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ABSTRACT

Let
〈
n
k

〉
,
〈
Bn
k

〉
, and

〈
Dn
k

〉
be the Eulerian numbers in the types A, B, and D, respectively—that is, the

number of permutations of n elements with k descents, the number of signed permutations (of n el-
ements) with k type B descents, the number of even signed permutations (of n elements) with k type
D descents. Let Sn(t) =

∑n−1
k=0

〈
n
k

〉
tk, Bn(t) =

∑n
k=0

〈
Bn
k

〉
tk, and Dn(t) =

∑n
k=0

〈
Dn
k

〉
tk. We

give bijective proofs of the identity

Bn(t2) = (1 + t)n+1Sn(t)− 2ntSn(t2)

and of Stembridge’s identity

Dn(t) = Bn(t)− n2n−1tSn−1(t) .

These bijective proofs rely on a representation of signed permutations as paths. Using this repre-
sentation we also establish a bijective correspondence between even signed permutations and pairs
(w,E) with ([n], E) a threshold graph and w a degree ordering of ([n], E).

1 Introduction

The Eulerian numbers
〈
n
k

〉
count the number of permutations in the symmetric group Sn that have k descent positions.

Let us recall that, for a permutation w = w1w2 . . . wn ∈ Sn (thus, with wi ∈ { 1, . . . , n } and wi 6= wj for i 6= j), a
descent of w is an index (or position) i ∈ { 1, . . . , n− 1 } such that wi > wi+1.

This is only one of the many interpretations that we can give to these numbers, see e.g. [16], yet it is intimately order-
theoretic. The set Sn can be endowed with a lattice structure, known as the weak (Bruhat) ordering on permutations or
Permutohedron, see e.g. [12, 6]. Descent positions of w ∈ Sn are then bijection with its lower covers, so the Eulerian
numbers

〈
n
k

〉
can also be taken as counting the number of permutations in Sn with k lower covers. In particular,〈

n
1

〉
= 2n − n − 1 is the number of join-irreducible elements in Sn. A subtler order-theoretic interpretation is given

in [2]: since the Sn are (join-)semidistributive as lattices, every element can be written canonically as the join of join-
irreducible elements [9]; the numbers

〈
n
k

〉
count then the permutations w ∈ Sn that can be written canonically as the

join of k join-irreducible elements.

The symmetric group Sn is a particular instance of a Coxeter group, see [4], since it yields a concrete realization of the
Coxeter group An−1 in the family A. Notions of length, descent, inversion, and also a weak order, can be defined for
elements of an arbitrary finite Coxeter group [3]. We shift the focus to the families B and D of Coxeter groups. More
precisely, this paper concerns the Eulerian numbers in the types B and D. The Eulerian number

〈
Bn
k

〉
(resp.,

〈
Dn
k

〉
)

counts the number of elements in the group Bn (resp., Dn) with k descent positions. Order-theoretic interpretations
* This is a revised version of the manuscript [19] appeared in the proceedings of the conference ALGOS 2020



Bijective proofs for Eulerian numbers in types B and D

of these numbers, analogous to the ones mentioned for the standard Eulerian numbers, are still valid. As the abstract
group An−1 has a concrete realization as the symmetric group Sn, the group Bn (resp., Dn) has a realization as the
hyperoctahedral group of signed permutations (resp., the group of even signed permutations). Starting from these
concrete representations of Coxeter groups in the types B and D, we pinpoint some new representations of signed
permutations. Relying on these representations we provide bijective proofs of known formulas for Eulerian numbers
in the types B and D. These formulas allow to compute the Eulerian numbers in the types B and D from the better
known Eulerian numbers in the type A.

Let Sn(t) and Bn(t) be the Eulerian polynomials in the types A and B:

Sn(t) :=

n−1∑
k=0

〈
n
k

〉
tk , Bn(t) :=

n∑
k=0

〈
Bn
k

〉
tk . (1)

In [16, §13, p. 215] the following polynomial identity is stated:
2Bn(t2) = (1 + t)n+1Sn(t) + (1− t)n+1Sn(−t) . (2)

Considering that, for f(t) =
∑
k≥0 akt

k,

f(t) + f(−t) = 2
∑
k≥0

a2kt
2k ,

the polynomial identity (2) amounts to the following identity among coefficients:〈
Bn
k

〉
=

2k∑
i=0

〈
n
i

〉(
n+ 1

2k − i

)
. (3)

We present a bijective proof of (3) and also establish the identity

2n
〈
n
k

〉
=

2k+1∑
i=0

〈
n
i

〉(
n+ 1

2k + 1− i

)
. (4)

Considering that, for f(t) =
∑
k≥0 akt

k,

f(t)− f(−t) = 2
∑
k≥0

a2k+1t
2k+1 ,

the identity (4) yields the polynomial identity:
2n+1tSn(t2) = (1 + t)n+1Sn(t)− (1− t)n+1Sn(−t) .

More importantly, (3) and (4) jointly yield the polynomial identity
(1 + t)n+1Sn(t) = Bn(t2) + 2ntSn(t2) . (5)

Let now Dn(t) be the Eulerian polynomial in type D:

Dn(t) :=

n∑
k=0

〈
Dn
k

〉
tk .

Investigating further the terms 2nSn(t), we could find a simple bijective proof, that we present here, of Stembridge’s
identity [24, Lemma 9.1]

Dn(t) = Bn(t)− n2n−1tSn−1(t) , (6)
which, in terms of the Eulerian numbers in type D, amounts to〈

Dn
k

〉
=

〈
Bn
k

〉
− n2n−1

〈
n− 1
k − 1

〉
.

The proofs presented here differ from known proofs of the identities (2) and (6). As suggested in [16], the first
identity may be derived by computing the f -vector of the type B Coxeter complex and then by applying the transform
yielding h-vector from the f -vector. A similar method is used in [24] to prove the identity (6). Our proofs directly
rely on the combinatorial properties of signed/even signed permutations and on two representations of these objects
that we call the path representation of a signed permutation and simply barred permutations. The idea is that a signed
permutation of [n] can be organised into a discrete path from (n, 0) to (0, n) that uses East and South steps and that,
by projecting onto the x axis, we obtain a permutation dived into blocks, as suggested in Figure 1. As a byproduct
of these representations, we also obtain a bijection between even signed permutations of [n] and pairs (w,E) where
([n], E) is a threshold graph and w is a permutation or, better, a linear ordering of [n] that is a degree ordering for
([n], E). Under the bijection, the ordering of Dn is coordinatewise, that is, we have (w1, E1) ≤ (w2, E2) if and only
if w1 ≤ w2 in Sn and E1 ⊆ E2. We are confident that such representation of the ordering will shed some light on the
lattice structure of the weak order on the Coxeter groups of type D, our main goal since the inception of this research.
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Figure 1: Signed permutations as paths and as barred permutations

