonovich transformation but we expect that the Legendre transform
of the current leading and subleading results would apply to gauge theory indices. Finally,
notice that in this paper, we do not directly study the double-trace matrix model, and only
consider the toy models which are generalized GWW models with the coefficients in the
potential obtained from the double-trace models.

Trivial example. Before studying some physically motivated examples, we consider an
interesting mathematical example with the fine-tuned couplings t(p)n = q(p−p′)N/ns which,
in the limit N → ∞, is zero for 2 ≤ p′ < p, and tn = 1/ns, for p′ = p. This example
corresponds to the matrix model with the following poly-logarithmic potential

V (U) =
∑
n

tn(trUn + trU−n) =
(
Lis(eiθ) + Lis(e−iθ)

)
. (6.5)

It is easy to compute the parameters of this model in terms of the Riemann zeta function,

αp = 2
p!

∞∑
n=1

np+1 tn = 2
p!ζ(s− p− 1) , β = 2

∞∑
n=1

n tn = 2ζ(s− 1) . (6.6)

However, as the parameter β is a coupling independent number, there is no phase transition
in this model. The free energy of the model is the continuum free energy

Fc =
∑
n

n t2n = ζ(2s− 1). (6.7)

In particular, the especial case of s = 1 is a non-interacting theory with zero potential,
with αp = 0 for all p ∈ 2N. Moreover, the free energy is divergent at s = 1 as ζ(1) → ∞.
Next, we consider a model with an arbitrary degree single term potential,

tn = t
(p)
k δn,k, with t

(p)
k = tk

k
q(p−p′)N , (6.8)

where q < 1, and for all p′ < p, we have tk = 0, at large N limit. In this model, after
fine-tuning the coupling for any given p such that αp′ = 0, for p′ < p, the parameters of
the model can be computed as

αp = 2kp
p! t

k , β = 2tk , λp = 2−
1

1+p (1− 2tk)
(
kptk

p!

)− 1
1+p

, (6.9)
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Figure 1. From left to right: Jordan quiver, clover quiver, and generalized clover quiver

and the genus zero free energy in the strong coupling regime is

F̃ (p)
0 = t2k

k
+ 2−

2
p
−1 p2

(p+ 1)(p+ 2)

(
p
p
2

)− 2
p
(
kptk

p!

)− 2
p (

1− 2tk
) 2(p+1)

p . (6.10)

Since p ≤ 2k, the infinite multi-critical limit, p→∞, implies k →∞ and one can assume
p = 2k. In this limit although α2 and β are either zero or diverging depending on |t|, but
λ∞ is finite and one can show λ∞ = 2

e
√
t
and thus the free energy becomes

F̃ (∞)
0 = t2k

k
− t−1

2e2 . (6.11)

6.2 Free chiral ring index

A class of gauge invariant operators which are annihilated by all the supercharges of one
chirality, for example positive R-charge, are called chiral operators. The local gauge in-
variant chiral operators form a commutative ring, called chiral ring. In this section we
consider the matrix integral representation of the generating function for the counting of
the multi-trace chiral gauge invariant operators in the chiral ring of a generic free N = 1
superconformal quiver theories [42]. Quiver gauge theory is a gauge theory encoded on
a graph, consists of nodes and arrows representing gauge groups and chiral fields, respec-
tively. The unitary gauge group G of the quiver is a product over the U(N) factors of each
node i of quiver, G = ∏

i U(Ni). The generating function of the BPS operators in the free
chiral ring is represented by the following quiver multi-matrix integral,

I(qi) =
∫

U(N)

∏
a

dUa exp

 ∞∑
n=1

∑
a,b,α

1
n

(qab;α)n trUna trU−nb

 , (6.12)

where the qab;α are the fugacity factors associated with the chiral fields {φab;α : α ∈
{1, 2, . . . ,Kab}} with Kab number of arrows between nodes a and b, and the chiral fields are
transforming in the bifundamental representation (Na, N̄b). The chiral fields in the adjoint
representation of a gauge group are the loops starting and ending on the same node of the
quiver associated to the gauge group.

