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Distribution of generalized mex-related integer

partitions

Kalyan Chakraborty and Chiranjit Ray

Abstract. The minimal excludant or “mex” function for an integer partition π of a positive integer n, mex(π), is the smallest
positive integer that is not a part of π. Andrews and Newman introduced σmex(n) to be the sum of mex(π) taken over all

partitions π of n. Ballantine and Merca generalized this combinatorial interpretation to σrmex(n), as the sum of least r-gaps in all

partitions of n. In this article, we study the arithmetic density of σ2mex(n) and σ3mex(n) modulo 2k for any positive integer k.
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1. Introduction and statement of results

In 2015, Fraenkel and Peled [FrPe15] defined the minimal excludant or “mex” function on a set S
of positive integers as the least positive integer not in S. Perhaps the notion of the mex function
was introduced in the 1930s, and best known for the applications in combinatorics and game theory
[Gr39, Sp35].

A partition of a non-negative integer n is a non-increasing sequence of positive integers whose
sum is n. Let π be a partition of n and P(n) be the set of all partitions of n. Recently, Andrews
and Newman [AnNe19] considered the minimal excludant function applied to integer partitions. The
minimal excludant of π, denoted mex(π), is the smallest positive integer which is not a part of π.
Thus if π is 6 + 4 + 3 + 2 + 1, a partition of 16, then mex(π) = 5. For each positive integer n, we have

σmex(n) :=
∑

π∈P(n)

mex(π).

For example, σmex(4) = 9 with the relevant mex partitions being: mex(4) = 1, mex(3 + 1) = 2,
mex(2+2) = 1, mex(2+1+1) = 3, and mex(1+1+1+1) = 2. The generating function for σmex(n)
is given by

∞∑
n=0

σmex(n)qn = (−q; q)2∞,

where the q-shifted factorial (a; q)∞ :=
∏∞
n=1(1− aqn−1), |q| < 1. Let D2(n) be the set of partitions

of n into distinct parts using two colors and let D2(n) = |D2(n)|. In [AnNe19], the authors give two
proofs of the following theorem.

Theorem 1.1. Given an integer n > 0, we have

σmex(n) = D2(n).

They also studied the parity of σmex function and proved that σmex(n) is almost always even
and is odd exactly when n is of the form j(3j ± 1), where j is a non-negative integer.
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In some literature, the minimal excludant of a partition π is referred to as the least gap or smallest
gap of π. The r-gap of a partition π is the least positive integer that does not appear at least r times
as a part of π. Let sr(π) be the smallest part of the partition π appearing less than r times and
Sr(n) =

∑
π∈P(n) sr(π).

For example, all the 3-gaps in the partitions of 5 are: s3(5) = 1, s3(4 + 1) = 1, s3(3 + 2) = 1,
s3(3 + 1 + 1) = 1, s3(2 + 2 + 1) = 1, s3(2 + 1 + 1 + 1) = 2, s3(1 + 1 + 1 + 1 + 1) = 2. Therefore
S3(5) =

∑
π∈P(5) s3(π) = 9.

Ballantine and Merca [Ba, Ba20] generalized Theorem 1.1 to the sum Sr(n) of r-gaps in all partitions
of n. To keep notation uniform, in this article we use σrmex(n) for Sr(n). The generating function
for σrmex(n) is given by

∞∑
n=0

σrmex(n)qn =
(q2r; q2r)∞

(q; q)∞(qr; q2r)∞
. (1.1)

In [Ba20], Ballantine and Merca proved the following identity.

Theorem 1.2. For n ≥ 0 and r ≥ 1 we have

∞∑
k=0

p(n− rTk) = σrmex(n),

where p(n) counts the number of partition of n and Tk is the k-th triangular number.

Recently, Ray and Barman [RaBa20, Theorem 1.6], studied the divisibility of Uncu’s partition
function EOu(n). After some elementary calculations we observe that the generating function of
EOu(2n) and σmex(n) (or σ1mex(n)) are the same. So using the result mentioned above, σmex(n)
is almost always divisible by 2k for any positive integer k.

A well-known conjecture of Parkin and Shanks [PS67], for integer partitions p(n), states that the
even and odd values of p(n) are equally distributed, that is,

lim
X→∞

# {0 ≤ n ≤ X : p(n) ≡ a (mod 2)}
X

=
1

2
,

where a ∈ {0, 1}. Little is known regarding this conjecture. In the following theorem we prove that
σ2mex(n) and σ3mex(n) are almost always even. More generally we prove the following result.

Theorem 1.3. (Main Theorem) Let k be a positive integer and r ∈ {2, 3}. Then

lim
X→+∞

#
{

0 ≤ n < X : σrmex(n) ≡ 0 (mod 2k)
}

X
= 1.

In other words for almost every non-negative integer n lying in an arithmetic progression, the integer
σrmex(n) is a multiple of 2k where r ∈ {2, 3}.

