Bijective proofs for Eulerian numbers in types B and D - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Bijective proofs for Eulerian numbers in types B and D

Résumé

Let $< n,k> $, $< B_n k> $, and $< D_n, k >$ be the Eulerian numbers in the types A, B, and D, respectively---that is, the number of permutations of n elements with k descents, the number of signed permutations (of n elements) with k type B descents, the number of even signed permutations (of n elements) with k type D descents. Let $S_n(t) = \sum_{k = 0}^{n-1} < n,k> t^k$, $B_n(t) = \sum_{k = 0}^{n}< B_n,k >t^k$, and $D_n(t) = \sum_{k = 0}^{n}< D_n,k> t^k$. We give bijective proofs of the identity $B_n(t^2) = (1 + t)^{n+1}S_n(t) - 2ntS_n(t^2)$ and of Stembridge's identity $D_n(t) = B_n (t) - n2^(n−1)tS_{n−1}(t)$. These bijective proofs rely on a representation of signed permutations as paths. Using this representation we also establish a bijective correspondence between even signed permutations and pairs $(w, E)$ with $([n], E)$ a threshold graph and $w$ a degree ordering of $([n], E)$.
Fichier principal
Vignette du fichier
0.pdf (330.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03204493 , version 1 (22-04-2021)
hal-03204493 , version 2 (27-07-2022)
hal-03204493 , version 3 (23-12-2022)
hal-03204493 , version 4 (03-03-2023)

Identifiants

Citer

Luigi Santocanale. Bijective proofs for Eulerian numbers in types B and D. ALgebras, Graphs and Ordered Sets - August 26th to 28th 2020, Nathalie Bussy (Loria) Miguel Couceiro (General chair, Loria) Lucien Haddad (RMC, CA) Jean-Yves Marion (Loria) Pierre Monnin (Loria) Amedeo Napoli (Loria) Lauréline Nevin (Loria) Justine Reynaud (Loria) Michael Rusinowich (Loria) Hamza Si Kaddour (U. Lyon), Aug 2020, Nancy, France. ⟨hal-03204493v1⟩
151 Consultations
103 Téléchargements

Altmetric

Partager

More