Bijective proofs for Eulerian numbers in types B and D - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Bijective proofs for Eulerian numbers in types B and D

Résumé

Let $< n,k> $, $< B_n k> $, and $< D_n, k >$ be the Eulerian numbers in the types A, B, and D, respectively---that is, the number of permutations of n elements with k descents, the number of signed permutations (of n elements) with k type B descents, the number of even signed permutations (of n elements) with k type D descents. Let $S_n(t) = \sum_{k = 0}^{n-1} < n,k> t^k$, $B_n(t) = \sum_{k = 0}^{n}< B_n,k >t^k$, and $D_n(t) = \sum_{k = 0}^{n}< D_n,k> t^k$. We give bijective proofs of the identity $B_n(t^2) = (1 + t)^{n+1}S_n(t) - 2ntS_n(t^2)$ and of Stembridge's identity $D_n(t) = B_n (t) - n2^(n−1)tS_{n−1}(t)$. These bijective proofs rely on a representation of signed permutations as paths. Using this representation we also establish a bijective correspondence between even signed permutations and pairs $(w, E)$ with $([n], E)$ a threshold graph and $w$ a degree ordering of $([n], E)$, which we use to obtain bijective proofs of enumerative results for threshold graphs.
Fichier principal
Vignette du fichier
0.pdf (394.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03204493 , version 1 (22-04-2021)
hal-03204493 , version 2 (27-07-2022)
hal-03204493 , version 3 (23-12-2022)
hal-03204493 , version 4 (03-03-2023)

Identifiants

Citer

Luigi Santocanale. Bijective proofs for Eulerian numbers in types B and D. ALgebras, Graphs and Ordered Sets - August 26th to 28th 2020, Nathalie Bussy (Loria) Miguel Couceiro (General chair, Loria) Lucien Haddad (RMC, CA) Jean-Yves Marion (Loria) Pierre Monnin (Loria) Amedeo Napoli (Loria) Lauréline Nevin (Loria) Justine Reynaud (Loria) Michael Rusinowich (Loria) Hamza Si Kaddour (U. Lyon), Aug 2020, Nancy, France. ⟨hal-03204493v2⟩
151 Consultations
103 Téléchargements

Altmetric

Partager

More