2. Preliminaries

In this section, we recall some definitions and facts relating to the arithmetic of classical modular
forms. For more details, one can consult [On04, Ko93]. Let H denote the upper-half plane. The
complex vector space of modular forms of weight ` (a positive integer) with respect to a congruence
subgroup Γ will be denoted by M`(Γ).
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Definition 2.1. [On04, Definition 1.15] Let χ be a Dirichlet character modulo N (a positive integer).
Then a modular form f ∈M`(Γ1(N)) has Nebentypus character χ if

f

(
az + b

cz + d

)
= χ(d)(cz + d)`f(z)

for all z ∈ H and all

[
a b
c d

]
∈ Γ0(N). The space of such modular forms is denoted by M`(Γ0(N), χ).

Here Γ0(N) will be as usual the Hecke congruence subgroup of level N .

Recall that Dedekind’s eta-function is defined by

η(z) := q1/24(q; q)∞ = q1/24
∞∏
n=1

(1− qn),

where q = e2πiz and z ∈ H. A function f(z) is called an eta-quotient if it is of the form

f(z) =
∏
δ|N

η(δz)rδ ,

where N is a positive integer and rδ is an integer.
We now recall two theorems from [On04, p. 18], which help us check the modularity of eta-quotients

that show up in our study.

Theorem 2.2. [On04, Theorem 1.64] Suppose that f(z) =
∏
δ|N

η(δz)rδ is an eta-quotient such that

` =
1

2

∑
δ|N

rδ ∈ Z,

∑
δ|N

N

δ
rδ ≡ 0 (mod 24).

Then

f

(
az + b

cz + d

)
= χ(d)(cz + d)`f(z)

for every

[
a b
c d

]
∈ Γ0(N). Here

χ(d) :=

(
(−1)`

∏
δ|N δ

rδ

d

)
.

Suppose that f is an eta-quotient satisfying the conditions of Theorem 2.2. If f is also holomorphic
at all of the cusps of Γ0(N), then f ∈M`(Γ0(N), χ). To check the holomorphicity at cusps of f(z) it
suffices to check that the orders at the cusps are non-negative. The necessary criterion for determining
orders of an eta-quotient at cusps is the following.

Theorem 2.3. [On04, Theorem 1.65] Let c, d, and N be positive integers with d | N and gcd(c, d) =
1. If f(z) is an eta-quotient satisfying the conditions of Theorem 2.2 for N , then the order of vanishing
of f(z) at the cusp c

d is

N

24

∑
δ|N

gcd(d, δ)2rδ

gcd(d, Nd )dδ
.
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3. Proof of main results

In this section, we prove Theorem 1.3. We prove the following lemmas.

Lemma 3.1. Let k be a positive integer and r ∈ {2, 3}. Then

η(24rz)2
k−1

η(24z)η(48rz)2k−1−2 ≡
∞∑
n=0

σrmex(n)q24n+3r−1 (mod 2k).

Proof. From (1.1), the generating function of σrmex(n) is given by

∞∑
n=0

σrmex(n)qn =
(q2r; q2r)2∞

(q; q)∞(qr; qr)∞
. (3.2)

Consider

A(z) =
∞∏
n=1

(1− q24rn)2

(1− q48rn)
=
η(24rz)2

η(48rz)
.

By the binomial theorem, for any positive integers r and k we have

(qr; qr)2
k

∞ ≡ (q2r; q2r)2
k−1

∞ (mod 2k).

Therefore,

A2k−1
(z) =

η(24rz)2
k

η(48rz)2k−1 ≡ 1 (mod 2k).

Define Br,k(z) by

Br,k(z) =
η(48rz)2

η(24z)η(24rz)
A2k−1

(z).

Now, modulo 2k, we have

Br,k(z) =
η(48rz)2

η(24z)η(24rz)

η(24rz)2
k

η(48rz)2k−1

≡ η(48rz)2

η(24z)η(24rz)

= q3r−1
(q48r; q48r)2∞

(q24; q24)∞(q24r; q24r)∞
. (3.3)

Since

Br,k(z) =
η(24rz)2

k−1

η(24z)η(48rz)2k−1−2 ,

combining (3.2) and (3.3), we obtain the required result. �

Lemma 3.2. Let k > 1 be a positive integer and r ∈ {2, 3}. Then

Br,k(z) =
η(24rz)2

k−1

η(24z)η(48rz)2k−1−2 ∈M2k−2 (Γ0(L), χ(•)) ,

where

L =

{
1152 if r = 2,

576 if r = 3.
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Proof. First, we use Theorem 2.2 and find the following:

1. The weight of the eta-quotient Br,k(z) is 2k−2.

2. Suppose the level of the eta-quotient Br,k(z) is 48ru, where u is the smallest positive integer
satisfying the following identity.

48ru

24r
(2k − 1)− 48ru

24
− 48ru

48r
(2k−1 − 2) ≡ 0 (mod 24)

Equivalently, we have

u
(

3 · 2k−1 − 2r
)
≡ 0 (mod 24).

