Universal edge scaling in random partitions - Archive ouverte HAL
Article Dans Une Revue Letters in Mathematical Physics Année : 2021

Universal edge scaling in random partitions

Résumé

We establish the universal edge scaling limit of random partitions with the infinite-parameter distribution called the Schur measure. We explore the asymptotic behavior of the wave function, which is a building block of the corresponding kernel, based on the Schrödinger-type differential equation. We show that the wave function is in general asymptotic to the Airy function and its higher-order analogs in the edge scaling limit. We construct the corresponding higher-order Airy kernel and the Tracy-Widom distribution from the wave function in the scalins limit, and discuss its implication to the multicritical phase transition in the large size matrix model. We also discuss the limit shape of random partitions through the semi-classical analysis of the wave function.
Fichier principal
Vignette du fichier
2012.06424.pdf (400.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03229406 , version 1 (19-01-2024)

Identifiants

Citer

Taro Kimura, Ali Zahabi. Universal edge scaling in random partitions. Letters in Mathematical Physics, 2021, 111 (2), pp.48. ⟨10.1007/s11005-021-01389-y⟩. ⟨hal-03229406⟩
28 Consultations
14 Téléchargements

Altmetric

Partager

More