2 Notation, elementary definitions, and facts

The notation used is chosen to be consistent with [16]. We use [n] for the set { 1, . . . , n } and Sn for the set of permu-
tations of [n]. We use [n]0 for the set { 0, 1, . . . , n }, [−n] for {−n, . . . ,−1 }, and [±n] for {−n, . . . ,−1, 1, . . . , n }.
We write a permutation w ∈ Sn as a word w = w1w2 . . . wn, with wi ∈ [n]. For w ∈ Sn, its set of descents and its set
of inversions1 are defined follows:

Des(w) := { i ∈ { 1, . . . , n− 1 } | wi > wi+1 } , Inv(w) := { (i, j) | 1 ≤ i < j ≤ n,w−1(i) > w−1(j) } .
Then, we let

des(w) := |Des(w)| .

The Eulerian number
〈
n
k

〉
, counting the number of permutations of n elements with k descents, can be formally

defined as follows: 〈
n
k

〉
:= |{w ∈ Sn | des(w) = k }| .

Let us define a signed permutation of [n] as a permutation u of [±n] such that, for each i ∈ [±n], u−i = −ui. We use
Bn for the set of signed permutations of [n]. When writing a signed permutation u as a word u−n . . . u−1u1 . . . un,
we prefer writing ui = x in place of −x if ui < 0 and |ui| = x. Also, we often write u ∈ Bn in window notation, that
is, we only write the suffix u1u2 . . . un; indeed, the prefix u−nun−1 . . . u−1 is determined as the mirror of the suffix
u1u2 . . . un up to exchanging the signs. The set Bn is a a subgroup of the group of permutations of the set [±n] and, as
mentioned before, it is the standard model for the Coxeter group in the family B with n generators. Therefore, general
notions from the theory of Coxeter groups (descent, inversion) apply to signed permutations. We present below, as
definitions, the well-known explicit formulas for the descent and inversion sets of u ∈ Bn. We let

DesB(u) := { i ∈ { 0, . . . , n− 1 } | ui > ui+1 } , InvB(u) := { (i, j) | 1 ≤ |i| ≤ j ≤ n, u−1(i) > u−1(j) } ,
where we set u0 := 0, so 0 is a descent of u if and only if u1 < 0,

desB(u) = |DesB(u)| ,
〈
Bn
k

〉
:= |{u ∈ Bn | desB(u) = k }| .

The definition of the Eulerian polynomials in the types A and B appears in (1). Let us mention that the type A Eulerian
polynomial is often (for example in [5]) defined as follows:

An(t) :=

n∑
k=1

〈
n

k − 1

〉
tk = tSn(t) .

1It is also possible to define Inv(w) as the set { (i, j) | 1 ≤ i < j ≤ n,wi > wj }. The definition given above is better suited
for the order-theoretic approach.
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We exclusively manipulate the polynomials Sn(t) and never the An(t). Notice that Sn(t) has degree n− 1 and Bn(t)
has degree n.

We shall introduce later even signed permutations and their groups, as well as related notions arising from the fact that
these groups are standard models for Coxeter groups in the family D.

For u ∈ Bn we let Des+B (u) := DesB(u) \ { 0 }, that is, Des+B (u) is the set of strictly positive descents of u. Let us
observe the following:

Lemma 2.1. | {u ∈ Bn | Des+B (u) = k } | = 2n
〈
n
k

〉
.

Proof. By considering its window notation, a signed permutation u yields a mapping ũ : [n] −−→ [±n]. This mapping
has a unique decomposition of the form ũ = ι ◦ w with w ∈ Sn and ι : [n] −−→ [±n] an order preserving injection
such that x ∈ ι([n]) iff −x 6∈ ι([n]). The monotone injections with this property are uniquely determined by their
positive image ι([n]) ∩ [n], so there are 2n such injections. Moreover, for i = 1, . . . , n− 1, wi > wi+1 if and only if
ui > ui+1, so |Des+B (ι ◦ w)| = |Des(w)|.

Example 2.2. Consider the signed permutation u := 34125. Then ũ = ι ◦ w with w = 52431 and ι the order
preserving map 5̄4̄2̄13 with ι([n]) ∩ [n] = { 1, 3 }. ♦

3 Path representation of signed permutations, simply barred permutations

We present here our combinatorial tools to deal with signed permutations, the path representation and the simply
barred permutations.

Definition 3.1. The path representation of u ∈ Bn is a triple (πu, λux , λ
u
y ) where πu is a discrete path, drawn on a

grid [n]0 × [n]0 and joining the point (0, n) to the point (n, 0), λux : [n] −−→ [n], and λuy : [n] −−→ [−n]. The triple
(πu, λux , λ

u
y ) is constructed from u according to the following algorithm: (i) u is written in full notation as a word and

scanned from left to right: each positive letter yields an East step (a length 1 step along the x-axis towards the right),
and each negative letter yields a South step (a length 1 step along the y-axis towards the bottom) ; (ii) the labelling
λux : [n] −−→ [n] is obtained by projecting each positive letter on the x-axis, (iii) the labelling λuy : [n] −−→ [−n] is
obtained by projecting each negative letter on the y-axis.

Example 3.2. Consider the signed permutation u := 2316475, in window notation, that is, 57461322316475, in full
notation. Applying the algorithm above, we draw the path πu and the labellings λux , λ

u
y as follows:

7

7

4

4

2

2

3

3

1

1

6

6

5

5

Therefore, πu is the dashed blue path, λux is the permutation 7423165, and λuy is 7 4 2 3 1 6 5. ♦

It is easily seen that, for an arbitrary u ∈ Bn, (πu, λux , λ
u
y ) has the following properties:

(i) πu is symmetric along the diagonal,

(ii) λux ∈ Sn and, moreover, it is the subword of u of positive letters,

(iii) for each i ∈ [n], λuy (i) = λux (i) and, moreover, λuy is the mirror of the subword of u of negative letters.
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Figure 2: Negative inversions of u, indexed on the left by the identity and, on the right, by λuy , λ
u
x

In particular, we see that the data (πu, λux , λ
u
y ) is redundant since λuy is completely determined from λux .

Proposition 3.3. The mapping u 7→ (πu, λux ) is a bijection from the set of signed permutations Bn to the set of pairs
(π,w), where w ∈ Sn and π is a discrete path from (0, n) to (n, 0) with East and South steps which, moreover, is
symmetric along the diagonal.