In the large N limit, one can derive the generating function as an infinite product,

lim
N→∞

I(qi) =
∞∏
n=1

1
det [1−A(qni )] , (6.13)

where A(q1, q2, . . .) is the adjacency matrix of the quiver, equipped with the fugacity-
weighted arrows.
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The simplest physical case is the clover quiver theory, i.e. N = 4 super Yang-Mills
theory, a quiver with one node associated with the U(N) gauge group, and three arrows
or the chiral fields in the adjoint representation of U(N). Trivially, it can be generalized
to the case of the k chiral fields, see figure 1, which is often called in the literature by the
k-matrix model harmonic oscillator. For example, the case k = 2, the 2-matrix harmonic
oscillator, is considered in [5]. The k = 3 case is N = 4 SYM and k = 4 case is the conifold
theory. The asymptotics and phase structure of the generalized clover quiver with k chiral
fields, are studied in [43]. The generating function of the index of the generalized clover
quiver can be obtained from eq. (6.12), as the following one-matrix model,

I(qi) =
∫

U(N)
dU exp

[ ∞∑
n=1

1
n

(qn1 + qn2 + . . .+ qnk ) trUn trU−n
]
. (6.14)

This matrix model can be approximated in the large N limit by the generalized GWW
model with coupling tn = 1

n

∑
j q

n
j . In this approximation, this matrix model can be seen

as a unitary matrix model with the following potential,

V (U) = tr log

 k∏
j=1

(1− qjU)(1− qjU−1)

 . (6.15)

Jordan quiver. Let us first consider the univariate case of the generalized clover qj =
q1δj,1, and change variable q1 = t for more convenience. This is a case of clover quiver with
one arrow, and it is known as the Jordan quiver. This is also an example of the simplest
matrix model with plethystic exponential potential. Similarly, the Jordan quiver gauge
theory can be approximated by the generalized GWW matrix model with the coupling
tn = tn/n, which leads to the matrix model with the following potential,

V (U) = tr log(1− tU)(1− tU−1). (6.16)

In this form of the coupling (tn = tn/n), as the assumption αp′ = 0 for p′ < p, can
not be satisfied, there is only a possibility for the p = 2 critical dynamics, and in fact,
we can only discuss the multi-critical dynamics once we fine-tune the couplings, similar to
what we have done in the previous parts. For the fine-tuned couplings, one can find the
following generating functions for the parameters αp and β,

αp = 2
p!

∞∑
n=1

np tn = 2
p!Li−p(t) , β = 2

∞∑
n=1

tn = Li0(t) = 2t
1− t , (6.17)

and the parameter λp is computed as

λp = α
− 1

1+p
p (βc − β) = 2−

1
1+p

(1− 3t
1− t

)(Li−p(t)
p!

)− 1
1+p

. (6.18)

First notice that critical temperature defined by µc = − log tc, can be obtained from βc = 1,
(tc = 1/3), as µc = log 3. Then, we can compute the free energy in the weak and strong
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coupling phases from eq. (5.22), as

F =


− log

(
1− t2

)
+ F (p)

inst for t < 1/3

− log
(
1− t2

)
+ 2−

2
p cp

(1− 3t
1− t

) 2(p+1)
p

(Li−p(t)
p!

)− 2
p

+ F (p)
pert for t > 1/3

, (6.19)

where F (p)
inst is computed by sum over all n-instantons contributions, given by

F (p)
n-inst = 1

4nn ξ
−n
p N−n−2 exp

{
− 2np
p+ 1ξpN

}
, (6.20)

where

ξp = λ
p+1

p
p = 2−

1
p

(1− 3t
1− t

) p+1
p
(Li−p(t)

p!

)− 1
p

, (6.21)

and F (p)
pert is given by

F (p)
1 = − c

1 + p
log 2 + c log

(1− 3t
1− t

)
− c

1 + p
log

(Li−p(t)
p!

)
− p

2(p+ 1) logN + logCp,

(6.22)

and

F (p)
g = (−1)g (c1)g−1

2
2−2g

p (g − 1)

(1− 3t
1− t

) (p+1)
p

(2−2g) (Li−p(t)
p!

)− 2−2g
p

. (6.23)

The leading genus zero free energy (5.19a) can be obtained as

F̃0 = − log
(
1− t2

)
− 2−

2
p
−1 p2

(p+ 1)(p+ 2)

(
p
p
2

)− 2
p (1− 3t

1− t

) 2(p+1)
p

(Li−p(t)
p!

