Distribution of generalized mex-related integer partitions - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2021

Distribution of generalized mex-related integer partitions

Résumé

The minimal excludant or "mex" function for an integer partition π of a positive integer n, mex(π), is the smallest positive integer that is not a part of π. Andrews and Newman introduced σmex(n) to be the sum of mex(π) taken over all partitions π of n. Ballantine and Merca generalized this combinatorial interpretation to σrmex(n), as the sum of least r-gaps in all partitions of n. In this article, we study the arithmetic density of σ_2 mex(n) and σ_3 mex(n) modulo 2^k for any positive integer k.
Fichier principal
Vignette du fichier
43Article10.pdf (258.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03208509 , version 1 (26-04-2021)

Identifiants

Citer

Kalyan Chakraborty, Chiranjit Ray. Distribution of generalized mex-related integer partitions. Hardy-Ramanujan Journal, 2021, Volume 43 - Special Commemorative volume in honour of Srinivasa Ramanujan - 2020, pp.122-128. ⟨10.46298/hrj.2021.7425⟩. ⟨hal-03208509⟩
60 Consultations
741 Téléchargements

Altmetric

Partager

More