We leave the reader verify the above statement. Next we argue for the interest of this representation by looking at
the inversion set of a signed permutation. We claim that the type B inversions of u can be identified as the type A
inversions of λux (the positive inversions of u) and the ordered pairs (λuy (i), λux (j)) such that the cell (i, j)—where
1 ≤ i ≤ j ≤ n, i is the line number and j is the row number, lines being indexed from bottom to top—lies below
πu (we call these the negative inversions of u). This is exemplified in Figure 2 with the signed permutation 2316475
from Example 3.2. It might be the case that λux (j) < |λuy (j)|, in which case we identify the pair (λuy (i), λux (j)) with
(λuy (j), λux (i)).

More in general, notice that, for 1 ≤ i ≤ j ≤ n, the cell (i, j) lies below πu if and only if (j, i) does, by symmetry
of πu along the diagonal. We can therefore identify negative inversions of u with the unordered pairs {λux (i), λux (j)}
(thus doubletons or singletons) such that (i, j) lies below πu. This observation opens the way to the graph theoretic
approach of Section 6. Thus, for the signed permutation 2316475 of Example 3.2, we identify the set of type B
inversions of 2316475 with the disjoint union of the set of type A inversions of 7423165 and the set of unordered pairs

{ {7, 7}, {7, 4},{7, 2}, {7, 3}, {7, 1}, {7, 6}, {4, 4}, {4, 2}, {4, 3}, {4, 1}, {4, 6}, {2, 2} } .
Let us argue for this formally.
Proposition 3.4. Let u ∈ Bn. For each i, j with 1 ≤ |i| ≤ j ≤ n, (i, j) ∈ InvB(u) if and only if either 1 ≤ i < j ≤ n
and (i, j) ∈ Inv(λux ) or i < 0 and ((λux )−1(−i), (λux )−1(j)) lies below the path πu.

Proof. Let us consider a pair (i, j) such that 1 ≤ |i| ≤ j ≤ n and such that, if 0 < i, then i < j.

If 0 < i < j, then both i and j appear in λux , which is the subword of u (written in full notation) of positive integers.
Then u−1(i) > u−1(j) if and only if (λux )−1(i) > (λux )−1(j), that is, (i, j) ∈ InvB(u) if and only if (i, j) ∈ Inv(λux ).

We suppose next that i < 0. Observe that, as suggested in Figure 3, if x > 0 and y < 0, then the cell identified by
λuy , λ

u
x as (y, x) is below πu if and only if the letter x appears before the letter y in u. Also, for such a pair, x appears

before y in u if and only if (y, x) ∈ Inv(u), where u is considered as a permutation of the set [±n] and the set of
inversions is computed w.r.t the standard linear order on this set.

Therefore, if (i, j) with i < 0 and 1 ≤ |i| ≤ j ≤ n, then (i, j) ∈ InvB(u) if and only if (i, j) ∈ Inv(u) if and only if
the cell identified by λuy , λ

u
x as (i, j) is below πu. If, instead of using λuy and λux to identify cells, we use the identity

permutation, this happens when ((λuy )−1(i), (λux )−1(j)) = ((λux )−1(−i), (λuy )−1(j)) is below πu.

We consider next a second representation of signed permutations.
Definition 3.5. A simply barred permutation of [n] is a pair (w,B) where w ∈ Sn and B ⊆ { 1, . . . , n }. We let SBPn
be the set of simply barred permutations of [n].

5



Bijective proofs for Eulerian numbers in types B and D

y

x

•

Figure 3: Characterizing inversions of the form (i, j) with i negative

We think ofB as a set of positions ofw, the barred positions or walls. We have added the adjective “simply” to “barred
permutation” since we do not require that B is a superset of Des(w), as for example in [10].

Example 3.6. We write a simply barred permutation (w,B) as a permutation divided into blocks by the bars, placing
a vertical bar after wi for each i ∈ B. For example, (w,B) = (7423165, { 2, 4, 6 }) is written 74|23|16|5. Notice
that we allow a bar to appear in the last position, for example 34|1|265|7| stands for the simply barred permutation
(3412657, { 2, 3, 6, 7 }). Thus, a bar appears in the last position if and only if the last block is empty. The last block
is indeed the only block that can be empty, which amounts to saying that consecutive bars are not allowed in simply
barred permutations. This contrasts with other notions of barred permutations, see for example those appearing in the
proof of the alternating sum formula for the Eulerian numbers [5, Theorem 1.11]. ♦

Next, we describe a bijection—that we call ψ—from the set SBPn to Bn. Let us notice that, in order to establish
equipotence of these two sets, other more straightforward bijections are available.

Definition 3.7. For (w,B) ∈ SBPn, we define the signed permutation ψ(w,B) ∈ Bn according to the following
algorithm: (i) draw the grid [n]0 × [n]0; (ii) since B ⊆ [n], B × B defines a subgrid of [n]0 × [n]0, construct the
upper anti-diagonal π of this subgrid; (iii) ψ(w,B) is the signed permutation uwhose path representation (πu, λux , λ

u
y )

equals to (π,w,w).

Example 3.8. The construction just described can be understood as raising the bars and transforming them into a grid.
For example, for the simply barred permutation 74|2|316|5 (that is, (w,B) with w = 7423165 and B = { 2, 3, 6 })
the construction is as follows:

7

7

4

4

2

2

3

3

1

1

6

6

5

5

The dashed path is the upper anti-diagonal of the subgrid. The resulting signed permutation ψ(w,B) is 2316475 as
from Example 3.2. ♦

The inverse image of ψ can be constructed according to the following algorithm: for u ∈ Bn (i) construct the path
representation (πu, λux , λ

u
y ) of u, (ii) insert a bar in w at each vertical step of πu (and remove consecutive bars),

6
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(iii) remove a bar at position 0 if it exists. Said otherwise, (w,B) = ψ−1(u) is obtained from u by transforming each
negative letter into a bar, by removing consecutive bars, and then by removing a bar at position 0 if needed.

In the following chapters we shall deal mostly with simply barred permutations to carry out computations. We we
consider simply barred permutations as shorthands for path representations of even signed permutations. Yet, some
remarks are due now:
Lemma 3.9. If u = ψ(w,B), then there is a bijection between the set B of bars and the set of East-South turns of πu.
Lemma 3.10. We have 0 ∈ DesB(ψ(w,B)) if and only if |B| is odd.

The lemma can immediately be verified by considering that 0 ∈ DesB(u) if and only if, in the path representation of
ψ(w,B), the first step of πu is along the y-axis. In this case (and only in this case), πu makes an East-South turn on
the diagonal. This happens exactly when πu has an odd number of East-South turns.