)− 2
p

. (6.24)

Let us consider the critical case p = 2, in which we have

α2 =
∞∑
n=1

n2 tn = Li−2(t) = t(1 + t)
(1− t)3 , β = 2t

1− t , (6.25)

Similar results for this matrix model are obtained, from Riemann-Hilbert method, in [44,
45]. The double-scaling parameter s and the genus-zero free energy in this case are ob-
tained as

λ2 = 1− 3t
t

1
3 (1 + t) 1

3
, F̃0 = − log

(
1− t2

)
− (1− 3t)3

12t(1 + t) . (6.26)

As an example of multi-critical dynamics for the model with the fine tuned couplings, let
us consider the case p = 4, in which we have

α4 = Li−4(t) = t(1 + t)(1 + t(10 + t))
12(1− t)5 , β = 2t

1− t . (6.27)
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The parameter λ4 and the genus zero free energy are obtained as

λ4 = 121/5(1− 3t)
(t(1 + t)(1 + t(10 + t)))1/5 , F̃0 = − log

(
1− t2

)
+ 4

15
√

2 (1− 3t)5/2

(t(1 + t)(1 + t(10 + t)))2 .

(6.28)

It is also interesting to consider the limit p→∞, and by using we observe

lim
p→∞

Li−p(e−µ) = Γ(1 + p)µ−p−1, lim
p→∞

(Γ(1 + p)
p!

)− 1
1+p

= 1, (6.29)

which lead to
λ∞ = ξ∞ = 1− 3t

1− t µ, (6.30)

and the free energy,

F (∞) = − log
(
1− t2

)
+


F (∞)

inst for t < 1/3

1
16

∣∣∣∣1− 3t
1− t µ

∣∣∣∣2 + F (∞)
pert for t > 1/3

, (6.31)

where F (∞)
inst is the sum over

F (∞)
n−inst = 1

4nn

(1− 3t
1− t µ

)−n
N−n−2 exp

{
2
(1− 3t

1− t

)
µnN

}
, (6.32)

and F (∞)
pert is given by

F (∞)
1 = c log

(1− 3t
1− t

)
− 1

2 logN + logCp, and F (∞)
g = (−1)g

g − 1 c
g−1
1

(1− 3t
1− t µ

)2−2g
.

(6.33)

Generalized clover quiver. Using the large N limit of the generating function of the
generalized clover quiver,

lim
N→∞

I(qi) =
∞∏
n=1

1
1−∑k

j=1 q
n
j

. (6.34)

As it is shown in [43], the leading singularity of the above generating function is at n =
1, leading to the Hagedorn phase structure of this model with the critical hyper-surface∑k
j=1 q

∗
j = 1. Thus, in our approximation, the GWW model is dominant partition function

of this model, with the parameters at the critical dynamics p = 2,

α2 =
k∑
j=1

qj ≡ T, β = 2
k∑
j=1

qj = 2T. (6.35)

Similarly, all the results in section 4.2 follow immediately by replacing t1 with T . Moreover,
straightforward generalization of the results for Jordan quiver to the generalized clover
quiver leads to

αp = 2
p!

k∑
j=1

Li−p(qj) , β =
k∑
j=1

2qj
1− qj

, (6.36)
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and the parameter λp is obtained as

λp = 2−
1

1+p (p!)
1

1+p

 k∑
j=1

Li−p(qj)

− 1
1+p

1−
k∑
j=1

2qj
1− qj

 . (6.37)

Then, it is straightforward to compute F (p), F (p)
inst and F

(p)
pert by inserting λp from (6.37) in

eqs. (5.22), (5.12) and (5.19b). For example, the genus zero energy can be obtained as

F̃0 =
∑
n

1
n

 k∑
j=1

qnj

2

+2−
2
p
−1 p2p!

2
p

(p+1)(p+2)

(
p
p
2

)− 2
p

 k∑
j=1

Li−p(qj)

− 2
p
1−

k∑
j=1

2qj
1−qj


2(p+1)

p

.

(6.38)

Moreover, in the limit p→∞, the smallest µj = − log qj , denoted by µmin, contributes in
λ∞, as we obtain

λ∞ =

1−
k∑
j=1

2qj
1− qj

µmin, (6.39)

and, using this parameter, the free energy can be computed in a similar fashion.
Finally, in the unrefined case q1 = q2 = . . . = qk ≡ q, one can compute the parameters

αp = 2k
p! Li−p(q) , β = 2kq

1− q , qc = 1
2k + 1 , (6.40)

and

λp = (2k)−
1

1+p

(1− (2k + 1)q
1− q

)(Li−p(q)
p!

)− 1
1+p

. (6.41)

It is straightforward to compute the free energy in this case, similar to the Jordan quiver.