Since k > 1, we have u = 12 if r = 2 and u = 4 if r = 3. Hence level of the eta-quotient Br,k(z)
is {

1152 if r = 2,

576 if r = 3.

3. The Nebentypus character is

χ(•) =

(
(−1)2

k−2
(24r)2

k−1(24)−1(48r)−2
k−1+2

•

)
.

By Theorem 2.3, the cusps of Γ0(L) are given by c
d where d | L and gcd(c, d) = 1. Now note that

eta-quotient Br,k(z) is holomorphic at a cusp c
d if and only if

(2k − 1)
gcd(d, 24r)2

24r
− gcd(d, 24)2

24
− (2k−1 − 2)

gcd(d, 48r)2

48r
≥ 0.

Equivalently, if and only if

2(2k − 1)
gcd(d, 24r)2

gcd(d, 48r)2
− 2r

gcd(d, 24)2

gcd(d, 48r)2
− (2k−1 − 2) ≥ 0. (3.4)

Case (i). When r = 2 then the left side of (3.4) can be written as

2(2k − 1)
gcd(d, 48)2

gcd(d, 96)2
− 4

gcd(d, 24)2

gcd(d, 96)2
− (2k−1 − 2) ≥ 0. (3.5)

To check the positivity of (3.5), we have to find all the possible divisors of 1152. We define three sets
as follows

H1 = {2α3β : 0 ≤ α ≤ 3, 0 ≤ β ≤ 2},
H2 = {2α3β : α = 4, 0 ≤ β ≤ 2},
H3 = {2α3β : 5 ≤ α ≤ 7, 0 ≤ β ≤ 2}.

Note that H1 ∪ H2 ∪ H3 contains all positive divisors of 1152. In the following table we compute all
necessary data to prove the positivity of (3.5).
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Values of d such
that d|1152

gcd(d, 48)2

gcd(d, 96)2
gcd(d, 24)2

gcd(d, 96)2
Values of (3.5)

d ∈ H1
1 1 2k−13− 4

d ∈ H2
1 1/4 2k−13− 1

d ∈ H3
1/4 1/16 5/4

Since k > 1, it is clear from the above table that the quantities in (3.5) are always greater than equal
to 0 for any positive integer d | 1152.

Case (ii). When r = 3 then the left side of (3.4) can be written as

2(2k − 1)
gcd(d, 72)2

gcd(d, 144)2
− 6

gcd(d, 24)2

gcd(d, 144)2
− (2k−1 − 2) ≥ 0. (3.6)

To check the positivity of (3.6), we have to find all the possible divisors of 576. We define four sets
as follows

G1 = {2α3β : 0 ≤ α ≤ 3, 0 ≤ β ≤ 1}, G2 = {2α3β : 0 ≤ α ≤ 3, β = 2},
G3 = {2α3β : 4 ≤ α ≤ 6, 0 ≤ β ≤ 1}, G4 = {2α3β : 4 ≤ α ≤ 6, β = 2}.

Note that G1 ∪G2 ∪G3 ∪G4 contains all positive divisors of 576. In the following table we compute all
necessary data to prove the positivity of (3.6).

Values of d such
that d|576

gcd(d, 72)2

gcd(d, 144)2
gcd(d, 24)2

gcd(d, 144)2
Values of (3.6)

d ∈ G1
1 1 2k−13− 6

d ∈ G2
1 1/9 2k−13− 2/3

d ∈ G3
1/4 1/4 0

d ∈ G4
1/4 1/36 4/3

Since k > 1, it is clear from the above table that the quantities in (3.6) are always greater than equal
to 0 for any positive integer d | 576.

Therefore, by Case (i) and Case (ii), the eta-quotient Br,k(z), where r ∈ {2, 3} and k > 1, are
holomorphic at every cusp c

d and hence it is a modular form on Γ0(L) with Nebentypus character
χ(•). This completes the proof of Lemma 3.2. �

We state the following result of Serre.

Theorem 3.3. [On04, Theorem 2.65] Let k,m be positive integers. If f(z) ∈ Mk(Γ0(N), χ(•)) has
the Fourier expansion f(z) =

∑∞
n=0 c(n)qn ∈ Z[[q]], then there is a constant α > 0 such that

# {n ≤ X : c(n) 6≡ 0 (mod m)} = O
(

X

logαX

)
.

Proof of Theorem 1.3. Suppose k > 1 is a positive integer and r ∈ {2, 3}. From Lemma 3.2, we have

Br,k(z) =
η(24rz)2

k−1

η(24z)η(48rz)2k−1−2 ∈M2k−2 (Γ0(L), χ(•)) .
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Also the Fourier coefficients of the eta-quotient Br,k(z) are integers. So, by Theorem 3.3 and Lemma
3.1, we can find a constant α > 0 such that

#
{
n ≤ X : σrmex(n) 6≡ 0 (mod 2k)

}
= O

(
X

logαX

)
.

Hence

lim
X→+∞

#
{
n ≤ X : σrmex(n) ≡ 0 (mod 2k)

}
X

= 1.

This completes the proof of Theorem 1.3. �
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