4 Descents from simply barred permutations

We start investigating how the type B descent set can be recovered from a simply barred permutation.
Proposition 4.1. For a simply barred permutation (w,B), we have

desB(ψ(w,B)) = |Des(w) \B|+
⌈ |B|

2

⌉
. (7)

Proof. Write u = ψ(w,B) in window notation and divide it in maximal blocks of consecutive letters having the same
sign. If the first block has negative sign, add an empty positive block in position 0. Each change of sign +− among
consecutive blocks yields a descent. These changes of sign bijectively correspond to East-South turns of πu that lie
on or below the diagonal. By Lemma 3.9, each bar determines an East-South turn and, by symmetry of πu along the
diagonal, the number of East-South turns that are on or below the diagonal is

⌈
|B|
2

⌉
. Therefore this quantity counts

the number of descents determined by a change of sign.

The other descents of ψ(w,B) are either of the form wiwi+1 with wi > wi+1 and wi, wi+1 belonging to the same
positive block, or of the form wi+1wi with wi > wi+1 and wi, wi+1 belonging to the same negative block. These
descents are in bijection with the descent positions of w that do not belong to the set B.

For each k ∈ { 0, 1, . . . , n }, in the following we let SBPn,k be the set simply barred permutations (w,B) ∈ SBPn such

that |D(w) \B|+
⌈
|B|
2

⌉
= k.

Corollary 4.2. The set SBPn,k is in bijection with the set of signed permutations of n with k descents.
Definition 4.3. A loosely barred permutation of [n] is a pair (w,B) where w is a permutation of [n] and B ⊆
{ 0, . . . , n } is a set of positions (the bars). We let LBPn be the set of loosely barred permutations of [n].

Loosely barred permutations are being introduced only as a tool to index simply barred permutations independently
of the even/odd cardinalities of their set of bars. Namely, for a loosely barred permutation (w,B), let us define its
simplification ς(w,B) by

ς(w,B) := (w,B \ { 0 }) .
Then ς(w,B) is a simply barred permutation whose set of bars has even (resp., odd) cardinality if either 0 ∈ B and
|B| is odd (resp., even), or 0 6∈ B and |B| is even (resp., odd). For a loosely barred permutations (w,B), we shall
often need to evaluate the expression

⌈
|B\{ 0 }|

2

⌉
. We record this value once for all in the lemma below.

Lemma 4.4. For a loosely barred permutation (w,B) we have

⌈ |B \ { 0 }|
2

⌉
=


|B|
2 , if |B| is even,
|B|−1

2 , if |B| is odd and 0 ∈ B ,
|B|+1

2 , if |B| is odd and 0 6∈ B .

(8)

Next, we define an involution—that we name θn—from the set of loosely barred permutations of [n] to itself. For a
loosely barred permutation (w,B), θn(w,B) is defined by:

θn(w,B) := (w,Des(w)∆B) , (9)

7
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where ∆ stands for symmetric difference. Let us insist that this involution is defined for all loosely barred permuta-
tions, not just for the simply barred permutations.
Lemma 4.5. If (u,C) = θn(w,B), then

|Des(w)|+ |B| = 2|Des(u) \ C|+ |C| . (10)

Proof. Recall that u = w and C = Des(w)∆B, so Des(u) \ C = Des(w) ∩ B. Equation (10) follows since
|Des(w)|+ |B| = |Des(w)∆B|+ 2|Des(w) ∩B|.

We define now a variant Θn of the correspondences θn defined in (9), as follows:

Θn(w,B) := ς(θn(w,B)) = (w,Des(w)∆B \ { 0 }) .
Notice that, in the definition of Θn, (Des(w)∆B) \ { 0 } = Des(w)∆(B \ { 0 }), since 0 6∈ Des(w). This time Θn

yields simply barred permutations, that is, we have Θn : LBPn −−→ SBPn.
Definition 4.6. For each n ≥ 0 and k ∈ [2n]0, we let LBPn,k be the set of loosely barred permutations (w,B) such
that |Des(w)|+ |B| = k.
Proposition 4.7. For each n ≥ 0 and k ∈ [n]0, the restriction of Θn to LBPn,2k yields a bijection Θn,k from LBPn,2k
to SBPn,k.

Proof. Let (w,B) ∈ LBPn,2k, so |Des(w)|+ |B| = 2k. Let also (w,C) = θn(w,B), so Θn(w,B) = (w,C \ { 0 }).
Then, by (10),

2k = 2|Des(w) \ C|+ |C|
and, in particular, |C| is even. Therefore, using this relation and equation (8), we obtain

|Des(w) \ (C \ { 0 })|+
⌈ |C \ { 0 }|

2

⌉
= |Des(w) \ C|+ |C|

2
= k .

The transformation Θn,k is injective. If Θn(w,B) = Θn(w′, B′), then w = w′ and therefore Des(w) = Des(w′).
Moreover, from Des(w)∆B \ { 0 } = Des(w)∆B′ \ { 0 } we deduce B \ { 0 } = B′ \ { 0 }. If moreover
(w,B), (w′, B′) ∈ LBPn,2k, then |B| = 2k − |Des(w)| = |B′|. Then, from |B| = |B′| and B \ { 0 } = B′ \ { 0 } it
follows B = B′.

In order to show that the transformation Θn,k is surjective, let us fix (v, C) ∈ SBPn,k, so |Des(v) \ C| +
⌈
|C|
2

⌉
= k.

If |C| is even, then (v,B) = θn(v, C) is such that Θn(v,B) = θn(v,B) = (v, C) and, using equations (8) and (10),
(v,B) ∈ LBPn,2k:

|Des(v)|+ |B| = 2|Des(v) \ C|+ |C| = 2( |Des(v) \ C|+
⌈ |C|

2

⌉
) = 2k.

If |C| is odd, then (v,B) = θn(v, C ∪ { 0 }) is such that Θn(v,B) = (v, C) and (v,B) ∈ LBPn,2k:

|Des(v)|+ |B| = 2|Des(v) \ (C ∪ { 0 })|+ |C ∪ { 0 }| = 2|Des(v) \ C|+ 2
|C|+ 1

2

= 2( |Des(v) \ C|+
⌈ |C|

2

⌉
) = 2k .

Let us recall that, for u ∈ Bn, Des+B (u) denotes the set of strictly positive descents of u.

Definition 4.8. For each k ∈ [n− 1]0, we let SBPkn be the set of simply barred permutations (w,B) ∈ SBPn such that
|Des+B (ψ(w,B))| = k.