6.3 N = 4 superconformal index

In this part we consider the superconformal indices of the four-dimensional gauge theories
and their matrix integral representation. In general, the N = 1 superconformal index is
defined by

I(µi) = TrS3 (−1)F e−βδe−µiMi , (6.42)

where the trace is over the Hilbert space of the theory quantized on S3, F is the fermion
number, β is the inverse temperature, δ is the Hamiltonian defined by δ = 1

2{Q,Q
†} with

a supercharge Q andMi are the global symmetry generators that are annihilated by the
super charge with the associated fugacity µi.

In particular, we consider 4d N = 1 superconformal field theory on S3 × S1. The
global symmetry of the theory, i.e. the isometry of the S3, is Spin(4) = SU(2)1 × SU(2)2
with indices α = ±1, α̇ = ±1. In N = 1 supersymmetry in four dimensions, we have four
supercharges and their conjugates Qα,Sα = Q†α, Q̃α̇, S̃ α̇ = Q̃†α̇. We choose a particular
supercharge Q = Q−, which satisfies the algebra {Q,Q†} = ∆ − 2j1 + 3

2r, with ∆ is the
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conformal dimension, j1 (j2) is Cartan generator of SU(2)1 (SU(2)2), and r is the U(1)r
R-charge. Then we can define the superconformal index, using some fugacity factors p
and q, as

I(p, q) = Tr
{

(−1)F e−βδp
1
3 (∆+j1)+j2q

1
3 (∆+j1)−j2

}
. (6.43)

Using the fact that the only states with δ = 0 contribute to the index and thus the index
is independent of β, we obtain

I(p, q) = Tr
{

(−1)F pj1+j2− 1
2 rqj1−j2−

1
2 r
}
. (6.44)

The computations of the superconformal index has two parts, first is to compute the
single letter index ik of each supermultiplet which is labeled here by k, and then using the
plethystic exponential (PE), defined in (2.4), and matrix integral (2.2), to compute the
full index,

I(p, q, V ) =
∫

U(N)
dU

∏
k

PE [ik(p, q, U, V )], (6.45)

where U denotes the gauge group element and V denotes the flavour group element.
In N = 1 SCFT, the single letter index is the sum of the vector multiplet index iV

and chiral multiplet index iS [46],
i = iV + iS , (6.46)

where

iV (p, q, U) = −( p

1− p + q

1− q )χadj(U),

iS(p, q, U, V ) = (pq) 1
3χR̄(U, V )− (pq) 2

3χR(U, V )
(1− p)(1− q) ,

(6.47)

and the adjoint character χadj, and the bifundamental character χR, are given by

χadj(Un) = trUna trU †na , χRab̄
(Un) = trUna trU †nb . (6.48)

Next, we explain the matrix integral representation of the index in the explicit example of
N = 4 SYM. In this case, using eqs. (2.2) and (6.47) the matrix integral representation of
the superconformal index becomes

I(p, q) =
∫

U(N)
dU exp

[ ∞∑
n=1

an(p, q) trUn trU−n
]
, (6.49)

where

an(p, q) = i(pn, qn)
n

, i(p, q) = 2pq − p− q + 3(pq) 1
3 − 3(pq) 2

3

(1− p)(1− q) . (6.50)

Single letter index can be written as

i(p, q) = 1− (1− (pq) 1
3 )3

(1− p)(1− q) . (6.51)
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In the large N limit, the above matrix integral (6.49) becomes an infinite product,

lim
N→∞

I(p, q) =
∞∏
n=1

1
1− i(pn, qn) . (6.52)

At weak coupling, we can effectively approximate the superconformal index (6.49) by the
generalized GWW model

I(p, q) ≈ Z(p, q) =
∫

U(N)
dU exp

[ ∞∑
n=1

tn(p, q)
(
trUn + trU−n

)]
, (6.53)

and in terms of generalized GWW couplings, we obtain

tn = an(p, q) = i(pn, qn)
n

, tn = 1
n

(
1− (1− (pq) n

3 )3

(1− pn)(1− qn)

)
. (6.54)

In the rest of this section, we perform some numerical analysis of the index.

GWW model in N = 4 SYM. First we consider the truncated case n = 1; the GWW
model with the N = 4 SYM coupling t1 from eq. (6.54). Notice that this case is dominant
in the phase structure of the model. In this case Z(p, q) reduces to a effective theory of
GWW model,

Z(p, q) ∼
∫

U(N)
dU exp

[
t1(p, q)

(
trU + trU−1

)]
. (6.55)

In unrefined case p = q ≡ x, we have

i(x) = 1− (1− x 2
3 )3

(1− x)2 , tn = 1
n

(
1− (1− x 2n

3 )3

(1− xn)2

)
. (6.56)

Thus, the critical parameters can be obtained as

α2 = t1 = 3x 2
3 + 4x+ 2x 4

3

(1 + x
1
3 + x

2
3 )2

, β = 2t1 = 6x 2
3 + 8x+ 4x 4

3

(1 + x
1
3 + x

2
3 )2

, xc = 1, (6.57)

where we used the observation that the critical point t∗1 = i(xc) = 1 implies xc = 1. Then,
the double-scaling parameter s = λ2N

2
3 can be computed,

λ2 = 1− β
α

1/3
2

= 1 + 2x 1
3 − 3x 2

3 − 6x− 3x 4
3

(1 + x
1
3 + x

2
3 ) 4

3 (3x 2
3 + 4x+ 2x 4

3 ) 1
3
. (6.58)

Using the parameter λ2, the free energy in different regimes can be computed explicitly.
However, as our result is comparable to the free energy obtained by other plausible methods
in the vicinity of the critical point, it is natural to expand around the critical point xc = 1.
Let us write the fugacity factor as x = eε, in which the parameter ε is proportional to the
radius of S1 in the definition of the superconformal index, and it can be interpreted as the
inverse temperature. Thus, we have the following high temperature expansions at small ε,

t1 = i(x) = 1 + 8
27ε−

2
243ε

3 +O(ε5), (6.59)

– 40 –



J
H
E
P
0
7
(
2
0
2
1
)
1
0
0

and
λ2 = −1− 40

81ε+ 256
6561ε

2 + 10606
1594323ε

3 +O(ε4). (6.60)

Using the above expansion of the parameters, the free energy can be computed from
eq. (4.36),

F =


Fc + Finst for x < 1

Fc −
1
12 |λ2|3 + Fpert for x > 1

, (6.61)

where we obtain

Fc = t21 = 1 + 16
27ε+ 64

729ε
2 − 4

243ε
3 +O(ε4), (6.62)

Fc −
1
12 |λ2|3 = 13

12 + 58
81ε+ 304

2187ε
2 − 2093

118098ε
3 +O(ε4), (6.63)

and Finst and Fpert can also be computed explicitly, as before.

Generalized GWW model in N = 4 SYM. Next, we consider the generalized GWW
model approximation for the N = 4 SYM. Expanding around xc = 1, we similarly obtain

n tn = i(xn) = 1 + 8n
27 ε−

2n3

243 ε
3 +O(ε5). (6.64)

The expansion can be written formally as

n tn = 1 +
∞∑
l=1

(−1)l+1al ε
2l−1n2l−1, (6.65)

for some positive numerical coefficients al. Thus, the parameters αp and β defined in
eq. (5.2), can be evaluated as

β= 2
∞∑
n=1

(
1+

∞∑
l=1

(−1)l+1al ε
2l−1n2l−1

)
= 2ζ(0)+2

∞∑
l=1

(−1)l+1alε
2l−1ζ(1−2l),

αp = 2
p!

∞∑
n=1

(
np+

∞∑
l=1

(−1)l+1al ε
2l−1np+2l−1

)
= 2
p!ζ(−p)+ 2

p!

∞∑
l=1

(−1)l+1alε
2l−1ζ(1−p−2l).

(6.66)

To be explicit, we keep the few terms in the expansion as following

β = 2ζ(0) + 16
27ζ(−1)ε− 4

243ζ(−3)ε3,

αp = 2
p!ζ(−p) + 16

27p!ζ(−1− p)ε− 4
243p!ζ(−3− p)ε3, (6.67)

and thus the parameter λp can be obtained from λp = α
− 1

1+p
p (1− β). The bulk free energy

Fc can be computed similarly,

Fc =
∑
n

n t2n =
∞∑
l=1

blζ(−l)εl−1, (6.68)
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and the numerical coefficients can be computed explicitly

b1 = 1, b2 = 16/27, b3 = 64/729, b4 = −4/243, . . . . (6.69)

One can use this data to compute explicitly the free energy in different phases. In p = 2
case, up to order three, we have

F =


Fc for x < 1

Fc −
1
12 |λ2|3 for x > 1

, (6.70)

where

Fc = − 1
12 + 8

10935ε
2 +O(ε4), (6.71)

Fc −
1
12 |λ2|3 = −241

12 −
270
ε

+ 1745
567 ε+ 283363

1377810ε
2 − 9313

214326ε
3 +O(ε4). (6.72)

7 Discussion and future research

In this work, we discuss some universal results for the generic matrix models, including
the double-trace matrix model, up to some model dependent parameters, and we compute
these parameters explicitly for the generalized GWW model. The main universal results of
this study in the finite but large N and infinite limit of free U(N) gauge theory partition
functions and the indices of gauge theories include:

• Universal critical/multi-critical, large and finite N results such as 1/N expansion,
genus expansion, instanton sector, etc. in generic unitary matrix model.