Let us remark the following characterization of the set SBPkn:
Lemma 4.9. For each simply barred permutation (w,B) ∈ SBPn,

(w,B) ∈ SBPkn iff


|B| is even and |D(w) \B|+

⌈
|B|
2

⌉
= k, or

|B| is odd and |D(w) \B|+
⌈
|B|
2

⌉
= k + 1 .

8
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Proof. We have

|Des+B (ψ(w,B))| = k iff

0 6∈ DesB(ψ(w,B)) and desB(ψ(w,B)) = k, or

0 ∈ DesB(ψ(w,B)) and desB(ψ(w,B)) = k + 1 .

The statement of the lemma follows using Lemma 3.10 and Proposition 4.1.

Proposition 4.10. For each k ∈ [n− 1]0, the restriction of Θn to LBPn,2k+1 yields a bijection Θk
n from LBPn,2k+1 to

SBPkn.

Proof. Let (w,B) ∈ LBPn,2k+1 and (w,C) = θn(w,B), so Θn(w,B) = (w,C\{ 0 }). Thus |Des(w)|+|B| = 2k+1
and, by (10),

2k = 2|Des(w) \ C|+ |C| − 1 ,

so in particular |C| is odd. Using this relation and equation (8), we obtain

|Des(w) \ C|+
⌈ |C \ { 0 }|

2

⌉
=

|Des(w) \ C|+ |C|−1
2 = k , 0 ∈ C,

|Des(w) \ C|+ |C|+1
2 = k + 1 , 0 6∈ C .

Considering that |C| is odd, we have the following equality

|Des(w) \ (C \ { 0 })|+
⌈ |C \ { 0 }|

2

⌉
=

{
k , |C \ { 0 }| is even,
k + 1 , |C \ { 0 }| is odd,

which, by Lemma 4.9 amounts to Θn(w,B) = (w,C \ { 0 }) ∈ SBPkn.

The transformation Θk
n is injective (the argument being similar to the one for Θn,k). If Θn(w,B) = Θn(w′, B′)

then w = w′ and Des(w) = Des(w′). Moreover, from Des(w)∆B \ { 0 } = Des(w)∆B′ \ { 0 } we deduce
B \ { 0 } = B′ \ { 0 }. Considering now that |B| = 2k + 1 − |Des(w)| = |B′| and B \ { 0 } = B′ \ { 0 }, we infer
B = B′.

In order to show that the transformation Θk
n is surjective, let us fix (v, C) ∈ SBPkn, so either (i) |C| is even and

|Des(v) \ C|+
⌈
|C|
2

⌉
= k or (ii) |C| is odd and |Des(v) \ C|+

⌈
|C|
2

⌉
= k + 1.

Let us suppose (i). Then (v,B) = θn(v, C ∪ { 0 }) is such that Θn(v,B) = (v, C) and, using equations (8) and (10),
(v,B) ∈ LBPn,2k+1:

|Des(v)|+ |B| = 2|Des(v) \ (C ∪ { 0 })|+ |C ∪ { 0 }| = 2|Des(v) \ C|+ 2
|C|+ 1

2

= 2( |Des(v) \ C|+
⌈ |C|

2

⌉
+

1

2
) = 2k + 1.

Let us suppose (ii). Then (v,B) := θn(v, C) is such that Θn(v,B) = θn(v,B) = (v, C) and, using equations (8) and
(10), (v,B) ∈ LBPn,2k+1:

|Des(v)|+ |B| = 2|Des(v) \ C|+ |C| = 2|Des(v) \ C|+ 2
|C|
2

= 2( |Des(v) \ C|+
⌈ |C|

2

⌉
− 1

2
) = 2(k + 1)− 1 = 2k + 1.

To end this section, we collect the consequences of the bijections established so far.
Theorem 4.11. The following relations hold:〈

Bn
k

〉
=

2k∑
i=0

〈
n
i

〉(
n+ 1

2k − i

)
, (3)

2n
〈
n
k

〉
=

2k+1∑
i=0

〈
n
i

〉(
n+ 1

2k + 1− i

)
. (4)

9
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Proof. We have seen that signed permutations u ∈ Bn such that desB(u) = k are in bijection (via the mapping ψ of
Definition 3.7) with simply barred permutations in SBPn,k. Next, this set is in bijection (see Proposition (4.7)) with the
set LBPn,2k of loosely barred permutations (w,B) ∈ LBPn such that des(w) + |B| = 2k. The cardinality of LBPn,2k
is the right-hand side of equality (3).

The left-hand side of equality (4) is the cardinality of the set of signed permutations u such that |Des+B (u)| = k, see
Lemma 2.1. This set is in bijection with the set SBPkn (via ψ defined in 3.7 and by the definition of SBPkn) which, in
turn, is in bijection (see Proposition (4.10)) with the set LBPn,2k+1 of loosely barred permutations (w,B) ∈ LBPn
such that des(w) + |B| = 2k + 1. The cardinality of this set is the right-hand side of equality (4).

Theorem 4.12. The following relation holds:

Bn(t2) = (1 + t)n+1Sn(t)− 2ntSn(t2) . (11)

Proof. By (3),
〈
Bn
k

〉
, which is the coefficient of t2k in the polynomial Bn(t2), is also the coefficient of t2k in (1 +

t)n+1Sn(t). By (4), 2n
〈
n
k

〉
is the coefficient of t2k+1 in the polynomials 2ntSn(t2) and (1 + t)n+1Sn(t). Therefore

Bn(t2) + 2ntSn(t2) = (1 + t)n+1Sn(t) , (5)

whence equation (11).

5 Stembridge’s identity for Eulerian numbers in type D

We recall that a signed permutation u ∈ Bn is even signed if the number of negative letters in its window notation is
even. The even signed permutations of Bn form a subgroup Dn of Bn and in fact the groups Dn are standard models
for the abstract Coxeter groups of type D.

Definitions analogous to those given in Section 2 for the types A and B can be given for type D. Namely, for u ∈ Dn,
we set

DesD(u) := { i ∈ { 0, 1, . . . , n− 1 } | ui > ui+1 } , (12)

where we have set u0 = −u2,

desD(u) := |DesD(u)| ,
〈
Dn
k

〉
:= |{u ∈ Dn | desD(u) = k }| , Dn(t) :=

n∑
k=0

〈
Dn
k

〉
tk .

The formula in (12) is the standard one, see e.g. [4, §8.2] or [1]. The reader will have no difficulties verifying that, up
to renaming 0 by −1, the type D descent set of u can also be defined as follows, see [16, §13]:

DesD(u) := { i ∈ {−1, 1, . . . , n− 1 } | ui > u|i|+1 } , (13)

where now u−1 = −u1, as normal if u is written in full notation.