• Universality in the deconfinement and Hagedorn phase transition in the infinite N
limit of generic unitary matrix models.

• Universal multi-critical edge fluctuation and phase transitions in generic unitary ma-
trix models. Infinite p limit of the multi-critical dynamics and the emergence of bulk
fluctuation. The interpretation of the results in terms of the gap dynamics.

In this work, we studied the matrix models with real couplings. Moreover, the general
case of the complex coupling is of great interest. This line of research has recently attracted
a lot of interest in the theoretical physics community because of its relations to black holes
in the context of AdS/CFT, for a review see [8] and references therein.

In this work, we considered one-matrix models and corresponding quiver gauge theo-
ries with one node, however, the general case of the quiver gauge theories deal with the
multi-matrix model. A possible future extension of this work would be to consider the su-
perconformal index of quiver gauge theories and their multi-matrix integral representation.
In particular, the two-matrix model for conifold quiver and related gauge theories would
be the first step in this direction of research.

In the study of the right tail of the TW distribution in the instanton sector, we used
the Airy function approximation to expand the Fredholm determinant. An alternative
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approach would be to consider the approximation based on the Bessel function and its
variants. The possible result in this way, would be of great interest because of its com-
parison with the existing results about the instantons of the unitary matrix models in
the literature.

In the multi-critical dynamics, the asymptotic analysis lacks the rigorous results for the
sub-leading corrections to the Fredholm determinant of the higher Airy kernel. Developing
techniques and results in this direction are highly interesting.

In this work, the main focus of the asymptotic analysis is the computation of the free
energy, however, an equally important parallel direction is the computations of the limit
shape and the entropy using the spectral curve method and the large deviation technique.

The results of this study is based on the analysis for the case of (p ∈ 2N)-multi-critical
dynamics. An immediate continuation of this analysis is to consider the odd p case and its
applications and implications for random partitions and gauge theories.

In this work, we studied the unitary matrix model and their phase structure. A natural
continuation of this work is to consider Hermitian matrix model. The multi-critical analysis
for the Hermitian matrix model is performed in [12]. Possible applications of this result are
in the weakly coupled gauge theories on compact manifolds [5] and their phase structure.
Another interesting model is the Douglas-Kazakov matrix model with quadratic potential
and its instanton sector. A straightforward generalization of our results would shed light
to this classic matrix model. In this work we considered the same coefficients for the
GWW and the double-trace matrix model, which is plausible for the effective theory at
weak coupling. However, one can study the relations between the GWW and double-
trace model and their phase transition using the Legendre transform and saddle-point
analysis. One can use the Hubbard-Stratonovich transformation and apply our results for
the generalized GWW model to the double-trace matrix integrals and their gravity duals.
Asymptotic analysis of the double-trace matrix models with real and complex couplings
is an interesting direction and remains for future. In this way, based on the rigorous
mathematical results, we hope to provide new understandings for the phase structure
associated to the double-trace models such as deconfinement, Hagedorn and Hawking-
Page phase transitions [47] and their multi-critical generalizations. Especially, possible
interpretations of the multi-critical phase structure for the Hagedorn and Hawking-Page
transitions would be interesting.

In this regard, the GWW model and its generalization seems to explain the transition
between highly excited string states and black holes, whereas the double-trace model ex-
plains the Hawking-Page transition between the thermal AdS and black holes [18]. Thus,
our results about the critical dynamics of the generalized GWWmodel studied in this paper
perhaps directly explore some universality features of the former transition and deserves
further studies. However, the highly interesting question of the possible interpretations and
implications of the multi-critical dynamics in the gravity side is not clear at this moment,
which would require new ideas and techniques. Regarding the Hawking-Page transition, we
should apply the Hubbard-Stratonovich transformation to discuss all possible implications
of the critical and multi-critical dynamics of the double-trace model in the gravity side.
We will return to this issue in a future work.
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