It is convenient to consider a more flexible representation of elements of Dn. If u ∈ Bn, then its mate is the signed
permutation u ∈ Bn that differs from u only for the sign of the first letter. Notice that u = u. We define a forked
signed permutation (see [16, §13]) as an unordered pair of the form {u, u} for some u ∈ Bn. Clearly, just one of the
mates is even signed and therefore forked signed permutations are combinatorial models of Dn.

The path representation of a forked signed permutation is insensitive of how the diagonal is crossed, either from the
West, or from the North. The following are possible ways to draw a forked signed permutation on a grid:

1
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5

5

1

1

2

2

3

3

4

4
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5

1
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2

2

3

3

4

4

5

5

10



Bijective proofs for Eulerian numbers in types B and D

1

1

2

2

3

3

4

4

5

5

1

1

2

2

3

3

4

4

5

5

1

1

2

2

3

3

4

4

5

5

1

1

2

2

3

3

4

4

5

5

Figure 4: Two pairs of mates, the smooth mates are on the left

Even if the formulas in (12) and (13) have been defined for even signed permutations, they still can be computed for
all signed permutations. The formula in (13) is not invariant under taking mates, however the following lemma shows
that this formula suffices to compute the number of type D descents of a forked signed permutation and therefore the
Eulerian numbers

〈
Dn
k

〉
.

Lemma 5.1. For each u ∈ Bn, 1 ∈ DesD(u) if and only if −1 ∈ DesD(u). Therefore desD(u) = desD(u).

Proof. Suppose 1 ∈ DesD(u), that is u1 > u2. Then u−1 = −(−u1) = u1 > u2, and so −1 ∈ DesD(u). The
opposite entailment is proved similarly.

For the last statement, observe that DesD(u) = ∆u ∪{ i ∈ { 2, . . . , n− 1 } | ui > ui+1 } with ∆u := { i ∈ { 1,−1 } |
ui > u|i|+1 } and, by what we have just remarked, we have |∆u| = |∆u|. It follows that |DesD(u)| = |DesD(u)|.

Our next aim is to derive Stembridge’s identity

Dn(t) = Bn(t)− n2n−1tSn−1(t) , (14)

see [24, Lemma 9.1], which, in term of the coefficients of these polynomials, amounts to〈
Dn
k

〉
=

〈
Bn
k

〉
− n2n−1

〈
n− 1
k − 1

〉
. (15)

Definition 5.2. A signed permutation u is smooth if u1, u2 have equal sign and, otherwise, it is non-smooth.

The reason for naming a signed permutation smooth arises again from the path representation of a signed permutation:
the smooth signed permutation is, between the two mates, the one minimizing the turns nearby the diagonal, as
suggested in Figure 4 with two pairs of mates as examples.

Lemma 5.3. If u ∈ Bn is smooth, then −1 ∈ DesD(u) if and only if 0 ∈ DesB(u) and therefore desD(u) = desB(u).

Proof. Suppose 0 ∈ DesB(u), so u1 < 0 and u2 < 0 as well, since u is smooth. Then u−1 = −u1 > 0 > u2, so
−1 ∈ DesD(u). Conversely, suppose −1 ∈ DesD(u), that is, u−1 > u2. If u1 > 0, then 0 > −u1 = u−1 > u2, so
u1, u2 have different sign, a contradiction. Therefore u1 < 0 and 0 ∈ DesB(u).

Next, we consider the correspondence—let us call it χ—sending a non-smooth signed permutation u ∈ Bn to the pair
(|u1|, u′), where u′ is obtained from u2 . . . un by normalising this sequence, so that it takes absolute values in the set
[n− 1]. For example χ(6123475) = (6, 123465) and χ(2316475) = (2, 215364), as suggested below:

6123475 (6, 123475) (6, 123465) , 2316475 (2, 316475) (2, 215364) .

The process of normalizing the sequence u2 . . . un can be understood as applying to each letter of this sequence the
unique order preserving bijection Nn,x : [±n] \ {x, x } −−→ [±n − 1] where, in general, x ∈ [n] and, in this case,
x = |u1|.
Lemma 5.4. Let n ≥ 2. For each pair (x, v) with x ∈ [n] and v ∈ Bn−1, there exists a unique non-smooth u ∈ Bn
such that χ(u) = (x, v).

Proof. We construct u firstly by renaming v to v′ so that none of x, x appears in v′ (that is, we apply to each letter of
v the inverse of Nn,x) and then by adding in front of v′ either x or x, according to the sign of the first letter of v′.

11
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Lemma 5.5. The correspondence χ restricts to a bijection from the set of non-smooth signed permutations u ∈ Bn
such that desB(u) = k to the set of pairs (x, v) where x ∈ [n] and v ∈ Bn−1 is such that |Des+B (v)| = k − 1.

Proof. We have already argued that χ is a bijection from the set of non-smooth signed permutations u of [n] to the set
of pairs (x, v) with x ∈ [n] and v ∈ Bn−1. Therefore, we are left to argue that, for a non-smooth u and v such that
χ(u) = (x, v), desB(u) = k if and only if |Des+B (v)| = k−1. Said otherwise, we need to argue that, for such u and v,
|Des+B (v)| = desB(u)− 1. To this end, observe that (i) |DesB(u) ∩ { 0, 1 }| = 1, since u1, u2 have different sign, (ii)
Des+B (v) = { i− 1 | i ∈ DesB(u)∩{ 2, . . . , n− 1 } }, from which the relation |Des+B (v)| = desB(u)− 1 follows.

Theorem 5.6. The following relations hold:〈
Bn
k

〉
=

〈
Dn
k

〉
+ n2n−1

〈
n− 1
k − 1

〉
, Bn(t) = Dn(t) + n2n−1tSn−1(t) .

Proof. Every signed permutation is either smooth or non-smooth. By Lemma 5.3, the smooth signed permutations
with k type B descents are in bijection with the even signed permutations with k type D descents. By Lemma 5.5, the
non-smooth signed permutations u ∈ Bn with k type B descents are in bijection with the pairs (x, v) ∈ [n] × Bn−1

such |Des+B (v)| = k − 1. Using Lemma 2.1, the number of these pairs is n2n−1
〈
n− 1
k − 1

〉
.

Example 5.7. We end this section exemplifying the use of formulas (3) and (15) by which computation of the Eulerian
numbers in type B and D is reduced to computing Eulerian numbers in type A. Let us mention that our interest in
Eulerian numbers originates from our lattice theoretic work on the lattice variety of Permutohedra [21] and its possible
extensions to generalized forms of Permutohedra [17, 20, 11]. Among these generalizations, we count lattices of finite
Coxeter groups in the types B and D [3]. While it is known that the lattices Bn span the same lattice variety of the
permutohedra, see [6, Exercice 1.23], characterizing the lattice variety spanned by the lattices Dn is an open problem.
A first step towards solving this kind of problem is to characterize (and count) the join-irreducible elements of a class
of lattices. In our case, this amounts to characterizing the elements u in Bn (resp., in Dn) such that desB(u) = 1 (resp.,
such that desD(u) = 1). The numbers

〈
Bn
1

〉
and

〈
Dn
1

〉
are known to be equal to 3n − n− 1 and 3n − n− 1− n2n−1

respectively, see [16, Propositions 13.3 and 13.4]. Let us see how to derive these identities using the formulas (3) and
(15). To this end, we also need the alternating sum formula for Eulerian numbers, see e.g. [5, Theorem 1.11] or [16,
page 12]: 〈

n
k

〉
=

k∑
j=0

(−1)j
(
n+ 1

j

)
(k + 1− j)n . (16)

For type B, we have〈
Bn
1

〉
=

〈
n
0

〉(
n+ 1

2

)
+

〈
n
1

〉(
n+ 1

1

)
+

〈
n
2

〉(
n+ 1

0

)
=

(
n+ 1

2

)
+ (2n − n− 1)(n+ 1) +

〈
n
2

〉
=

(
n+ 1

2

)
+ (2n − n− 1)(n+ 1) + 3n − 2n(n+ 1) +

(
n+ 1

2

)
, by (16)

= 3n − (n+ 1)2 + 2

(
n+ 1

2

)
= 3n − (n+ 1)(n+ 1− n) = 3n − n− 1 .

The computation in type D is then immediate from Stembridge’s identity (15):〈
Dn
1

〉
=

〈
Bn
1

〉
− n2n−1

〈
n− 1

0

〉
= 3n − n− 1− n2n−1 . ♦

6 Threshold graphs and their degree orderings

Besides presenting the bijective proofs, a goal of this paper is to illustrate the path representation of signed permu-
tations and exemplify its potential. The attentive reader might object that the path representation is not really in use

12
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Figure 5: The (unlabelled) graphs K2,2, P3, and C4

within Section 5. Indeed, after discovering the bijective proof of Stembridge’s identity via the path representation, we
realized that the proof could be simplified and reach a larger audience by avoiding mentioning the representation. It
might be asked then whether the path representation yields more information, in particular with respect to the lattices
of the Coxeter groups Dn. We answer this question in this section. The type D set of inversions of an even signed
permutation can be defined as follows:

InvD(u) := InvB(u) \ { (−i, i) | i ∈ [n] } ,
which, graphically, amounts to ignoring cells on the diagonal:

3

3

4

4

1

1

5

5

2

2

×
×

×
×

×

As mentioned in Proposition 3.4, we can identify the set of inversions of a signed permutation uwith the disjoint union
of Inv(λux ) and a set of unordered pairs. For even signed permutations, this identification yields:

InvD(u) = Inv(λux ) ∪ Eu with Eu := { {i, j} | i, j ∈ [n], i 6= j, ((λux )−1(i), (λux )−1(j)) lies below πu } .
Therefore, we consider ([n], Eu) as a simple graph on the set of vertices [n]. Before taking this route, let us recall
some standard definitions that apply to an arbitrary simple graph (V,E) and to a vertex v ∈ V :

NE(v) := {u ∈ V | {v, u} ∈ E } , degE(v) := |NE(v)| , NE [v] := N(v) ∪ { v } .
A linear ordering v1, . . . , vn of V is a degree ordering of (V,E) if degE(v1) ≥ degE(v2) ≥ . . . ≥ degE(vn). The
vicinal preorder of a graph (V,E), noted CE , is defined by saying that v CE u iff NE(v) ⊆ NE [u]. Notice that the
relationNE(v) ⊆ NE [u] is equivalent toNE(v)\{u } ⊆ NE(u)\{ v }. That the vicinal preorder is indeed a preorder
is well-known, see e.g. [13]. For completeness, let us add a statement and a proof of this fact.
Lemma 6.1. The relation CE on a simple graph (V,E) is reflexive and transitive.

Proof. Reflexivity is obvious. For transitivity, let u, v, w ∈ V be distinct and such thatNE(u) ⊆ NE [v] andNE(v) ⊆
NE [w]. Let x ∈ NE(u). If x 6= u, then x ∈ NE(v) ⊆ NE [w]. If x = v, then v ∈ NE(u), thus u ∈ NE(v) ⊆ NE [w]
and since u 6= w, x = u ∈ NE(w). Therefore NE(u) ⊆ NE [w].

Next, we take Theorem 1 in [7] as the definition of the class of threshold graphs and consider, among the possible
characterizations of this class, the one that uses the vicinal preorder.
Definition 6.2. A graph (V,E) is threshold if it does not contain an induced subgraph isomorphic to one among K2,2,
P3 and C4 (these graphs are illustrated in Figure 5).

Proposition 6.3 (see e.g. [13, Theorem 1.2.4]). A graph (V,E) is threshold if and only if the vicinal preorder is total.

We develop next a few considerations on threshold graphs.
Lemma 6.4. For a simple graph (V,E) and < a total ordering of V , the following contitions are equivalent:

(i) (V,E) is a threshold graph and < is a degree ordering,

(ii) u < v implies v CE u, for each v, u ∈ V .

If any of the above conditions hold, then, for each v ∈ V , NE(v) is a downset in the following sense: if u ∈ NE(v)
and w 6= v is such that w < v, then w ∈ NE(v).
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Figure 6: Paths and Galois connections

Proof. We observe firstly that v CE u implies degE(v) ≤ degE(u). Indeed, this follows from the fact that v CE u
amounts to NE(v) \ {u } ⊆ NE(u) \ { v } and that u ∈ NE(v) if and only if v ∈ NE(u). Notice also that the same
argument can be used to argue that if v CE u and u 6CE v, then degE(v) < degE(u).

Let therefore (V,E) and < be as stated. By the remark above, if < satisfies (ii) then it is a degree ordering and
also (V,E) is a threshold graph, since if u 6CE v, then u 6< v, so v ≤ u and v CE u. Suppose next (V,E) is a
threshold graph and that < is a degree ordering, so u < v implies degE(v) ≤ degE(u). Let u < v and suppose
that v 6CE u. Since the vicinal preorder is total, then we have u CE v and so degE(u) < degE(v), contradicting
degE(v) ≤ degE(u).

For the last statement, for such v, u, w, we have v ∈ NE(u) \ {w } ⊆ NE(w) \ {u }, so v ∈ NE(w) and w ∈
NE(v).

We establish now a connection between threshold graphs whose set of vertices is [n] and paths via the notion of Galois
connection. Let us recall that paths from (0, n) to (n, 0) that are composed only by East and South steps bijectively
correspond to Galois connections on [n]0, that is, to functions f : [n]0 −−→ [n]0, such that, for some other (necessarily
unique) function g : [n]0 −−→ [n]0, y ≤ f(x) if and only if x ≤ g(y), for each x, y ∈ [n]0. The correspondence sends
a path π to the function heightπ such that heightπ(x) is the height of π after x East steps, we illustrate this in Figure 6.
We refer the reader to [15] for Galois connections and [18] for the correspondence between paths and sup-preserving
functions in the discrete setting. Such a Galois connection f is self-adjoint if y ≤ f(x) is equivalent to x ≤ f(y), for
each x, y ∈ [n]0 and it is fixed-point free if f(x) 6= x, for each x ∈ [n]0. Notice that a Galois connection f is antitone,
that is, we have x ≤ y implies f(y) ≤ f(x), for each x, y ∈ [n]0. Since [n]0 is a finite chain, a map f : [n]0 −−→ [n]0
is a Galois connection if and only if it is antitone and f(0) = n.
Lemma 6.5. For f : [n]0 −−→ [n]0 a fixed-point free self-adjoint Galois connection, define

Ef := { {x, y} | x, y ∈ [n], x 6= y, y ≤ f(x) } .
Then ([n], Ef ) is a threshold graph and < is a degree ordering of ([n], Ef ). The mapping f 7→ Ef is a bijection from
the set of fixed-point free self-adjoint Galois connection of [n]0 to the set of threshold graphs of the form ([n], E) such
that the standard linear ordering of [n] is a degree ordering.

Proof. If y < x and z ≤ f(x), then z ≤ f(x) ≤ f(y), since f is antitone. As a consequence, if y < x, then
NEf (x) ⊆ NEf (y) ∪ { y } = NEf [y], so ([n], Ef ) is a threshold graph and < is a degree ordering, by Lemma 6.4.

Conversely, let ([n], E) be a threshold graph for which the standard ordering is a degree ordering. As we have seen,
NE(x) is a downset: if y ∈ NE(x) and z 6= x is such that z < y, then z ∈ NE(x). Define then fE(x) :=
maxNE(x), with the conventions that max ∅ = 0 and NE(0) = [n]0, so fE : [n]0 −−→ [n]0. Observe that the
following equivalences holds, by the definition of fE and the fact that NE(x) is a downset: {x, y} ∈ E if and only if
y ∈ NE(x) if and only if x 6= y and y ≤ fE(x). It immediately follows that y ≤ fE(x) if and only if x ≤ fE(y), so
fE is self-adjoint; fE is fixed-point free since x 6∈ NE(x).

It is easily seen that fEf = f and that EfE = E, so the two transformations are inverse to each other.

With these tools available, we can state the main result of this section:
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Theorem 6.6. The mapping sending u to (λux , E
u) is a bijection from the set Dn to the set of pairs (w,E) such that

([n], E) is a threshold graph and the linear ordering given by the permutation w ∈ Sn is a degree ordering for it.

Proof. Firstly, we claim that the pair (λux , E
u) is constructed through intermediate steps, as suggested in the following

diagram (the notation being used is explained immediately after):

u ∈ Dn (λux , π
u) (λux , π˜u) ∈ Sn × Pi+E,S([n]0, [n]0)

(λux ,heightπ˜u) ∈ Sn × GCfpfsa([n]0)

(λux , E
u) (λux , λ

u
x ◦ Eheightπ˜u ) ∈ ?

We also clain that each step in the upper leg of the diagram yields a bijection. Therefore, in a second time, we shall be
left to characterise the pairs that may appear in the bottom right corner.

We explain the notation used in the diagram. For u ∈ Dn, we let ˜u ∈ {u, u } be such that ˜u1 > 0. The first step of π˜u
after crossing the diagonal is an East step and therefore the Galois connection corresponding via the height to π˜u is
fixed-point free. We let Pi+E,S([n]0, [n]0) denote the set of East and South step paths from (0, n) to (n, 0) that make an
East step after meeting the diagonal, and that are symmetric along the diagonal. We let GCfpfsa([n]0) denote the set
of fixed-point free self-adjoint Galois connection of [n]0. Then the height function is a bijection from Pi+E,S([n]0, [n]0)
to GCfpfsa([n]0). For f ∈ GCfpfsa([n]0), Ef is as in the statement of Lemma 6.5. Finally, if E is a set of edges on the
vertices [n] and σ ∈ Sn, then we let

σ ◦ E := { {σ(i), σ(j)} | {i, j} ∈ E } = { {i, j} | {σ−1(i), σ−1(j)} ∈ E } .
We justify now the equality on the bottom line of the diagram. Notice that

Eu = λux ◦ Eπu with Eπu := { {i, j} | i, j ∈ [n], i 6= j, (i, j) lies below πu }
and that Eπu = Eπ˜u = Ef where f = heightπ˜u . Indeed, the condition that (i, j) lies below π˜u amounts to saying
that i is less of the height of π˜u after j East steps. This shows that Eu = λux ◦ Ef with f = heightπ˜u .

Finally, the following equivalences are clear: f is a fixed-point free self-adjoint Galois connection of [n]0 if and
only if < (the ordering given by the identity permutation) is a degree ordering of the threshold graph ([n], Ef ) (by
Lemma 6.5), if and only if the ordering given by the permutation σ is a degree ordering for the threshold graph σ ◦E.
Thus, in the right bottom corner of the above diagram we have all the pairs (w,E) such that ([n], E) is a threshold
graph and the linear ordering given by the permutation w ∈ Sn is among its degree orderings.

Let us remark that Theorem 6.6 also yields a natural representation of the weak ordering on Dn as follows: under the
bijection, (w1, E1) ≤ (w2, E2) holds if and only if w1 ≤ w2 in the weak ordering of Sn and, moreover, E1 ⊆ E2.
This poset (actually a lattice, since it is isomorphic to Dn) is built out from threshold graphs but is only loosely related
to the lattice of threshold graphs of [14] where unlabeled (that is, up to isomorphism) threshold graphs are considered.

That threshold graphs are related to the families B and D in the theory of Coxeter groups has already been observed, see
e.g. [8], [22, Exercise 5.25], and [23, Exercise 3.115]. As part of possible future research, it is tempting to investigate
further the bijection presented in Theorem 6.6 (which can be further adapted to fit the type B) and try to understand if
it plays any important role with respect to the problem, partly solved in [8], of characterizing free sub-arrangements
of the Coxeter arrangements Bn.
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